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RELATIONS AMONG GENERALIZED
CHARACTERISTIC CLASSES

ALEXANDER E. KOONCE

In this paper, we extend Brown and Peterson's algebraic calcu-
lations, using methods of homotopy theory, to the consideration of
manifolds with structure and to characteristic classes arising from
generalized cohomology theories.

0. Introduction. In [BP], E. Brown and F. Peterson made the first
calculation of relations among the Stief el-Whitney classes of the stable
normal bundles of manifolds. Specifically, they computed

Mn

where vM: Mn -+ BO classifies the stable normal bundle of Mn, and
the intersection is taken over all compact difFerentiable manifolds of
dimension n. These calculations have, via the Brown-Gitler spectra
[BG], proven to be of considerable value. Although they arose in
the context of the Immersion Conjecture for compact differentiable
manifolds and were instrumental in its solution [Cl], these spectra
were also used by M. Mahowald [Ma], and subsequently at odd primes
by R. Cohen [C2], to produce infinite families in the homotopy groups
of spheres. G. Carlsson used the Spanier-Whitehead duals of these
spectra to prove the Segal Conjecture for elementary abelian 2-groups
[Ca], and H. Miller then used the algebra thus developed by Carlsson
in his proof of the Sullivan Conjecture [Mi].

These theories should be related to the bordism theories coming
from our chosen class of manifolds. We wish to calculate

/„= Π Kerz>*c £*(£),

where B is the classifying space associated to a certain class of man-
ifolds, denoted by pairs (Mn, z>); v\ Mn —• B is a lifting of VM
(B comes equipped with a map to BO) and E* is the cohomology
theory. We will place the following conditions on E*, where TB is
the Thom-spectrum associated to B.
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2.1. (a) TB has an ^-orientation, and
(b) Given a class u e E^(Mn), there exists a class v e En~^{Mn)

such t h a t (U'V, [Mn]) φθ.
In Section 2 we define a map

where En-q is the (n-g)th space in the Ω-spectrum £ representing
E*, and for a group G, G* = Hom(G, π0E). We show that if Jn =
Φ(/Λ) C E*(TB), where Φ is the Thorn isomorphism, then we have
the following:

2.6. THEOREM. If E* satisfies 2.1, then Jn Π Eq(TB) = Ker ψq.

Dualizing to homology, we obtain our main result:

2.7. THEOREM. Under assumptions 2.1, the following diagram com-
mutes:

TBq{E) ~ Eq{TB)

Here, ιn-q is the stabilization map, χ is induced by the switch-map
TB ΛE —> E ΛTB, and ^ is evaluation. In those cases where ηq is
an isomorphism, therefore, we have reduced our original calculation
to that of the stabilization map and χ. At the end of Section 2,
we show that these results reduce to those of Brown and Peterson, by
setting B = BO and E* = H*(-Z/2).

In the final sections of this paper, we apply this program to the case
B = BU, where U is the infinite unitary group (thus, the manifolds
under consideration are stably almost-complex). We use the Morava
AΓ-theories as our generalized (co)homology theories, since they are
complex-oriented and satisfy the strong duality conditions which we
need. The paper ends with a calculation of the image of the stabi-
lization map, which we now summarize briefly. The Thom-spectrum
MU, localized at the odd prime p, is made up of similar spectra
BP. Let m > 1, and let K(m) be the corresponding Morava K-
theory at the prime p . We show that BP*K(m) is generated as a π*
BP-module by elements vr

mζJ , where / = (j\ , j 2 , . . .) is a nonnega-
tive finite sequence with each j k < pm . The image of the suspension
map may be described as follows: given a e BP*K(m), let d(a) be
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the minimum q such that there is an aq e π*(BP Λ K(m)g+) with
(iq)*(<*q) = oc. Finally, let | / | = ΣJt (< oo).

4.9. THEOREM. d(vr

mξJ) = 2\J\ - 2r(pm - 1).

This paper consists primarily of work done on my Ph.D. thesis at
Stanford University under the supervision of Ralph L. Cohen. It is
with great pleasure that I thank Professor Cohen for his guidance,
support and inspiration. In addition, I gratefully acknowledge the
assistance of W. Stephen Wilson in realizing the results of Section 4
from his paper [W].

