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FOLIATION BY CONSTANT MEAN
CURVATURE SPHERES

R U G A N G Y E

Let M be a Riemannian manifold of dimension n+l and p e M.
Geodesic spheres around p of small radius constitute a smooth fo-
liation. We shall show that this foliation can be perturbed into a
foliation whose leaves are spheres of constant mean curvature, pro-
vided that p is a nondegenerate critical point of the scalar curvature
function of M . The obtained foliation is actually the unique foliation
by constant mean curvature hypersurfaces which is regularly centered
at p (Definition 1.1). On the other hand, if p is not a critical point
of the scalar curvature function, then there exists no such foliation.

O Introduction. The perturbation procedure consists not only of
normal perturbation of geodesic spheres, but also of perturbation of
their center, which is used to deal with the kernel of the linearized
operator of the perturbation equation. On the other hand, it is crucial
to control the magnitude of the center perturbation in order to re-
tain the foliation property. Note that the above mentioned "regularly
centered" condition is a natural geometric one, but it appears fairly
restrictive. What weaker geometric conditions imply it? Are all foli-
ations by constant mean curvature spheres (or hypersurfaces) which
are centered at p (Definition 1.1) automatically regularly centered at
p ? We shall treat these problems in a subsequent paper. (The answer
to the second question is yes in dimension n = 1 and "almost" yes in
dimension n = 2.)

The techniques in this paper can be applied to produce foliations
by constant mean curvature spheres on asymptotically flat manifolds
of nonzero mass.

Part of this work was done while the author was visiting the Uni-
versity of California, San Diego. We thank S. T. Yau for his kind
invitation. We are grateful to him, R. Schoen and G. Huisken for
helpful discussions on the subject.

Notation. 0{rm) = rm- a smooth function. Throughout the paper
we use || || to denote the norm of a vector and the specific norm used
in each case should be clear from the context.
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1. Perturbation. For convenience, we assume M e C°°. We refer
to [2] and [1] for basic terminology in local Riemannian geometry.
Let Sr(q), Br(q) denote respectively the geodesic sphere and open
geodesic ball of radius r > 0 and center q e M. Consider a (hence-
forth fixed) point p and choose an orthonormal basis {βj} for TPM.
Put rp - \- the injectivity radius at p, Br = {x e Rn+ι: \\x\\ < r},
and Sn = dB{. For τ = (τ 1, ... , τ"+ 1) e M"+1 with ||τ|| < rp we
define φτ \Έ>ιr —> M by

where c(τ) = exp^τ'e/), ej are the parallel transports of β/ to c(τ)
along the geodesic c(ίτ)|o<κi a n (^ ^ e summation convention is used.
For each τ, φτ gives rise to a Riemannian normal coordinate system
at c{τ). We put ds2 = the metric tensor of Af, gjj(x) = the coef-
ficients of ds2 in the coordinate φτ and gτ = dct(gfj). Then by a
straightforward computation the inward mean curvature function of
Sp(c(τ)) (pulled back to dBp by φτ) is given by

(1.1) h(x) = - + —logy/gτ(x), xedBp,

where r = \\x\\.
This formula together with the following lemma reveals basic rela-

tions between the mean curvature of geodesic spheres and the curva-
ture of M.

LEMMA 1.1. We have

gτ(x) = 1 - \R}j{Q)xixj - ±Rτ

ij.k(0)xiχJχk

+ aijkιm(τ9x)xixJxkxιxm

9

where R}jy R]j.k,
 R]j ki> Rlijm are respectively the coefficients of'Ric

(Ricci tensor), V Ric, VV Ric and Riem (Riemann curvature tensor)-,
in the coordinate φτ and ai^i^τ, x) denote some smooth functions.
We shall omit the superscript τ for τ = 0.

