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A CONSTRUCTION OF AN ORDERED DIVISION RING
WITH A RANK ONE VALUATION

KA HIN LEUNG

Let (k, Pk) be an ordered field and Γ be a dense additive sub-
group of R. In this paper, we shall construct a noncommutative or-
dered division ring (D, P) and a compatible valuation υ on (D, P)
such that (i) the value group of υ is Γ and (ii) the residue division
ring (Dv , Pv) is order isomorphic to (k, Pk). This problem is in-
teresting because, in effect, we are constructing the "simplest" or in
some sense the smallest noncommutative ordered division ring.

1. Introduction. Before we formulate the problem concerned in this
paper, we first establish some basic terminologies.

Let D be a division ring. A subset P is called an ordering on D if
(i) P + P c P , ( i i ) P P c P , ( i i i ) Pu(-P) =Z), (iv) Pn(-P) = {0}.
In this case we say (D, P) is an ordered division ring, and write
a >p b if a - b e -P\{0}. (For convenience, we shall simply write
a > b if there is no confusion of the ordering concerned.) A valuation
on D is a surjective mapping v: D -» G U {oo}, where G is a totally
ordered group (written additively though not necessarily abelian), such
that for all α, b eD,

(i) v(ά) = oo if and only if a = 0,
(ii) v(ab) = v(a) + v(b),

(iii) v(a + b) > mm{v(a), v(b)} .
Also, we let Rυ := {a e D: V(a) > 0}, the valuation ring of v

Iv := {a G D: v{ά) > 0}, the unique maximal left ideal and maximal
right ideal of Rv Tϊv := Rv/Iυ , the residue division ring of υ and
πv: Rυ -» A,, the natural projection from Rv to T)υ . For a reference,
see [S: Chapter 1].

Next, we define the notion of compatibility of orderings and valu-
ations on a division ring.

DEFINITION 1.1. Let v: D -» G U {oo} be a valuation and P an
ordering on D. We say v is compatible with the ordering P if for
any a, be P\{0}, a-be P\{0} implies v(a) <v(b) in G.

LEMMA 1.2 [Tl: Lemma 3.4]. Lei (Z>, P) 6e <z« ordered division
ring. Then v is compatible with P if and only if 1 + Iυ c P.
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140 KAHIN LEUNG

As a consequence of the above lemma, a valuation v compatible
with an ordering P on a division ring D induces an ordering

ψv := {a + Iv: a e Rυ n P} on Dυ [T2: Section 0].

There is also a natural compatible valuation υp associated with P.
In fact, vp is the valuation induced by the valuation ring

RVp :={aeD:3nen with n±aeP}.

We call vp the natural valuation of (D, P). For details, see [Tl:
Chapter 1, Theorem 3.5].

We are now ready to formulate the problem.

Problem 1.3. Given an ordered division ring (k, i\) and an or-
dered group Γ do there exist a noncommutative ordered division ring
(D, JP) and a compatible valuation v on (D, P) such that

(I) the value group of υ is Γ and
(II) the residue division ring (Dυ, Pυ) is order isomorphic to

(k,Pk)Ί

The cases when k is noncommutative or Γ is nonabelian are sim-
ple. We can simply apply Neumann's construction ([N], [Sch: Theo-
rem 1.10]) to get the desired (D, P), υ . However, in case when k is
a field and Γ is abelian, usually it is not easy to define suitable order
automorphisms needed in Neumann's construction. In fact, the only
order automorphism of any field k c R is the identity mapping. Fur-
thermore, it can also be proved that such (Z), P), υ do not exist in
case k is algebraic over Q and Γ = Z. For detail, see [Sch: Chapter
3].

Problem 1.3 was first considered in M. Schroder's Mύnster paper
[Sch]. In his paper he assumes (k, i\) is archimedean, and is able
to construct (D, P), v satisfying the above criteria in the following
cases:

(A) the transcendence degree of k over Q is at least 1 and Γ is
arbitrary.

(B) k is algebraic over Q and Γ is a dense subgroup of (R, +)
not contained in Q.