1. Preliminaries. Throughout this paper we shall be concerned with
manifolds with structure in the sense of Stong [St]. In this section
we recall briefly the definition and basic properties of such objects.
Henceforth all manifolds are assumed to be compact and differen-
tiable.

Suppose one is given a sequence of spaces Bk , fibrations fk: Bk —•
BO(k), and maps gk: Bk —• Bk+X such that the diagram

Bk ^ Bk+\

BO(k) & BO{k + \)

commutes, j k being induced by the usual inclusion O(k) <-> O{k+\).
Let b = lim Bk and as usual BO = lim BO(fe).

1.1. DEFINITION. A (B, /)-manifold is a pair (A/71, ΰ)9 where
Mn is an n -dimensional manifold and v: Mn —• B is a lifting of the
stable normal bundle classifying map of Mn .

For example, if we let B2k = Blk+\ = BU(k), the classifying space
for the unitary group, let f2k: BU(k) —• BO(2k) be induced by the
standard map U(k) —> O(2k), and define fiic+i = Jik ° fik > then we
are considering stably almost-complex manifolds.

For a space X, we define as usual Ωn(B9 f; X) to be the set of
equivalence classes of triples (Mn , v, h), where (Mn , v) is a (B, / ) -
manifold and h: M —> X is a map, under the relation of cobordism.
Note that for our above example, Ωπ(2? / ; pt.) = Ω^, the complex
cobordism groups.

Now let TBk be the Thorn space of the bundle fk(yk), for γk

the universal bundle over BO (k). The spaces TBk form a spectrum,
which we denote TB. Then one has the Thom-Pontrjagin theorem
for (B, /)-manifolds.
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1.2. THEOREM. Ω w ( 5 ; I ) = π

The map T: Ωn(B, / ; X) -> πn(TBΛX+) is constructed as follows:
there is a stable map Δ*: TvM -+ TVMΛM+ , induced by the diagonal
map Δ: M -» Λf x M. Let r: S n —• 7>Λ/ be the stable map given
by the Thom-Pontrjagin construction. Then T([Mn ,v, h]) is the
composition

Sn y-• 7Vji/ >-• TVM Λ M + >—• 7 S Λ X+.

In the remainder of this section we recall some facts about general-
ized cohomology theories and duality in manifolds that will be useful
to us. The reference here is [A2].

For what follows we shall let E = {Eq} be the Ω-spectrum rep-
resenting our homology theory £"* and cohomology theory E*. We
shall assume unless stated otherwise that E is a ring spectrum with
multiplication μ, so that our theories E* and E* come equipped
with the cup, cap and Kronecker products.

We recall that an E- orientation (or Thorn class) for a A:-plane
bundle ξ over a space X with Thom space Tξ is an element UE G
Ek(Tξ) which restricts to a generator E*(Sk) (as an J?*(S°)-module)
on each fiber. If (Mn, v) is a (B, /)-manifold, then for k sufficiently
large the normal bundle vjfa to any immersion of Mn in Rn+k has
a Γ.S-orientation. If each i/ĵ  has an JS'-orientation for k sufficiently
large, then one obtains a stable Thom class UE € E°(TI>M) , which we
call an E -orientation for Mn . In particular, every (B, /)-manifold
has a Γ2?-orientation. If Mn has an JE'-orientation, then we have a
Thom isomorphism Φu: Eq(Mn) —• EQ(TVM) > given by cup-product
with w^: £(M") -^ EP{TvM).

Poincare duality holds for manifolds ΛF with an is-orientation in
the usual way: there exists a class [Mn] e En(Mn) such that the map
^ [Mn]: E(M") —> En-p(Mn) is an isomorphism for all /?. As usual,
we call such a class a fundamental class for M" .

We recall that TVM and M+ are 5-duals, with the duality isomor-
phism s: Eq(TvM) —• En-q(M%) given by: s(v) is the compositionΛ

Sn ^> Γι/M ^ TvMNMl ~ ΣqE/\Ml.

Then Poincare duality, the Thom isomorphism and ^-duality are all
related by the following result.
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1.3. LEMMA [A2]. Suppose TvM has a Thorn class UE . Then the
following diagram commutes up to sign:

E*{Mn) ~ D

En-q{Mn)

1.4. COROLLARY. S{UE) £ En(
yMn) is a fundamental class for

Mn. D

In other words, we may take as a representative of [Mn] the fol-
lowing composition:

S» >U TvM £ TvM Λ Ml U£l E Λ Ml.