For a proof of this lemma we refer to [2].
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Let v denote the inward unit normal of Sn := dB\ and ar the
dilation x »-> rx for r > 0. For φ e C2{Sn) we define S$ =
{x + φ(x)u(x): x e Sn} and Sr,τ9φ = φτ{ar(S%)). Note that

^V,τ,o = Sr{c{τ)) and Sφ is an embedded C2 surface if only
IIφlie1 < ^o for some number δo > 0. Here and in the sequel, unless
otherwise stated, we use the standard metric on Sn . For 0 < r < rp ,
llτll < rP > IHIc1 < ô and X G 5 " we put

7/(r, τ, ίϋ?)(x) = the inward mean curvature of the surface

at x + ^(x)z/(x) w.r.t. the metric ds2

 r on

where ds2

 r — r~2a*r(φ*(ds2)). One readily checks that ^ r ex-
tends smoothly to r = 0 with rf^ 0 = the euclidean metric. Hence
H{r, τ, φ) also extends to r = 0. On the other hand, we have

(1.3) H(r9 τ, φ){x) = r the inward mean curvature of

Sr,τ,φ at ψτ{r{X + ψ{x)v{x))).

In particular, by (1.1)

(1.4) H(r,τ, 0)(x) = n

which implies on account of (1.2)

(1.5) //(r, τ, O)(JC) = n - ^i?

+ aijkι(τ)xιxjxkxιrA + 0(r5)

where ^^^/(T) denotes some smooth functions.
We consider H(r,τ, ) as a mapping from C2>χl2{Sn) into

C<U/2(SΠ) and let //^ denote the differential of H w.r.t. p . Clearly
Hφ(r, τ , 0) is just the Jacobi operator Δ + | | 5 | | 2 + Ric(z/) on S* rel-
ative to the metric ds2

 r, where 5 denotes the second fundamental
form. We indicate the dependence on ds2

 r as follows

(1.6) Hφ(r, τ , 0) = Δ r ? τ + \\Br,τ\\2 + Ricr,τ(i/).

It follows that Hφ(0, τ , 0) = L := A5« + n, where Δ5« is the stan-
dard Laplace operator on Sn . The Jacobi operator L has an (n+1)-
dimensional kernel K consisting of first order spherical harmonics.
Correspondingly, we obtain /^-decompositions C 2 ' χl2(Sn) = K®K
and C°'1/2(5f/I) = AT Θ ^(A: 1 ). Let P denote the orthogonal projec-
tion from C0Λl2{Sn) onto K and Γ: ^ -> R"+1 the isomorphism
sending xι\s to ez = the zth coordinate basis. Put P = TP.
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LEMMA 1.2. We have

(1.7) P(H(r, τ,φ))=- ^fy}r
3Rτ

J(O)eι

+ P[fHφ(r,τ,tφ)φdλ+O{r5),

where ωn+\ = Vol(li) and Rτ

 ι denotes the derivatives of the scalar

curvature function R of M in the coordinate system φτ.

Proof. From (1.5) we deduce

P(H(r, τ, 0)) = -\rιeιRτ

u.k{0) f xixjxkxιdA + 0{r5).
4 ' JS"

But {R]j.k stands for ^ . . ^ . ( 0 ) . No summation over /.)

ΛT. . / xiχJχkxιdAlJ'kJs"

= ΛJ/;/ fn(x')4dA+ Σ R}j-k ί (x')2xjxkdA
Js" j k φ l Js"

+ Σ Rlι k ί (x')2xixkdA+ J2 Rh-i ί (xl)2xixjdA
k,¥l ' Js" UΦI Js"

+ Σ Rlj;kf xιxjxkx'dA
i,j,kφl J S

= R],., ί (x'^dA + iRlj.j + Rl.t+Rl.,) [ (xι)2(x2)2dA
' JSn ' JSn

Y1\2(Y2\2 J 4 — ^ ω + 1

n~+J

since Js*(xι)4dA = 3 fs*(xι)2(x2)2dA = 2ωn+{/(n + 3) and R]jmJ =

i?^ . = iRτ

ι by the second Bianchi identity. Hence (1.7) follows. D

LEMMA 1.3. Set

φ dr φ ' φrr ~ dr2H - d H H - °2 H
φr ~~ dr φ ' φrr ~ dr2 φ'

We have for all τ
(1) #, r(0,τ,0) = 0,
(2) Hφrr(0, τ , 0) is an even operator in the sense that if φ is an

even function, i.e. φ(—x) = φ{x), then Hφrr(09 τ, 0)φ is also an even
function.



