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POINT SPECTRUM ON A QUASI HOMOGENEOUS TREE

K. AOMOTO

Dedicated to Professor Sh. Murakami on his 60th birthday

By using the algebraicity of the Green kernel it is shown that a
linear operator of nearest neighbour type on a quasi homogeneous tree
i.e. a tree admitting of a group of automorphism with finite quotient
has no point spectrum on the space of square summable functions,
provided the tree has a regular property and that the operator is in-
variant under the group of automorphism.

0. Introduction. This result is an extension of spectrum theorem on
an anisotropic random walk on a homogeneous tree (see [Aol] and
[Fi]). In case of one dimensional lattice relevant results have been
obtained in full generality (see [Mol] and [Mo2]). See [Ko] for a
similar problem on a Riemannian manifold. The author is indebted
to the referee for various improvements of statements in this note.
Among other things, in Theorem 1 the author has originally restricted
himself to the graph Γ without loops and multiple edges. The referee
has suggested the more complete present form with its proof.

1. Basic properties of the Green kernel. Let T be a connected lo-
cally finite tree with the set of vertices V{T) and the set of edges
E(T). Let A be a symmetric operator on 12{T), the space of square
summable complex valued functions on V{T):

(1.1) Au(x)=

for u{x) £ 12(T), with ax^x and axx> = ax> x e R. (x9 x') means
that two vertices x, xf are adjacent to each other with respect to an
edge x, x' binding x and x1.

We assume first that A is regular in the following sense:

( ^ 1 ) <*X,X'Φ0 forall(jc,jc').

Suppose further that a discrete group of automorphism G of T
acts fix point-freely on T:

(1.2) G
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and that the quotient Γ = G\T is a finite graph. Recall that V(Γ) =
G\V(T) and E{Γ) = G\E(T), where GxTy connects the vertices
Gx and Gy of Γ. Observe that Γ may have loops and multiple
edges. In particular, G must be a finitely generated free group (see
[S] or [T]). Γ is locally homeomorphic to Γ. We call the tree T
"quasi homogeneous". T can be regarded as the set of paths in T
from a base point * eV(T) to points in V(T).

We set up the following condition:

(W2) A is invariant under the action ofG.

Then A becomes a bounded and hence self-adjoint operator with do-
main 3f{A) = 12{T). So the resolvent (z - A)~ι is uniquely defined
for z € C - R . We denote by G(x, y\z), x, y e V(T) and z GC-R,
the Green kernel for A , i.e., the matrix elements of the resolvent:
(ex, (z - A)~ιey) for ex,eye 12{T), where ( , ) and ex denote the
inner product on 12{T) and the function on V(T) which is equal to
1 at x and zero elsewhere respectively.

It is obvious that

(1.3) G{g.χ9g y\z) = G{x,y\z)

for an arbitrary g eG. We denote by Wx{z) the inverse G(x, x\z)~ι.
As a function of x, Wx depends only on the coset G - x e V(Γ) =
G\V(T).

We shall frequently use the following lemma which has been proved
in our previous paper [Ao2].

LEMMA 1.1. Wx(z), x eV(T), satisfy the basic equations:

(r) z-ax,x-Wx=

yev(T)

and

(1.4) Wx{z)~z for lmz^±oc.

Wx(z) are uniquely determined by {β?) and (1.4).

Since Wx depends only on the coset G x eG\V(T), there are N
algebraic equations for the unknown Wx, x e V(Γ), where N de-
notes the number of vertices in F(Γ). Hence Wx{z) are all algebraic
functions in z.
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We shall also write Wχ-(z) = G(x,~x\z)~x in place of Wx(z) =
G(x, x\z)~l in the case where Gx = x e G\V(T). This will not
lead to any confusion. The following is an easy consequence of the
spectral representation of the Green kernel (see [Ak or Ca]).

LEMMA 1.2. For each x e V(T),

(1.5) ImWx(z) lmz>0 forzeC-R.

The following two were proved in [Ao2]:

LEMMA 1.3. For each adjacent pair x, y e V(T), the multiplier
α(* |z) = G(ω, y\z)/G(ω, x\z) is expressed as

-Wx + y/W2 + 4alyWx/Wy -1 + yJl+4axJ(WxWy)
—_—_-^____-^_._____________—_______ __, yy ________________________________________

provided x lies on the geodesic line from ω to y. We have thereby

(1.6) 2flJCO,G(x,y|z) = - 1 -

LEMMA 1.4. For each adjacent pair x,y G V(T), the function

{—Wx + \lw} + ^a\yWxjWy) is holomorphic in z and its imaginary

part has the opposite sign to Im z, provided Z G C - 1 .