2 The generalized Brown-Peterson process. As we stated earlier,
our goal is to compute the ideal

where the intersection is over all (B, /)-manifolds (ΛP, z>), for a
judicious choice of E*.

We fix our choice (B, /) of structure for our manifolds, and de-
mand the following two conditions of our cohomology theory E*:

2.1. (a) TB has an ^-orientation, and
(b) Given a class u e Eq(Mn), there exists a class υ e En~q(Mn)

s u c h t h a t (U'V, [Mn]) φQ.
Condition 2.1 (a) means that for each k, the bundle f£{γk) over
Bf< has an is-orientation U^ such that the composition Ek(TBk)
-> Ek(ΣTBk_x) -+ Ek-\TBk_x) carries Uk to Uk-X.

Two further remarks are in order here. First, 2.1 (a) implies that
each (B, /)-manifold (Mn, ί>) has an Is-orientation: from the pre-
ceding comment we see that there is a stable class U G E°(TB), called
the stable Thorn class for TB; cup-product with U yields a stable
Thorn isomorphism

Φ:Eq{B)-+Eq{TB).

The composition TVM >-* TB ^+ E then yields a stable Thorn class for
TvM over the ( 5 , /)-manifold (Mn, z>). Second, 2.1(b) is stronger
than Poincare duality as described in Section 1; indeed, if, for ex-
ample E* = H*(-; Z), then 2.1(b) needn't hold if u is a torsion
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class. Poincare duality alone is insufficient to prove Lemma 2.2 be-
low, which is a key step in our reduction of the calculation. One needs
other methods, for example, to find the ideal of relations for B = BSO
and E* = //*(-; Z) (see [Sh]).

Let G be an abelian group. In what follows we shall let G* =
Hom(G, πoE), where E is understood from context.

Let {Eq} be the Ω-spectrum representing E*, and define a map
φq: E«(B) - Ω w ( 5 , / ; En-q)* by the rule

φq{v){[Mn , v, A]) = {ϋ*{v) h*{ιn-q), [M»]),

where ιn-q e En~q{En-q) is the fundamental class. We shall see in a
moment that φq is well-defined.

2.2. LEMMA. // E* satisfies conditions 2.1, then In C\Eq{B) =
Ker φq.

Proof. Let υ € £*(£) . Then

V 6 / B iff ϊ*(v) = 0 for all (Mn , z>)
iff (u*(υ) y, [M*]} = 0 for all (Mn , v)

iff (ι)*(v) h*(ιn-q), [MΛ]) for all {Mn , z>)
and all h: Mn -+En-q

iff v £ K&τφq. D

We now define a second map, ψq: Eq{B) —• nn{TB Λ En_g+)*, by
the following: for t; G ̂ ( 5 ) , α e πn(TBΛEn_g+), ^(v)(α) is the
composition

2.3. PROPOSITION. The following diagram commutes:

Eq(B) h an(B,f\En-qY

πn(TBΛEn_q+y

where T: Ωn(B, / ; J E ^ ) -• πn(TBΛEn_q+) is the Thom-Pontrjagin
map defined in Section 1.

Note as a corollary that ^ is well-defined.
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First we need the following

2.4. LEMMA. Let uM be the Thorn class TvM -+TB-+E as above.
Let v e Eq(Mn), and let j n e En(Sn) be induced by the unit 1 e π0E.
Then

where r: Sn -+ TvM is as before.

Proof. By definition (v , [Mn]) is the composition

S£EΛM\%E

By Corollary 1.4, this is the same as

NMlSn ~ TvM £ TvmNMl UU

But the above composition TvM -* E is equal to UE -V , by defini-
tion. The result follows immediately. D

Proof of Proposition 2.3. Let

υeE*{B), [M\ϋ,h]e Ωn(B,f; En-q+).

Then if we let a e πn(TB Λ En-q+) be the composition

Sn ^ TvM & TvM Λ Ml T^h TB/\En-g+ ,

we have that ((Γ* o ψq{v)){[Mn, v, A]) - (α*(Φ(v) *„-*), Λ ) , where
Φ(v) - in-q is given by the composition

Φ(υ)Aι

By Lemma 2.4,

φq{[Mn,P,h]) = {ϋ*(v) • h*{ιn-q), [M"])

= {r*{{uM-ΰ*{υ))-h*{ιn-q)),jn).