FOLIATION BY CONSTANT MEAN CURVATURE SPHERES 385

Proof. Consider an arbitrary point XQ e Sn . We may assume Xo =
(0, ... , 0, 1). Choose a local coordinate system x = x(θ) of Sn

around XQ with x(0) = XQ , which is normal at XQ w.r.t. the standard
metric. Then

(1.8)

where

*" + + A"_ _ * _ + _Δ r,τ =

(λ"(0)) = (AyWΓ1, λ(0) = det(λy(0)) and

hiJ(θ) = dslτ(d/dθi,d/dθj)

(the dependence on r, τ is suppressed). Let the matrix a(θ) = (aj(θ))
be defined by the relation

\dθxdθx " ' " dθn' dr

Then we have

(1.9)

d
a [ j*

(1.10)

(1.11)

Note that (1.10) follows from the assumption that x(θ) is normal
at x0 = x(0). Since dεta(θ) = ||g|- Λ Λ g|-||, we also deduce from
this assumption that

(1.12) 1 < i < n.

F r o m (1.10), (1.12) a n d t h e fact (dgτ/dxk)(0) = 0 , 1 <k<n
we i m m e d i a t e l y o b t a i n

(1.13) = 0,

= 0,
/-=0

On the other hand, we have

(1.14) hij{θ) = af{θ)aι

j{θ)glι{rx{θ))
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hence

(1.15) = af(O)alj(O)gτ

klm(O)xm(O)
r=0

d

r=0
m
r-ίθ) = O.

From (1.8), (1.15) and (1.16) one easily derives (d/dr)Ar,τ\r=o = 0.
Next we compute | | J5 r ? τ | | 2 . Using the Gram-Schmidt orthogonal-

ization procedure and the fact gjj(rx) = δij + O(r2) we find orthonor-jjj
mal bases e^r, τ) , 1 < / < n, for Txβ

n relative to ds} τ with
eι(r, τ) = d jdx1 + O(r2). We compute the coefficients of the second
fundamental form 2?r?τ

where V r τ and the dot denote respectively the covariant differentia-
tion and the inner product relative to the metric ds2

 τ . Observe

where ( τ ) Γ^ are the Christoffel symbols of the metric ds2 of M in
the coordinates φτ. Consequently

O(r 3),

It follows that (d/dr)\\BriT\\2(x0)\r=0 = 0. On the other hand it is
easy to see that

RicΓ,T(i/)(x0) = r2Ru{rxo)x()x
J

o

hence d/drRicr,τ(ιs)(xo)\r=o = 0 and therewith the first part of the
lemma is proved.
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Notice now (d2/dr2)Ricr,τ(v)(xo)\r=o = 2 i? , 7 (0)x^ . From (1.17)
we also get

24

Using x = —x(θ) as a coordinate system around —XQ and performing
the same computations as above we then deduce

d2
d2

r=0
and

r=0

r=0

/ =0

From (1.8), (1.9), (1.13), (1.14), (1.15) and (1.16) one obtains
through elementary computations that at xo the operator

(d2/dr2)Ar,τ\r=0

equals

l d2 d
~2dr2dθi

Λ(0)
d

r=0 dθ'