For their proofs, see [Sch: Theorem 6.2, 6.6]. Note also that in these
cases, the valuations involved are actually the natural valuations of
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It is not difficult to see that Schroder's method can be generalized to
any ordered field (k, P^) in case Γ is dense in R but not contained
in Q. Thus, we reduce Problem 1.3 to the case when Γ is a dense
subgroup of Q. From now on, we shall fix an ordered field (k, i\)
(not necessarily archimedean) and a dense subgroup Γ in (R, + ) . It
is clear that we may always assume Γ contains Z. Our objective is to
construct a noncommutative ordered division ring (D, P) and a com-
patible valuation υ such that (I) and (II) are satisfied. Our strategy is
as follows. Firstly, we shall construct a suitable ordered field (K, P1)
and a compatible valuation φ on K, such that the conditions (I), (II)
are satisfied. Then, we construct a suitable order automorphism a
on K and form the skew polynomial ring K[t, σ] . Since K[t, σ] is
an Ore domain, D, the ring of quotients, exists. D can also be re-
garded as a division subring of K((t9 σ)). It is well known that with
respect to any ordering Q on K((t, σ)), t is infinitesimally small
when compared with any positive element in K. Thus with respect to
the ordering induced by Q on ΰ , the value group of the extension of
φ will no longer be Γ. Naturally, we may ask if this is the only way
to order D. Is it possible to define an ordering P containing P1 on
D such that φ extends to a compatible valuation v on (D, P) with
its value group remaining unchanged? Our goal is to show that under
some situations, the answer is affirmative. In those cases, (D9 P),v
are what we want.

2. Fields of formal power series. From now on, we shall fix the fol-
lowing notation: (k9 P^) is an ordered field; Γ is a dense subgroup in
(R, +) containing Z. In this section, our goal is to construct suitable
(K, P1), φ and σ as defined above.

Let F be a field and G be an ordered abelian group. We denote
the field of formal power series of F over G by F((G)), i.e.

geG

and supp I ^ agx
g I is well ordered > .

Here suρp(ΣgeGagx*) := {g e G : ag φ 0} . In F((G)), multiplica-
tion is induced by the rules that

aeF, xgxh=x^h and axg=x8a.
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Let φ: F((G)) -» Gu{oo} be the mapping sending any / e F((G))*
to min supp(/) and 0 to oo. Then we have

PROPOSITION 2.1. (i) φ is a valuation on F((G)) with value group
G and πψ\f : F -* F((G))ψ is an isomorphism.

(ii) F{{G)) is complete with respect to the value topology Tφ.
(iii) Suppose F is ordered. Then PQ := {a G F((G)): aψ(a) > 0 in

F} u {0} is an ordering compatible with φ.
(iv) For any nonzero x, y G F((G)), if φ(x - y) > φ(y), then

φ[x) = φ(y) and xy~ι G PQ (i-e. x, y are of the same sign with
respect to the ordering

Proof. For (i) and (ii), see [P: Chapter II, §5, Theorem 8]. For (iii),
see [P: Chapter II, §5, Theorem 6]. Note that our definition of F((G))
is slightly different from that in [P]. In [P], the author uses anti-well
ordered subsets (i.e. every subset contains a maximal element) instead.
Of course, the argument still works in our case. Observe also that
xy-χ = i + (χ_y)y-i and by assumption Φ((x-y)y~ι) > 0; therefore
φ{xy~x) = 0 and (x - y)y~x elφ. It follows that φ(x) = φ(y), and
xy~ι = 1 + (x - y)y~ι G PQ by Lemma 1.2. D

Let F[G] := {Σ?= 1 <nx*>: α, G F, gt e G, n G N} be the group ring
of G over F and F(G) be the quotient ring of F[G] in F((G)). Let
F(G) be the Tφ closure of F(G) in F((G)). Before we state the next
proposition, let us recall the definitions of completion and imbedding.
For any valued field (L, v), we call (L,ϋ) a completion of (L9v)
if L is Tϋ complete; L is Tv dense in L and ϋ\L = v. Also, we
call β: (Lr, υ') —• (L, v) an imbedding if v o β = yf

 m

PROPOSITION 2.2. L^ί F, G, φ be as before. Suppose G is of rank
one (i.e. G can be order-embedded in (R, +)) . Then

(i) (F(G), 0|/Γ(G)) w a completion of (F(G), Φ\F(G))
 and is there-

fore Henselian.
(ii) F(G) = ( E £ o aiχgι: ateFigteG, (gi)ieN is strictly increas-

ing and divergent).