Now Φ(υ) is the composition

Hence α*(Φ(v) ιn-q) = r*(Tϋ*(U • v) • h*{ιn-q). Thus in order to
complete the proof of Proposition 2.3 it remains to show that

Tΰ*(U υ) = uM- v*(υ) G E«(TvM).
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Since UM is the composition TvM ^+ TB^-+E, UM-V*(V) is given
by

and

TvM£+TvM/\

v*{U v) is given

TυM Λ TB

So we need only show

But

and

TvM

III
Tvm >

MlT¥?TB/\B+

by

£TBΛB+

UΛVE

that the following

>—• IB >-•

^ TvMNMl ll

the fist line is induced by

the second line by

Mn >-+ B >-* B x

Mn A Mn x Mn ^

ΛΣ^Λ

\qE^ ΣqE

Λ ΣqE.

commutes:

TBΛ
III

£? TB/\

B,

' BxB.

B+

1

B+

Since these two compositions are equal, the proposition follows. •

2.5. COROLLARY. /„ n Eq(B) = Ker ψq. •

Making use of the Thorn isomorphism, we now study instead Jn =
Φ(In) C E*(TB). Define a map, which by abuse of notation we still
call ^,from Eq{TB) to πn(TBΛEn_q+)* by the rule: ψq(v)(a) is
the composition

Sn~TBΛ En_q+

 VA^ ΣqE Λ Σn~qE Λ ΣnE.

We have the following immediate consequence:

2.6. COROLLARY. Jn n Eq(TB) = Ker ψq. D

Using the fact that πn(TB A En_g+) = TBn{En_q+), we have a map3

ψ*q:TBn{En_q+^Eq{TB)*.

We last have a map ηq: - (̂ΓJ?) -f Eq(TB)* given by
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for x G Eg(TB), v G Eq{TB). Then the main result of this general-
ized Brown-Peterson process is the following, which is proven simply
by checking the two composites on a homotopy level:

2.7. THEOREM. The following diagram commutes:

TBn(En_q+) h E«(TB)*

TBn(Σn-^E) = TBq(E) ~ Eq{TB)

where χ is induced by the switch-map TB ΛE ^+ E ΛTB. D

2.8. COROLLARY. If ηq is an isomorphism and E = TB, then

where χ: E*E —• E*E is the canonical anti-automorphism associated
to the Hopf algebra E*E. D

In particular, for TB = MO, i.e., for unoriented cobordism, the
above calculation reduces to that of Brown and Peterson. In fact, since
MO splits as a wedge of Eilenberg-Mac Lane spectra KZ/2, if we re-
strict our attention to the KZ/2 summand containing the Thom class,
one may easily verify that (TuM)*: H*(KZ/2) ^H*(TvM) (with Z/2
coefficients) is given by {TVMY{CI) — a-UM, where a G A, the Steen-
rod algebra, and UM G H°(TUM) is the Thom class. Then if

Λ(0) = f|Ker( Γz/M)*,
Mn

using the fact that a G Ker(zp)*: A -> H*(K(Z/2,p)) if and only if
the element a has excess e(a) > p, we obtain the following result of
Brown and Peterson's [BP]:

2.9. COROLLARY. Jn(0) = {aeA\ dim(χ(a)) + e(χ(a)) > n}. D

3. ¥ [ / , BP, and the Morava ^-Theories. In the remainder of
this paper we restrict ourselves to the study of stably almost-complex
manifolds, where B2k = B2k+\ = BU(k), and the resulting Thom
spectrum is MU. Now M U localized at a prime p splits into a
wedge of suspensions of BP summands. Unfortunately, neither MU
nor BP satisfies condition 2.1 (b) in general. Thus we are led to use
E = K(m), the Morava ^-theories, as our generalized (co)homology
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theories. In this section we collect some facts about K(m) and related
spectra.

Fix a prime p. For the BP spectrum associated to p we have

π*BP £ Z{p)[vx, υ2, . . . ], dim(^ ) = 2{pι - 1),

where Z(p) represents the integers localized at p. The Morava K-
theories are BP-mod\xle spectra related to BP by maps Km: BP ->
K(m). We collect their basic properties in the following (see, for
example, [RW2]):

3.1. PROPOSITION, (a) For p Φ 2, K(m) is a commutative ring
spectrum,

(b) π.K(m)*(Z/p)[υm,υ-1].
(c) K(m)*(XxY)^K(mUX)®κK{m)K(mUY) for spaces X, Y.