U^,7(0)
r=0 dr2 A(0)

r=0
'U dθ<dθj'

where An denotes the cofactors of the matrix {hn). But

d2 a
dr2dθj

Λ(0)
r=0

hence it is quadratic in (x, Dx), where Dx = (dxι /dθj)ι<i<n+ιt\<j<n.
Easy computations also show that the coefficients of d2/dθιdθJ above
are quadratic in (x, Dx). Employing the coordinates —x(θ) around
-Xo we then see that (02/dr2)Ar^\r=o is an even operator. Since

d2

and
r=0 r=0

have been shown to be even, the second part of the lemma is
proved. D



388 RUGANG YE

DEFINITION 1.1. A smooth codimension 1 foliation & of U\{p}
for a neighborhood U of p is called a foliation centered at p, pro-
vided that its leaves are all closed. If furthermore

sup (sup \\Bs\\ diamS ) < oo,
ser \ s )

where Bs denotes the second fundamental form of S, then & is
called a foliation regularly centered at p

THEOREM 1.1. If p is a nondegenerate critical point of the scalar
curvature function, then there exist δ > 0 and smooth functions τ =
τ(r), φ = φ{r) with τ(0) = 0 such that H{r, τ(r), r2φ{r)) = n for
0<r<δ. Hence the family &* = {Sr := Sr τ ( r ) riφ{r): 0 < r < δ} is a
smooth family of constant mean curvature spheres with Sr having mean
curvature n/r. SF is a foliation regularly centered at p. Moreover, SF
can actually be represented as {SV.o.r^r)' 0 < r <δ} for some smooth
function ~φ{r). {In particular, each Sr is a normal graph over Sr{p).)

Proof. We first consider the equation P(H(r, τ, r2φ)) = 0. By
Lemma 1.2, Lemma 1.3 and the fact PL = 0 we can write this equa-
tion as follows (after division by r3)

(1.18) - ^ ^ ^

/
o Jo

P\r / tHφφ(sr, τ, str2φ)φφdsdt
\ Jo Jo

/ / sHφrr{usr,τ,ustr2φ)φdudsdt
Jo Jo Jo

2 / / stHφφr(usr, τ ,ustr2φ)
Jo Jo Jo

x Iφφdudsdt 1 = 0 ,

where

Hφφ(r,τ, ψ)φφ'= -rtHφ(r, τ, ψ + tφ')φ

and //ppr = (d/dr)Hφφ . By the assumption, Λτ

/(0)|τ=0 = 0 and the
Hessian matrix
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is nonsingular. Applying the implicit function theorem we obtain a
solution τ = τ(r, φ) of the equation P(H(r, τ , r2$?)) = 0 around
r = 0, φ = φ0 with τ(0, #>o) = 0? where ^o € ^ J " is determined
by the relation Lφo = jRij(0)x*xJ (Rij(0)xlxj denotes the function
defined on Sn whose value at x e Sn is given by the quadratic form

Now we consider the mapping (r,φ)\-+ H(r, τ(t, φ), r2^?) whose
values lie in ϋf-1 by the construction of τ(r, p ) . We restrict #> to be
in KL. From (1.5) and Lemma 1.3 we obtain (for small r ,τ, φ)

(1.19) H(r,τ,φ) = n-^Rτ

ij(0)

tHφφ(sr,τ,stφ)φφdsdt
Jo Jo

r2 / / sHφrυ{usr, τ, ustφ)φdudsdt
Jo Jo Jo

I / / stHφφr(usr, τ, ustφ)φφdudsdt
Jo Jo Jo

r I / /
Jo Jo Jo

By the implicit function theorem we can solve H(t, τ(r, φ), r2$?) = n
after dividing it out by r2 to get φ = φ(r), 0 < r <δ for some <5 > 0
with ^(0) = ψo

Intermediate Remark. Define a map W from a neighborhood of
x K1 into Rw+1 x L(KL) as follows