2. Statement of main theorems. We take and fix a real number λ.
Since Wx(z)9 x G V(Γ), are algebraic in z , they are expressed in
Puiseux expansions. There exists a minimal exponent px such that

(2.1) lim Wx(z)-(z-λ)-p*=cxφ0.
Imz>0

Owing t o L e m m a 1.2, we have —l<px<l a n d p x EQ. I n d e e d if
\px\ > 1, t h e n

lim arg Wx(z) - lim arg Wx(z) > π

from (2.1), which contradicts Lemma 1.2, px G Q follows from the
algebraicity of the function Wx{z) in z . We denote by Va(Γ) the set
of vertices x G V(Γ) such that px = a. λ is an eigenvalue of the
operator A if and only if there exists at least one x e F(Γ) such that
px = 1, i.e., Ki(Γ) φ 0 . In fact the spectral kernel dθ(x, y|Λ) of the
operator A is positive definite:

(2.2) dθ(x, JC|A) dθ(y, yμ) > J θ ( x , y\λ)2
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and therefore λ is an eigenvalue if and only if

θ(x, x\λ + 0) - θ(x, x\λ - 0) φ 0

for some x e F(Γ) (see [Ca] for details). We denote by Na the
number of vertices in Va(T) for each a e R where - 1 < a < 1.
Then we have Σ-\<a<\ Na = N.

The set of vertices K*(Γ) and edges connecting vertices in Va(Γ)
define a finite subgraph Γα of Γ such that V(Γa) = Va(Γ). We
denote by N'a the number of edges and La the number of loops in
ΓQ . A proper circuit in Γ is a sequence XQ, x\9 ... , x^ of successive
adjacent vertices such that k > 3, χ0 = χk and Xj Φ Xj for 0 < / <
j < k. Then the main theorem can be stated as follows.

THEOREM 1. (i) Γ\ has no proper circuit. Thus, Γ\ is a disjoint
union of pseudo-trees, i.e., trees where loops and multiple edges are
allowed, (ii) If - 1 < p < 1, then no vertex of Tp is adjacent to any
vertex of T\. (iii) We have the equality:

(2 3)

Hence λ is an eigenvalue of A ifandonlyifN\-{N[-\Lχ)-N-\ > 0 .

REMARK 1. The sum in the left-hand side in (2.3) is equal to

THEOREM l.IfT is regular, i.e., if there is an equal number {greater
than 1) of edges in Γ emanating from each vertex in V(Γ), then the
operator A is point spectrum free on 12(T).

COROLLARY. If T is a Cayley graph of a free group with finitely
many generators and G is a subgroup of finite index, then A is point
spectrum free.

REMARK 2. In this corollary the operator A has at most N bands
of continuous spectra in view of the projection freeness theorem for
reduced C*-algebras of free groups (see [Cu] and references therein)^
It seems likely that there appear exactly N bands for generic A.

The following question raised by the referee seems very likely.

Question 1. Does the set of exponents {px} consist of only {-1,
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3. Proofs of the theorems. We start to prove

LEMMA 3.1. Γi has no proper circuit.

Proof. T\ is decomposed into connected components

Γ[κ). For each k, 1 < k < K, we denote by τ[k) the set of paths in

Γ ^ starting from a base point x e F ( Γ ^ ) and ending in points of

V(Γ[k)). Then τ[k) can be regarded as a subtree of T. We take an

arbitrary adjacent pair x, y e V(T^). We have Puiseux expansions

at z = λ:

(3.1) Wx{z) = cx(z - λ) + (higher degree terms),

(3.2) Wy{z) = cy(z - λ) + (higher degree terms),

where cx and cy are both positive as is seen from Lemma 1.2. In the
same way we have

(3.3) G(x, y\z) = —^y + (higher degree terms)
Z — A

for cX9y e R. Let {UJ(X)}\<J<M , 1 < M < -foo, be an orthonormal
system of A-eigenfunctions for A. The matrix ((cXfy)) defines the
projection operator from 12{T) onto the Λ-eigenspace. Since cx,x =
1/Cχ and cy,y — l/cy, we have

i M

(3.4) — = T*Uj(x)2,
C X 7=1

1 M

(3.5) — = y^Uj(y)2, and

(3.6) cXjy = y^2,Uj(x) - Uj(y).