(iii) φ(F(G)) = G u {oo}, and πφ\f: F —• F(G)φ^F^ is an isomor-
phism.

(iv) Suppose F is ordered. Then Φ\F(G) is compatible with PG n

G is as defined in Proposition 2.1 (iii).
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Proof, (i) is a consequence of [E: Corollary 2.6] and [E: Theorem
17.18]. By (i), we see easily that the R.H.S. of (ii) is a subset of F(G).
Therefore to show (ii), it suffices to show that for any y e F(G),
g eG, {a e supp/: a < g} is finite. This clearly is equivalent to the
density of F[G] in F{G) and F(G).

It is clear that we only need to show that if w = Σ™=\ Q>iXgi £ F[G]
with g\ < gi < - - < gm in G and a\φθ, then l/w is a limit of a
convergent sequence in F[G]. Let us write w = a\xgι(l + w1) where
w' = 2X 2 aϊ ι aiX g r g ι . For all rc e N, we define

wn = aϊιx~gι Σ(-w'y e F[G].
ι=0

As φ{w9) > 0, it is obvious that the sequence {wn}neN converges to
l/w.

Lastly, (iii) is obvious and (iv) follows from Proposition 2.1 (Hi). D

LEMMA 2.3. Let a > 0 be fixed in G and γ: F[G] -+ F{G) be a
ring homomorphism such that

( *) Vye F[G]\{0}, φ(γ(y) -y)> φ(y) + a.

Then γ extends to a unique automorphism γ": F(G) —• F(G) such
that

VyeF(G)\ Φ(f(y)-y)>φ(y) + a.

Proof. Let / : (F{G), φ\F[G]) -+ (F(G), φ\F{G)) be the unique ex-
tension of y. Notice that γf is well defined as, by (*), γ is injective.
Also, Proposition 2.1 (iv) and (*) imply that φoγ(χ) = φ(χ) for
all x G F[G]. This implies φ o γ(x) = φ(χ) for all x in F(G).
Next, we prove that γf(F[G]) is dense in F(G). It suffices to show
that for any y e F(G)*, n e N, there exists yn € i^G] such that
0Cv ~ 7(y/i)) ^ Φ(y) + ̂ α We prove this by induction on n .

The density of F[G] in F(G) implies the existence of y\ e F[G]
such that φ(y-y\) > φ(y)+a. Using y-γ{y{) = {y-y\) + {y\-y{y\))
and (*), we get

Φiy - y{y\)) > min{Φ(y -y\), Φ(γ(y\) -y\)}> Φiy) + a.

Now suppose there exists yn e F[G] such that φ(y - y{yn)) ^ Φiy) +
na. After replacing y by y-γ(yn) in the above argument, we obtain
w e F[G] such that

Φ((y - yiyn)) - y{w)) > Φiy - yiyn)) + a> Φ{y) + (n + i)a.

So we can simply take yn+\ to be yn + w .
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It follows that γ'(F[G]) is dense in F(G). Hence, by [E: Corollary
2.4], γ' extends to a continuous automorphism γ". It remains to
prove that for any y in F(G), φ(γ"(y) -y)> Φ(y) + a. Recall that
F[G] is dense in F(G) and φ (see [E: (1.3)]), y" - 1 are continuous
with respect to the value topology Tφ\F(Q) - So there exists w e F[G]
such that φ(w) = φ{y) and φ((γ" - l)(y - w)) > φ(y) + a. Therefore
combining with the fact that φ(γ{w) - w) > φ(w) + a, we get