7 1 I 7 \

, τ, r , ^)), -JP
±(H(r, τ, rιφ)-ή) ,

where P 1 denotes the Li orthogonal projection from C0>1/2(5r/ l)
onto L{KL). Then W(r, τ(r), ^(r)) = 0 and the implicit func-
tion theorem implies: for (r,τ,φ)€Rx R"+1 x KL with r, τ and
||φ - φ$\\ sufficiently small we have τ = τ(r), φ = φ(r), provided that

It is clear that the family {Sr = Sr τ ( r ) riφ{r): 0 < r < δ} with
τ(r) = τ(r, ̂ (r)) is a smooth family of embedded constant mean cur-
vature spheres with Sr having mean curvature n/r. Geometrically,
we obtained this family by moving the center p of the geodesic spheres
Sr(p) to expp(τι(r)ei) and then performing the normal perturbation
r3φ(r). In order to show that this family constitutes a foliation, we
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need to be sure that the new centers are sufficiently close to p . From
(1.18) we see that

(1.20) τ(r) = O(r2),

whenever the following is true

(1.21) P(Hφφ(0, τ , O)φoφo) = 0, P(Hφrr(0, τ, 0)φ0) = 0.

To show (1.21) we first consider the equation

ASnφ0 + nφo = \R

By the unique solvability of this equation under the constraint φo e
K1 and the invariance of the Laplacian under isometries we deduce
that φo is even. Lemma 1.3 then implies the second equation in
(1.21). On the other hand, we conclude that the mean curvature
functions //(0, 0, τφo) of the hypersurfaces S"φ (in the euclidean
metric) are even. Since Hφφ(0, τ, O)φoφo = Hφφ(0, 0, O)φoφo =
{d2/dt2)H(0, 0, tφo)\t=o , the first equation in (1.21) also follows and
therewith (1.20) is established.

Now we define Ψ r = exp"1 expφ ( r ) ) , ψ(r, x) = x¥r(r(x+r2φ(r)(x)))
and β{r,x) = ψ/\\ψ\\ if | | ^ ( r ? JC)|| / 0 , where x e Sn .

Claim. For sufficiently small r > 0, \\ψ(r, x)\\ is nonzero for all
x E Sn and β(r,-) is a diffeomorphism from Sn onto itself. More-
over, β(r, x) extends smoothly to r = 0 with /?(0, •) = the identity.

In fact, we have

^ = (dxΨ
r)(x + r2φ(r)(x) + r{r2φ{r){x))r)

\-w){r{x + rιφ(r){x))),

dr

d
^-(exp/exp^,))
dτ1

dτ

τ=o
= 0

r=0

by (1.19), hence (dψ/dr)(0, x) = x. It follows that ψ(r, x) = rx +
O(r2). Consequently ψ(r, x) Φ 0 for sufficiently small r > 0 and
β(r, x) = (JC + O(r))/||x + 0(r) | | . Clearly )ff extends smoothly to
r - 0 with /?(0, •) = the identity. For r near 0, β(r9 •) then is a
diffeomorphism.
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Now set φ(r, x) = \\ψ(r9 β~ι(r, x))\\, where β~ι(r, •) denotes the

inverse of β(r, •). We have

d o_{

whence {dφ/dr)\r=0 = 1. We conclude that φ(r, x) is strictly in-
creasing w.r.t. r for r small and hence Sr, Sr> are disjoint for small
r, r1 with r Φ r'. The family {5V}o<r<<ί therefore constitutes a folia-
tion if δ is chosen small enough. It is easy to see that this foliation is
regularly centered at p . The verification of the last statement of the
theorem is also straightforward. D

2. Uniqueness and nonexistence. Let & be a foliation regularly
centered at p, whose leaves have constant mean curvature.

LEMMA 2.1. The following holds:
(1) There is a neighborhood Ω of p together with a constant c > 1

such that the absolute value of the mean curvature of S lies in the
interval (1 /c diam S, c/ diam S), provided that S is a leaf of Sf and
ScΩ;

(2) diam S -+ 0 as dist(p, s) -> 0 for leaves S of & \
(3) each leaf of SF bounds a domain containing p
(4) the leaves of 9~ can be parametrized as a smooth family St,

0 < t < 1 with St φ St> if tφt' and lim,_o diamS, = 0.