7 = 1

The relation (1.6) shows that

{ M Λ2 M M

7=1 J 7=1 7=1

As a result of the Schwarz inequality, this implies that the two M di-

mensional vectors {w/(*)}i</<Af a n d {w7 (y)}i<>/<Af a r e linearly de-

pendent: uj(x) = t(x, y)Uj(y) for t(x, y) e R. Let * e F(Γ1

(/c)) be
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an arbitrary point such that G x = x e V(Γ[k)). Applying the above
relation successively we have

(3.8) uj(x) = t(x) uj(x*)

for an arbitrary x* e V(T[k^) and j such that Uj(x*) Φ 0, where

t(x) is a real function on V(T[k)) such that Ex€κ(r(/t)) ' M 2 < + 0 0

But then

(3-9) £ £ ί

Suppose Γ ^ has a proper circuit. Then this represents a non-trivial
action of an element g of G on Γ and it follows from [T] that g
must have infinite order. Indeed, by [T], g has either infinite order
or order 2. Now one has to verify that the second case is impossible:
if g2 = identity and the circuit is even then g fixes a vertex of T,
in contradiction with fixed point-freeness. If the circuit is odd, then
g inverts an edge ~x~Γy in T whose G-orbit lies on the circuit. But
then GxTy is a loop, in contradiction with properness of the circuit.
Since l/cx is invariant under this action: l/cx = l/cg.x, we have

+00 j M

(3.10) +oo = Y-\-<Y Y uΛx)1

-00 8 'X j=\ xev{T[k))

which is finite from (3.9). This is a contradiction. Hence each ^
has no proper circuit and it is a pseudo-tree. T\ is itself a disjoint
union of pseudo-trees. Lemma 3.1 has thus been proved.

LEMMA 3.2. Let x e Vχ(Γ) and y e K_i(Γ) which are adjacent to
each other. We have Puiseux expansions at z = λ for Wx(z) as in
(3.1) and for Wy(z) as follows:

(3.11) Wy(z) = —£-r + (higher degree terms)
z — A

where cy < 0 from Lemma 1.2. Then

(3.12) cx-cy<-Aa2

Xiy and

( 3 J 3 ) - ' V c c
V Cχ Cy

where we take the positive root ^— in the right hand side.
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Proof. From Lemma 1.4, for Imz > 0,

(3.14) \m(-Wx-

4aly/(cxcy))(z - λ)

+ (higher degree terms)} < 0.

cx being positive, - 1 ± J\ + 4a2

y/(cxcy) must be negative, i.e.

(3.15) 0 < y/l+4alfy/(cxcy) < 1.

Lemma 3.2 has thus been proved.

We shall denote by εXfy the sign ± appearing in the right hand
side of (3.14). Note that εx,y is symmetric in x, y from Lemma
1.3.

In the sequel, whenever we speak of a sum Σ{χ9y)> where x e
V(Γ), the sum refers to all edges from x to y, each carrying the
weight inherited from T.

LEMMA 3.3. Suppose x e VX(Γ) = V(Γ{). Then there is no y e
VP(Γ) adjacent to x in Γ for - 1 < p < 1.

Proof. Wx has a Puiseux expansion (3.1). Suppose that there exists
one y e VP(Γ), - 1 < p < 1, which is adjacent to x. Let a be the
greatest exponent among these p. Then comparing the constant term
and the term (z - λ)(ι~a^2 respectively, we have from

(3.16) λ-aXyX=
(χ,y)

(3.17) 0= ^ ex,yax,yyfcx7cy(z-λγι-aV2.
<χ,y)

yeva(Γ)

Here we take y/cx/cy as positive. Since, as a result of Lemma 1.4,
the imaginary part of each term in the right hand side satisfies

(3.18)
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for Imz > 0, which is a contradiction to (3.17). Hence the set of
ye Va(Γ) which is adjacent to x must be empty. Namely there is no
y e Vp(Γ), - 1 < p < 1, which is adjacent to x.