Φ(v"(y) -y)> min{φ(f(y) -y + γ(w) - w), φ(γ(w) - w)}

> φ(y) + a. π

Let k be an algebraic closure of k and Γc be the divisible hull
of Γ in E. We define φ: k((Γc)) -» Γc u {ex)} to be the valuation
sending every / in Jc((Γc))* to minsupp(/) and Pr C k((T)) to be an
ordering described in Proposition 2.1 (iii). So in particular, φ\k((Γ)) is
compatible with Pr. For convenience, let us fix the following notation:
K := fc(Γ); K' := Jc(Γc); and K" := k{(Γc)). As we have stated
earlier, our objective is to construct suitable (K, P'), φ, and σ. In
view of the above results, we see that the ordered fields (fc((Γ)), Pp),
(k(Γ), PΓΠk(Γ)), (k(Γ), PΓΠk(Γ)) with their respective compatible
valuations φ\k((Γ)) > ψ\k(Γ) > a n d ψ\k(T) a ^ satisfy (I) and (II). It turns
out that k(Γ) is the one we want, because k(Γ) is too "small" to admit
some interesting order automorphism, and k((Γ)) is too "large" for
defining an ordering we want.

In order to simplify the calculations needed later, we shall define an
automorphism σr on £(ΓC) such that its restriction on A:(Γ) is the
order automorphism σ we want.

PROPOSITION 2.4. K1 is algebraically closed.

Proof. Let L be a finite extension of K'. As the residue field
Kφ\κ' — k is algebraically closed and the value group of φ\κ< is di-
visible, it follows that L is an immediate extension of K1. Since
charfc = 0 and φ\κ* is Henselian by Proposition 2.2(i), by [Pr:
Proposition 8.1 (ii)], we have L = K'. Therefore K1 is algebraically
closed. D

LEMMA 2.5. For any s e K* with φ(s) > 0 in Γ, q E N, the

equation

tq = \+s
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has a unique solution in 1 + Iφ\κ> where Iφ\K = {a e K: φ(a) > 0}.
In fact it can be written in the form of 1 + (s/q) + sf, for some s' e K*
with φ(s') > φ(s).

Proof. Again by Proposition 2.2, we see that (K, φ\K) is Henselian.
In the residue field Kφ, 1 is a simple root of the equation tq =
1. Thus by the explicit calculation of HensePs lemma, there exists a
unique solution of the desired form. D

From now on, we define (1 +s)ι/g to be the solution obtained in the
above lemma. Thus we can define (\+s)plq := ((1 + s)χlq)p , which of
course also lies in 1 + Iφ\κ . Obviously, {(1 + s)plq : p/q e Q} forms
a multiplicative subgroup in K*.

LEMMA 2.6. For any s eK* with φ(s) = a > 0, there exists afield
automorphism σf: Kf —• Kf such that

(i) σ'(x) = x(l+s),
(ii) σ% = identity,

(iii) σ := σ'\κ is an automorphism of K,
(iv) φ{σ\y) -y)> φ(y) + a for all y e Kf*.

Proof. Firstly, we shall construct a ring homomorphism λ: k[Γc] -»
k(Γc) such that (i), (ii) hold; λ([Γ]) c K and (iv) holds for any
element in k[Γc].

Since Q c Γ c , we can regard Γc as a Q vector space. Let / be
a basis of Γc over Q. For convenience, we assume 1 e / . Also, we
define V := 0yG/\{i}Q7. So for any a e Γ c , there exists a unique
qa € Q such that a- qaeV.

As k[Γc] and K' are k vector spaces, we can define a k vector
space homomorphism λ: k[Γc] —• ^Γ' such that

Clearly, λ satisfies (i) and (ii). Next, it is straightforward to check
that Λ,|{xΛ: a e Γc} is a multiplicative group homomorphism. We
therefore conclude that A is a ring homomorphism. As seen in the
discussion following Lemma 2.5, for any p/q e Q*, (1 + s)plq =
1 + (p/q)s + Spiq e K for some sp/q e K with φ(sp/g) > φ(s) = a.
So for all a e Tc, φ(λ(xa) - xa) > a + a. Therefore (iv) holds for
any element in k[Γc]. Now, it follows from Proposition 2.3 that λ
extends to an automorphism σ' satisfying (iv).
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Lastly, observe also that λ(xa) e K if a e Γ. Therefore, by Propo-
sition 2.3 again, the restriction of λ on A:[Γ] extends to an automor-
phism on K which must be σ'\κ. D

REMARK. Note that if Γ c Q, then Γc = Q and λ(xa) = (1 +s)axa

for any a e Γc.