Proof. (1) Choose Ω such that dist2(/?? •) is smooth and strictly
convex on Ω. For S e ^, S c Ω let p denote the restriction of
this function to S. At a maximum point we have Ap < 0, which
by simple computations implies the desired lower bound. The upper
bound follows from Definition 1.1.

(2) This is a simple consequence of the assumption that all leaves
of & are closed.

(3) and (4) Consider a leaf S sufficiently close to p. Clearly S
bounds a domain. But a compact manifold with nonempty connected
boundary cannot be smoothly foliated by closed leaves, whence this
domain contains p. By a continuity argument one then derives (3)
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and that the leaf topology of SF is equivalent to (0, 1]. The last fact
implies (4). D

LEMMA 2.2. For t sufficiently small St is unstable, i.e. the first
eigenvalue of the Jacobi operator Δ + ||i?||2 + Ric(i/) on St is nega-
tive. Consequently, Hf(t) Φ 0, where H(t) denotes the inward mean
curvature of St.

Proof. Consider a sequence tk —• 0 and write Stk as Sk. Define

Sk = 0L\id(s.){ψQ(Sk)) - Then the diameter of S^ relative to the metric

ds% ̂ s^ is 1. Since ds$ d,s, converges to the euclidean metric as

k —> oo and each S^ encloses the origin, we may assume S^ c B2
for all k. Then the second fundamental form bound postulated in
Definition IΛ and the standard elliptic PDE theory imply that local
pieces of S^ subconverge smoothly. Consequently one of the fol-
lowing two cases occurs: (i) (after selection of a subsequence of S^)
there are pieces S'k, S^ of Sk such that S'k and S% converge to
the same piece of surface, while the outer unit normal approaches
opposite directions. This implies that the mean curvature of S^ r e ^ a "
tive to dsl d(^s j converges to zero, (ii) A subsequence Sk> converges
smoothly to an immersed, closed hypersurface S of euclidean con-
stant mean curvature, which is the boundary of a domain. The clas-
sical argument of Alexandrov shows that S is a round sphere. By
Lemma 2.2, case (1) cannot happen. Since round spheres are unstable
in the euclidean metric (the first eigenvalue of the Jacobi operator on
a round sphere of radius 1 is -ή), 5̂ / is unstable whenever k! is
large enough. Since the sequence tk is arbitrary, we conclude that for
t sufficiently small, St is unstable.

Now assume H'{t) = 0. Representing St* as normal graphs over
St for t1 near t, we derive that the Jacobi operator on St has a posi-
tive eigenfunction with eigenvalue 0. This would imply that St is
stable. D

Since H'{t) Φ 0, we can introduce a new parameter r = n/H(t).
Then we obtain a parametrization Sr, 0 < r < ro (with some ro > 0)
for the leaves of (a restriction of) 9* with the property that the inward
mean curvature of Sr equals n/r. We put Sr = ot\/r(q>Ql(Sr)) and
x{r) = the center of mass for Sr.

Let Sn(a) denote the unit sphere of a center a in R Λ + 1 . For a
smooth function φ on Sn{a), Sn(a)φ is defined in a similar way to
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LEMMA 2.3. There exists some r0 > 0 such that for each r e
(O,ro), Sr = Sn(x(r))φ^ for a smooth function ψ(r) on Sn(x(r))
with limr_^o | |^(^)| |c3 = 0 (It follows automatically that ~φ(r) depends
smoothly on r.)