(d) As a map of coefficient rings,

(Km)*{vm) = vm, and (Km)*{vq) = 0, qφm.

(e) K(m)*(X) = (K(m)*{X))* for X a space or a spectrum.

(f) Let K(m) be the q th space in the £l-spectrum for K{m).

Then there are homotopy equivalences for each q, K(m)r

Note that 3.1(e) follows from the Universal Coefficient Theorem
spectral sequence (see [Al]), since π*K(m) is a "graded field" and
hence K{m)+(X) is free over π*K(m).

Next we introduce some intermediate theories lying between BP*
and K{m)* which will be of use to us. Let E be a ring spectrum, and
let x e πnE. Then multiplication on the left by x induces a map
x: ΣnE -*E. Let I(m) C π*BP be the ideal defined by

7(0) = 0, 7(1) = (p), 7(m) = ( p , t ; i , . . . , t ; w - i ) f o r m > l .

3.2. PROPOSITION [JW1]. There exist spectra Pirn), m = 0, 1,
2, ..., such that

(a) P(0) = £ P ;
(b) π*P(m) = BP/I(m) = Z { p ) [? ; m , v m + 1 , . . . ] / o r m > l ;
(c) 7>(m) w α /ς/? BP-module spectrum;
(d) P(m + 1) /.y related to P(m) by a stable cofibration

m ) ίH P(m) h P(m + 1)
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(e) (gm)* > π*P(m) -• π*P(m + 1 ) is given on generators by

(gm)*(vi)=Q ifi< m>
=Vj ifi > m.

(f) for p > 2, P(m) is a commutative ring spectrum. D

Thus P(m + 1) may be obtained from P(m) by "killing" the el-
ement vm via the cofibration of 3.2(d). Proceeding in this manner,
we may start from P{m) and kill the generators vm+\, vm+2, . . . of
π*P(m) to obtain in the limit the BP-module spectrum k(m). We
have then that π*k(m) = (Z/p)[vm]. If we let Tm = {1, vm, v^ , ...}
be the multiplicative set of nonnegative powers of the element vm e
π*k(m), then we may obtain K(m)* by localizing the homology the-
ory fc(m)* with respect to Tm via the techniques described in [JW2].

Finally, we note that the maps

MU-+BP-* P(l) -> y P{m) -> k(m) -> K{m)

give Λ/C/an orientation with respect to the cohomology theories BP*,
P{m)\ fc(m)*,and K(m)*.

4. Calculation of relations for stably almost-complex manifolds. We
now return to the generalized Brown-Peterson process and apply it to
the case B2k = Bik+\ = BU as before. By 3.1(e) and the remark
at the end of the last section, the cohomology theory K(m)* satis-
fies conditions 2.1(3') and 2.1(b) for stably almost-complex mani-
folds. By Corollary 2.6, we need to determine the kernel of the map
ψq: K(m)q(MU) -> MUn(K{m)n_ + ) * . Dually, we need to determine
the cokernel (and hence the image) of the map

ψ*:MUnK(nήn_q+ -> K{m)qMU.

Here we are making use of 3.1(e). By Theorem 2.7, then, since ηq is
an isomorphism, we need to calcufete the image of

MUnK{m)n_ +

 ( W * MUnLn~qK{m) = MUqK{m) £> K{m)qMU.

Since MU localized at p is made up of jBP-summands, it suffices,
modulo χ, to calculate the image of the stabilization map

BP*K(m)s

 ( ~ BP*K(m).

We make use of the following, where E(x\, . . . , xt) is the exterior
algebra on the generators X\, . . . , xt.
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4.1. LEMMA. K(m)*P(m) = K(m)*BP®E(τ0, . . . , τm_i) as mod-
ules over π*K(m), where dim(τ7) = 2pJ - 1.