3. The skew polynomial ring K'[t, σ']. Let σ', K, K1, Λ:", and
^ be as defined in §2 and R! := K'[t, σ']. In Rf multiplication is
now induced by the rule t a = σ'(a)t. For any /(/), g(t) G R',
let us denote the left polynomial f(t)g{t) by / * g(ί). Since multi-
plication in R! is associative, f * (g * h)(t) = (f * g) * A(ί) for all
/(0> ^(0? Λ(ί) e Rf. In this section, we shall prove some lemmas
needed later. In k((Γ)), we fix an element

ω =

such that for all / e N, α/ ^ 0; 0 < rx < r2 < in Γ and
lim/̂ ooΓ,- = r < a/2. Note that such ω exists as Γ is dense in
Q. Furthermore, it is easy to see that φ{ω) = 0 and ω φ K1. Also,
for any f{t) = ELo *& e R' > w e d e f i n e fiω) = Σ/Lo ̂ ω / Observe
that as Kf is algebraically closed and ω $ Kf, /(ω) Φ 0 for any
/(ί) e ϋ'\{0}.

LEMMA 3.1. For any y e K1, we have <p(ω - y) < r. /« particular,
φ(ω-y) <φ(y) + r.

Proof. For any y e Kf, y can be written in the form of Σ/=i Φ *7'1

such that lim/^00 7/ = oo. Hence \{j) : ji < r}\ is finite. Thus,
there exists g in supp(ω - y) such that g < r. This clearly implies
φ(ω - y) < r. The second statement is a consequence of the first
statement in case φ(y) = 0. If φ(y) Φ 0, then

p(ω -y) = min(ptv), 0) < φ{y) < φ(y) + r. D

LEMMA 3.2. For any f(ω) = X)y=oα7ω7 G
 ^ ; [G>], W^ define fσ\ω)

= ΣJ=o σ;(fly)ft>/ . Γλeπ ^(/σ '(ω) - /(ω)) > φ{f{ω)) + a-r.

Proof We prove this by induction on deg/.
Suppose deg/ = 0. Then the lemma follows from the construction

of σf, s ince for all ue K1, φ(σ'(u) -u)> φ(u) + a.
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Let f(ω) G K'[ω] be of degree n. As K' is algebraically closed,
f(ω) = (ω -y)g{ω) for some j / e ί ' , g(ω) e K'[ω] with deg# =
n - 1. Clearly /σ '(ω) = (ω - σ'(y))gσ>(ω) and

/σ '(ω) - f(ω) = (y- σ'(y))gσ'(ω) + (ω - y)[gσ'(ω) - g(ω)].

Therefore

φ(fσ\ω) - f(ω))

> min{φ(y - σ'(y)) + φ(gσ\ω)), φ(ω - y) + φ{gσ>(ω) - g(ω))}.

By construction of σ' and Lemma 3.1, we have

φ(y - σ'{y)) > φ{y) + a> φ(ω -y) + a-r.

By induction, we have

φ{gσ\ω) - g{ω)) > φ(g(ω)) + a-r.

In particular, Lemma 2.1 (iv) implies that φ{gσ>(ω)) = φ(g(ω)). Thus,

φ(fσ'(ω) - f(ω)) > φ(ω -y) + φ(g(ω)) + a-r

= φ(f(ω)) + a-r.

So the lemma is proved. D

LEMMA 3.3. For any f{t), g(t) e Rf\{0}> we have

ψ(f * g(ω) ~ f{ω)g{ω)) > φ(f(ω)g(ω)).

In particular, φ(f*g{ω)) = φ(f(ω)g(ω)).

Proof. Without loss of generality, we may assume / is monic.
Again, we shall proceed by induction on deg/.

If / is a constant, then the lemma is trivial as now / * g(ω) =
f(ω)g(ω). Suppose f{t) = t + c for some c eKf. Obviously,

/ * g[φ) = gσ'(ω)ω + cg(ω) and

f*g(ω) - f(ω)g(ω) = (gσ\ω) - g{ω))ω.

So

ψ(f * g(ω) - f(ω)g(ω)) = φ{gσ>\ω) - g(ω))

> φ(g(ω)) + a - r by Lemma 3.2.