Proof, Assume the contrary. Then there is a sequence rk —• 0 to-

gether with a number δ > 0 such that for each k, either 5^ is not

a smooth normal graph over Sn(x(rk)) or S r = Sn(x(rk))Ψk for a

function φk with | | ^ | | C 3 ><J. Note that φk is uniquely determined

and the mean curvature of Sr in the metric of ds$ r equals n. By

the arguments in the proof of Lemma 2.2 we can find a subsequence

Srk which converges smoothly to a round sphere of radius 1. For k!

large we then have SYk, = Sn(x(rk'))9k, with | | ^ Ί I c 3 < ^ > a c o n t r a d i c "
tion. D

COROLLARY 2.1. Γ/ẑ re are π > 0, δ > 0 swc/z that for r <r\ and
\\a\\ < δ, ^i/r(^^( r)+ α)(^r)) w Λ smooth normal graph over Sn, thus
Sr = Sr,r(x(r)+a),φ(r, a) for' a smooth function φ{r, a) on Sn . We have
\\φ(r9 α)||C3 -• 0 as r-> 0, α - * 0.

Proof. Firstly, there are r\ > 0, J > 0 such that for r < π , | |α|| <
δ , 5 r is a smooth (euclidean) normal graph over S"(<z + r(r)), thus
Sr = Sn(a+x(r))ψ(ria) for a smooth function ψ(r, a) on Sn(a+x(r)).
Since the metric dsfi r approaches the euclidean metric as r —• 0, for

r small enough (and | |α|| < δ), *Sr will be a smooth (geodesic) normal
graph over the geodesic sphere S"(a + x(r)) of radius 1 and center
a + x(r) relative to dsfc r . We denote the defining function of this
normal graph relative to the inward normal by ψ(r, a). It follows
that Sr is a smooth normal graph over Sr(φo(r(a + x(r)))), which in
turn implies Sr = ̂ r,r(α+x(r)),^(r,α) We can relate p(r, a) to ^(r , α)
as follows. Denote by ψr^a the exponential map at a + x(r) relative
to the metric ds$ r . Then φ(r, a)(x) = ψ(r9 a)(y/r,a(xle*)), where

e* = ( p ό 1 ) * ^ ^ ^ ^ - τ h e l a s t statement of the corollary follows
easily. D

Next we want to compute the dependence of φ(r, a) on a. Let
us consider a hypersurface S which is a smooth normal graph over
Sn(a0) as well as Sn(a0 + a), thus S = Sn(a0)φ = Sn(a0 + α)^/ for
some φ, φ!. Given x 6 Sn(ao), we consider the point j ; G 5 above
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x, y = do + (1 - φ(x))(x - OQ) . For a unique point xf e Sn(ao + a)
we also have y = O,Q + a + (I - φf(xf))(xf - a$ - a). It follows that

(2.1) ΛT = F(x) := a + a0 \\(l - φ(x))(x - a0) - a\\

φ'(x>) = l-\\(l-φ(x))(x-ao)-a\\.

We consider the projection of φ' onto the spherical harmonics on

(2.2)

S"(a0)

{I - φ(x))(x - ap) - a

where Jf denotes the Jacobian of the map F: Sn(ao) —• Sn(ao + a).
Elementary computations show (for a, \\φ\\cι sufficiently small)

(2.3) -1-[ φ'(xf)(xf-aQ-a)dA
ωn+l Jsn(a0+a)

= TΛ— / φ(x)(a-ao)dA + a + Ba,φ(a, φ)9
ωn+\ JSn{a0)

where Ba,φ: Mπ+1 x C{(Sn(aQ)) -^ Rn+{ stands for a continuous bi-
linear form depending smoothly on a, φ .

LEMMA 2.3. There is a smooth function a{r), 0 < r < r\ for some
r\ > 0 such that limr_+o ̂ M = 0 and P{φ(r, a{r))) = 0 for every r.