Proof. The Atiyah-Hirzebruch spectral sequence for k(rn)*BP col-
lapses, yielding

k(rn)*BP = H*BP® π*k(rn) = (Z/p)[υm cλ, c2, . . . ]

as Z/p-algebras, where dim(c/) = 2(pJ: - 1).
If we apply fc(m)#() to the cofibration of 3.2(d), we obtain an exact

sequence for q < m:

> k(m)sP(q) Λ k(mUrP(q) -, k{m)s+rP(q + 1)

where r = 2{pq - 1).
But multiplication by vq is zero in fe(m)*( ). Hence k(m)*P(q)

injects in k(m)*P(q + 1 ) . Furthermore, when s = 1 we obtain a
new element τq e k{m)lqi_xP{q + 1) which is external, as one eas-
ily checks inductively by using our knowledge of k(m)*BP (recall
that P(0) = BP). Thus for q < m, k(m)*P(q + 1) = k(m)*P(q) Θ
£(τ^) = k(m)*BP ® £(10, . . . , τ^). Localizing now with respect to
{1, vm , Vm , ...} gives the desired result. D

4.2. COROLLARY. Γ/ze m^p BP*K(m) —• P(m)*K(rn) is injectiven

With 4.2 in mind, we shall make use of the following commutative
diagram:

BP*K(m)q ί i BP*K{m)
(4.3) 1 Q ^ [

P{m)*K(m)q ϊ i P(rn)*K(rn),

and calculate the image of (^)* on P(m)*-homology.

4.4. REMARK. Because of problems with the multiplication in the
spectra P(m), k(m), and K(m) at the prime 2 [R], we restrict our
attention to p odd from now on.

Wilson has calculated P(m)*K{m) for each q, by considering

P(m)*K(m)^ = {P(m)*K(m) } as a Hopf ring. The general reference

for Hopf rings is [RW1]; here we recall only that there are structure
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maps

*: P(m)*K(m)k ® P(m)*K(m)k -> P(m)*K(m)k (for each k), and

o: P(m)*K(m)k <g> P(m)*K(m)n -> P{m)*K(m)h+n (for all n, fc)

satisfying certain properties (associativity, distributivity, having a
unit, etc.) The map * is induced by the loop-space multiplication on
K(m)k, and o is induced by the multiplication

μ: P(m)ΛP(m)->P(m) and mk%n: K{m)k AK(m)n ->K{m)k .

Using these two maps, the Hopf ring P(m)*K(m)^ is generated
by elements β\ G P(m)\K(m) , a^ G P(m)2p<K(m)ι for / < ra,
and 6(j) G P{m)lpιK(m) , which we now describe. For # < 2/?m —

1, P(m)gK(m)ι £ Hq(K(Z/p, l);Z/p) since JJΓ(m)1 - A:(Z/p, 1)
through dimension 2 ( ^ m - l ) , and P(m) ~ KZ/p in stable dimensions
less than 2(/>m - 1). Hx(K(Z/p, 1) Z/p) and H2pι(K(Z/p, 1) z/p)
are isomorphic to Z/p use this isomorphism on the canonical gen-
erators to define β\ and a^. P(m)*CP°° is free over π*P(m) on
generators /?,- G P{m)2iCP°°. Using these elements and the K(M)-
orientation for CP 0 0 , represented by a map CP°° —»• K(m)2, one
defines 6(l ) G P(m)2piK(m)2.

For / = (/0, /Ί , . . . , /m_!) and / = (j0, 7*2, . . . ) nonnegative finite
sequences with i^ = 0 or 1 and j \ < pm , define

IJ °h °im-\ °k °J\
ab = α ( 0 ) o . . .oa ( m _!) ofc(0) ofc(0) o .

Then Wilson's theorem states that, as a π*/>(m)-algebra, P(m)*K(m)
is described in terms of the above elements as follows. For jo <
pm - 1, each aιbJ o β\ is an exterior generator; and depending on /
and / each a!bJ is either a polynomial or a truncated polynomial
generator, all using the * product. Here, P(m)*K(m)^ is considered
as graded over Z/2(pm - 1) instead of over Z, by use of 3.1(f). The
homotopy equivalence of 3.1 (f) is given by the "periodicity operator"
[υm]eπ0K{nή_2{pm_ι) as:

K{m) *S°Λ K(m) W * K{m)_r Λ K{m) A K{m)q,

where r = 2(pm - 1).