Note that a > 2r and r > φ(ω + c) by Lemma 3.1. It follows that

ψ(f * g(ω) - f(ω)g(ω)) >r + φ(g(ω)) + a-2r> φ(f(ω)g(ω)).
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We now assume the lemma is proved for any h{t) (not necessarily
monic) in R! with its degree less than n.

Claim. For any h{t), h'{t) e R'\{0}, if both deg/z, deg/z' are less
than n, then we have

φ(h * A; * g(ω) - h{ω)ti{ω)g{ω)) > φ(h(ω)h'(ω)g(ω)).

Proof of Claim. By induction assumption, we have

φ{h * (A' * g){ω) - h(ω)(h' * g)(ω)) > φ{h{ω)) + φ{ti * g{ω))

= φ(h(ω)) + φ{h'(ω)) + φ{g{ω)),

and

φ(h(ω) (A; * g)(ω) - h(ω) - h'(ω)g(ω))

= φ{h{ω)) + φ((h' * g){ω) - h'{ω)g{ω))

Combining the above inequalities, the desired inequality follows.
Let f(t) G R' be of degree n . As before, f(ω) = (ω - c)h(ω) for

s o m e c e Kf a n d h(t) e R' w i t h deg/z = n - 1 . L e t fι(t) := t-c.
By induction,

^(/(ω) - /i * h(ω)) = φ((ω - c)h(ω) - fx * h(ω)) > φ(f(ω)).

As both f(t) and f\ * Λ(ί) are monic, deg(/ — f\ * g) < n — I.
Therefore by induction again,

ψ((f - f\ * h) * g(ω)) = φ{f{ω) - fx * Λ(ω)) + φ(g(ω)).

Hence

^ ( / * g(ω) - /i * Λ * g(ω)) = p((/ - /i * Λ) * ̂ (ω))

= ί?(/(ω) - /i * Λ(ω)) + φ{g{ω))

> φ(f(ω)) + φ(g(ω)).

On the other hand, by the above claim, we have

φ(f\ * h * g(ω) - (ω - c)Λ(ω)^(ω)) > φ(f(ω)) + φ{g{ω)).

Hence by combining the above two inequalities, we get

ψ{f * g(co) - f(ω)g(ω)) > φ(f(ω)) + φ{g(ω)). D

4. The final step. Let R be the subring generated by K and t in
R!. Since σ = σ'\κ is an automorphism, R = K[t', σ]. As σ is an
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automorphism, it is well known that R is both right Ore and left Ore
[C: Proposition 1.3.1 and Proposition 1.3.2]. Let D := {xy~ι: x, y e
R and y Φ 0} be the right quotient ring of R. As is well known, D
is a division ring. Firstly, we shall define an ordering on D.

PROPOSITION 4.1. P := {f(ήg(t)'1: g(t), f(t) e R, g(t) φ 0 and
f(ω)g(ω) E Pr} is an ordering on D.

Proof. To show P is an ordering, it suffices to show that P' :=
{/(*) € R : f(ω) e PΓ} is an ordering on R by [F: Chapter 6, Theorem
3]. Obviously, P' U (-/*) = R and P' is closed under addition. As
we have seen earlier, for any f(t) e R, 0 = f(t) e R if and only if
f(ω) = 0 in fe((Γ)). This certainly implies P1 n (~P') = {0} . This it
remains to show that P9 is closed under multiplication.

Suppose f(t),g(t) e P'\{0}. Thus, f(ω)9g(ω) e Pτ\{0}. On
the other hand, by Lemma 3.3 we have φ(f * g(ω) - f(ω)g(ω)) >
φ(f(ω)g(ω)). It follows from Proposition 2.1 (iv) that / * g(ω) > 0
in k((Γ)). Hence Pf is closed under multiplication. D

REMARK. From now on, we shall write a > 0 if a e P\{0}.

LEMMA 4.2. Le/ vf: R-> Γ u {cx>} όe α mapping such that for any
f(t) e R, v'(f(ή) = ^(/(ω)). Then for any f(t), *(*) eR,we have

(i) v;(/(ί)) = oc if and only if f(t) = 0.