Proof, Define a map G(r9 a) = ?(φ(r, a)). We have

L f φ(r,a)(x)xdA

/
Js"

f
/ , i

s"
Note the following fact: as r —> 0 (with |α| < ί ) , the geodesic sphere
S2(a + x(r)) and the euclidean sphere Sn(a + x(r)) approach each
other smoothly and all geometric quantities measured in ds$ r con.
verge to those measured in the euclidean metric. Hence φ(r, a) o Qr

and ψ(r, a) approach each other smoothly as r —> 0, where Qr de-
notes the radial projection from Sn{a + x(r)) onto S"{a + x(r)). Be-
sides, the mappings x »-• ψr^a(xιe*) and χ π α + χ(r) + x approach
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each other as r —> 0. We conclude

G(r,a) = -±- f φ{r, a)(a +x(r) + x)xdA +u(r)(a)
ωn+l JSn

= 77— ί 9(r9aKx)(x-a-x(r))dA + u(r)(a),

where u{r) denotes a smooth map depending smoothly on r > 0

with ||w(r)||ci ( B } -> 0 as r -+ 0. Applying (2.3) we then get (ψ(r)

was defined in Lemma 2.3)

(2.4) G(r, α) = - L - f φ(r)(x)(x-x(r))dA

+ a + Ba,φ{r)(a, φ(r)) + u(r)(a).

By the inverse mapping theorem and the properties of Ba>φ , u(r) and
φ(r), there are rj > 0, δ1 > 0 and a natural number m such that
for r < r[, ^ ( r , •) is a diffeomorphism from Bδ* onto a domain con-
taining Bδ>jm . Hence we get a unique solution a{r) of the equation
G(r, a) = 0. Clearly α(r) -^ 0 as r -* 0. D

Henceforth we put τ\(r) = r(x(r) + a{r)), φ*(r) = φ(r, a(r)).
We have obtained a nice parametrization *Sr = Sr τ(r)9φ*(r) ^ 0 Γ ^he
leaves of (a restriction of) &. The crucial property is P{φ(r)) = 0,
lim r _ o τi(r) = 0 and limr_>0 ||?*(r)||C3 = 0 .

We shall call a smooth codimension 1 foliation with constant mean
curvature leaves a constant mean curvature foliation.

THEOREM 2.1. (1) If p is not a critical point of the scalar curva-
ture function, then there exists no constant mean curvature foliation
regularly centered at p.

(2) Assume that p is a nondegenerate critical point of the scalar
curvature function and let 9^ be the constant mean curvature foliation
obtained in Theorem 1.1. If SF is a constant mean curvature foliation
regularly centered at p, then either 9§ is a restriction of ^ or & is
a restriction of &fr.

Proof. Let & be a constant mean curvature foliation regularly cen-
tered at p and Sγ — Sγτ (r),φm(r) the parametrization obtained above.
Since the mean curvature of Sr is n/r, we have H{r, x\{r), φ*{r)) =
n and hence

(2.5) Pi-(H(r,τι(r),φ*(r))-n) = 0,
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(2.6)

From (2.5) and (1.19) we derive (L+A(r))φ*(r) = b(r, τx)r2, where
b(r9 τ) E A^1 denotes a smooth function of r and τ , -4(r): ίΓ 1 —>
L{KL) denotes a linear operator with lim r_oM( r)ll = 0 and KL,
L^- 1 ) are endowed with C 2 ' 1 / 2 and C 0 ' 1 / 2 norms respectively. We
immediately deduce ||^*(r)||C2,i/2 < cr2 for a constant c. Now define
φι(r) = φ*(r)/r2. Inserting τ = τ\(r) and ^ = r2φχ{r) into (1.19),
dividing the resulting equation by r2 we easily deduce that φ*{r)
converges to ψo as r goes to zero. By the Intermediate Remark in
the proof of Theorem 1.1 we conclude that τ\(r) = τ(r) and φ\{r) =
φ{r) for r small enough, provided that p is a nondegenerate critical
point of the scalar curvature function. This finishes the proof of the
theorem. D
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