4.5. PROPOSITION {Wilson [W]). The following relations hold in
P(m)*K(m)^, vvAere Λ: 5 P —̂  P(m) w /Â  induced map from 3.2:

(a) £io—w ίΛ^ homology suspension map.
(b) ^i o ̂  = ύ ( 0).
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(c) α ( / )

(d) A.(t

(e) [Um] o # * " = Ef=0^*(vm+i')*(*-/) m θ d * ' ^ > °

Our goal is to determine the image of the stabilization map
P(m)*K{m) -* P(m)*K(m). First we calculate the stable object

P{m)*K{m). Let Rm = n*P(m)[v~l] = (Z/p)[vm , v~l, vm+{,...],
and let E(x) and P(x) denote, respectively, the exterior and polyno-
mial algebras on the generator x.

4.6. THEOREM. AS π*P(m)-modules,

P(m)*K(m)^ERm(τθ9τι,...τm-ι)®PRm(ξι9ξ29...)

modulo the relations

k
pPk -1 V ^ Pk~ιp
<*k = Vm 2-^ Vm+iζk+i ?

where dim(f/) = 2p* - 1 and dim(^) = 2(/?* - 1).

Proof. The stabilization map P(rn)*K(m) —• P(m)*K(m) is given,
from 4.5(a), by o-multiplication with e\ infinitely often. Stabilization
kills *-products and e\ stabilizes to l e P{m)§K{m), so we need only
concern ourselves with elements of the form [vn]' oath3 , where r G Z
and / and / are as before, with the additional property that jo = 0
(by 4.5(b)). By 4.5(d), all of these elements survive to P(m)*K(rn).

In particular, let τz and ξj be the stable images of a^ and b^
respectively, for 0 < / < m - 1 and j > 0. One may easily verify
that for a G P(m)*K(m)r, β G P{m)*K{m)s,

in P(rn)*K(m). Using this result we have that τ, τ/ = — τ7 τ, (from
(4.5(c)), and aJbJ stabilizes to τ7^*7 , defined analogously.

By 4.5(d) we have that [υm] G P(m)oK(m)2_2 „ stabilizes to the

same element as the image

(That is to say, multiplication by vm is the same on the left and on
the right in P(m)*K(m).) Hence the coefficient ring for P(m)*K(m)
becomes π*P{m)[v~ι] = Rm .
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Finally, since stabilization is a π*P(ra)-module map, 4.5(e) stabi-
lizes to the relation

k k

i=0 i=0

This finishes the proof of 4.6. D

From 4.6 we can tell how far each element of P(m)*K(m) desus-
pends. Given a e P(m)*K(m), let d(a) be the minimum q such
that there is an aq e P(m)*K(m) with (iq)*(ag) = a. Define τιξJ

in analogy with aιbJ (except that there is no ξ0).

4.7. COROLLARY. d{vT

mτιξJ) = \I\ + 2\J\ - 2r(pm - 1), where

m—\ oo

|/| = Σ ^ and |J| = Σ Λ ( < 0 ° )
s=0 t=\

Proof. Since a1 e P(M)*K(m) and bJ e P(m)*K(m) , we need

note only that d(υr

m) = -2r(pm - 1). D
We now return our attention to BP*K(m)^ and BP*K(m), by mak-

ing use of 4.3. First we prove the following:

4.8. LEMMA, (a) τ\

(b) b(i)eΊmλ.cP(m)*K(m)2.

Proof, (a) Since λ*(xy) = λ*(x)λ*(y) (see, for example, [Wu]), we
have that if λ*(α) = f/, then a2 = 0. But by the proof of 4.1,
BP*k(m) has no exterior elements, and the same holds, after localiza-
tion, for BP*K(m). Hence no such a exists.

(b) We have that BP*CP°° is free over π*BP on generators β\ e
BP2iCP°°. By the commutativity of

BPXP°° ~ BP*K(m)2

P{m)XP°° ~ P(m),K(m)2

where 0: CP°° -> K(m)2 is the orientation, since λ*(&) = βi and

{βoλ)*(βϊ) = fc(l ), there is an element hi e BP2jK(m)2 with /I*(&(/)) =

*(0 D

By the commutativity of A* with the stabilization map, we con-
clude that there is an element ξt e BP2(^pl_ι)K(m) with λ*(<*,-) = &.
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By defining the function d in analogy with 4.7, the following is a
consequence of 4.7 and 4.8:

4.9. COROLLARY. d(vr

mζJ) = 2\J\ - 2r(pm - 1). D

Using the fact that stabilization about is a π*2?P-module map, by
4.8 this completes the description of Im i*: BP*K(m)^ -> BP*K(m).
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