(ii) v/(/(0ί(0) = t;/(/(0) + v/(^(0).
(iii) υ'(f(t) + g(t)) > min{v>(f(t)), υ'(g(t))}.
(iv) 0 < f{t) < g(t) in (D,P), implies vf(g(T)) < v'(f(ή).

Proof, (i) follows from the fact ω is transcendental over K1 and
(iii) from the fact that φ is a valuation on £((ΓC)). For (ii) and (iv),
we take any f(t), g(t) eR. Obviously,

v'(f(t)g(t)) = v\f * g(ή) = φ(f * g(ω))

If 0 < /(/) < ^(ί) in (D, P ) , then 0 < f(ω) < g(ω) in (fc((Γ)), P Γ ) .
Thus by compatibility of ^k((Γ)) and /^, φ(f(ω)) > φ(g(ω)). Clear-
ly this implies υ'{f(t)) > v'{g(ή). D

THEOREM 4.3. Let D, P, t/ 6β α^ αfeove Then v1 extends to a
valuation v: D -»T\j{oo} compatible with P. Moreover, the ordered
residue division ring (Dυ , ψυ) is order isomorphic to (k,
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Proof. Let us define υ: D -» Γ U {00} such that

v(0) = 00 and v(xy~x) = v\x) - v'(y) Vx, j ; € R\{0}.

Firstly, we show that v is well defined. Let x, y £ ^ \{0}. As R is
also a left Ore domain, there exist a, b e R\{0} such that ax = by.
If xy"1 = x'y'"1 for some JC' , y' e -R\{0}, then we also have <zx' =
by. By Lemma 4.1 (i), v'{x)-v'{y) = v'{a)-v'(b) = v'(x')-v'(y').
Thus υ is well defined.

Let x, y, x' , y' e -R\{0}. Since R is also right Ore, there exist
a',b' e R\{0} such that ya' = x'b'. Obviously, v'(x') - υf(y) =
τ/(α') - v'(b') by Lemma 4.2(ii). On the other hand, it is easy to see
that xy-χ'Xtyl-χ=xalbl-χyl-χ = (xa')(y'b')-χ in D. Thus

v{xy-χ x!y-{) = υ((xa')(y'b')-1) = *>'(**') " ^'(/^O
= ^ ;(JC) + v;(fl;) - v'φ9) - v'{

Next, we let c, d, w e i?\{0} be such that yc = to, y'd = w e
JR. Hence xy" 1 ^ = ex, xfy'~xw = x'rf and xy"1 + x'y'"1 =
(xc + x'd)w~x. Thus

1 + x'/" 1 ) = V((JCC + x'd)w~x)

> min{vf(xc), i ̂

= mhi{v'(x) + υ'(c) - υ'(w), ^'(

= min{ι;'(x) - v'{y), v'{x') - v '^)}

= min{v(xy~~x), ^(x'/" 1 )}.

Concluding from above, we see that υ is a valuation on D. Note that
the surjectivity of υ follows easily from the fact that v\κ = φ\κ Let
us determine the residue division ring. Suppose f(t), g(t) e R\{0}
and v(f(t)g(t)~x) = 0. By definition of v, we have φ(f(ω)g(ω)~x)
= 0. Since both f(ω), g(ω) e K((Γ)) and A: is projected onto
the residue field of (fc((Γ)), φ\k((Γ)))> there exists a e k such that
φ(f(ω)g{ω)-χ -a) > 0. Therefore v{f(ί)g(t)-χ -a) > 0. It follows
that the projection of A: on the residue field of (D,υ) is also sur-
jective. Lastly, it remains to show that v is compatible with P. It is
enough to show that if v(xy~x) > 0, then 1 +xy~x e P. Without loss
of generality, we may assume y > 0. As t^xj;"1) = vf(x)-vf(y) > 0,
we have v'(x) > v'(y). By Lemma 4.2(iv), it follows that y > \x\.
Hence y + x > 0 and 1 + xy~x = (y + x)y~x > 0 in (D, P). D
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REMARK. In our construction, we have a copy of k lying inside the
center, whereas in Schroder's construction, there may not exist a copy
of k lying inside the center.
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