Therefore for x e V\ (Γ), the equation (I?) becomes

(3.19) z-Wx-ax,x

" 2
.(χ,y)

Comparing the term z — λ, we have

(3.20) l-cx = j Σ (-Cχ + Bχ,yCχy/l+4aly/(cxcy))
(χ,y)

1
-cx + 2εx,yax,yyjcxlcy { f- - -f ) \ ,

(χ,y)

where c'x(z — λ)2 denotes the quadratic term in the Puiseux expansion
of Wx(z). (3.20) is reexpressed as

- ? 1 4Cχ(3.21) -?--1=4 £ {-\+Bχ,yJ\+*alty/{cxCy))
Cχ l

Summing up both sides over the vertices of V\ (Γ) and seeing that the
terms

2ax,y (dx _ dy
Or v _ I

y^xLy \Lx Ly

are alternating in x and y for the proper edges x, y of Γj (while
they are zero for loops), we have that they cancel. We get

(3.22) Σ Γ~Nι=l2 Σ bx,y-U-l-Lι
x V(T) V
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To compute the right hand side of (3.22), we observe

LEMMA 3.4. Let x e K_i(Γ). Then

(3.23)

(χ,y)

Proof. Wy has a Puiseux expansion as in (3.11)

(3.24) Wx = — ^ - + (higher degree terms) for cx < 0.
Z — A

We compare the term (z - λ)~x in both sides of the equations (I?)
and obtain

1
(3.25) ~c 2

<χ,y)

2

i.e.,

(3.26) -2= Σ bx,y+ £ Σ H

Hence the sum

Σ
(χ,y)

must be an even integer at least equal to - 2 . Since every bXiy is
negative by Lemma 3.2, this sum is just equal to — 2. Lemma 3.4 has
been proved.

Proof of Theorem 1. (i) follows from Lemma 3.1. (ii) follows from
Lemma 3.3. (iii) is an immediate consequence of (3.22) and (3.23).
Theorem 1 has thus been proved.

Proof of Theorem 2. We have only to show that there never occurs
N\ - (N[ - \L\) - ΛL i > 0 for any l e i . Suppose λ is an eigenvalue
of A . Let Π be defined as at the beginning of the preceding section.
For x € V\ (Γ), let deg(x) be the number of edges of Y\ incident with
x. Assume that m (> 2) edges emanate from each vertex in T. Let
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K be the number of edges between Tx and Γ_!. Then K < mN_x.
On the other hand, according to Lemma 3.3,

(3.27) K=

Hence, mN_x > mNx - 2(N[ - ±LX) > mNx - m(N[ - \LX), and
NX-{N[-\LX)-N_X < 0. Theorem 2 has thus been proved.

REMARK 3. In order to show that A is point spectrum free, it is not
sufficient that Γ is finite. The following example is very illuminating
as a counter example.

Let Γ be a complete bipartite graph consisting of (p + q) points
{1, 2, 9p + q}9p>q>2, such that each vertex {j}, 1 < j < p,
is adjacent to the points {p+k}, 1 < k < q. We assume that &j,p+k =
a>p+k,j = 19 a n d other ax^y all vanish. The group of automorphisms
G is isomoφhic to the free group of (p - \){q - 1) generators. Then
the equations iβ) reduce to W\ — = Wp , Wp+\ = = Wp+g and

(3.28) z -ff ί = |(_j

(3.29) z - Wp+X = | ( - ^ + 1 + yJWp\{+4Wp+x/Wx),

i.e.,

(3 28/) w r 1 = t H

(3.29')

Hence

(3.30) λ-G{\, \\z) - X-G{p + 1, p + l\z) = (± - i ) \ φ 0.

This shows that G(l , l |z) or G{ρ + \,p + \\z) hasapoleat z = 0. 0
is an eigenvalue. Indeed in Theorem 1 we have Vx (Γ) = {1, 2, , p}
and K_!(Γ) = {/? + 1, p + 2, , p + q} so that N{ - N[ - M i =*
p - ί > 0. Hence
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The spectrum of A2 in this case coincides with a part of the one of
an operator obtained from a random walk on a barycentric subdivision
of polygonal graphs investigated by G. Kuhn-P. M. Soardi, J. Farault-
M. A. Picardello or J. M. Cohen-A. R. Trenholme (see [Ku]? [Fa] or
[Co]). By using this result one can also compute the point spectrum of
A as above. The author is indebted to the referee for having informed
it to us. See also [B].

Question 2. Assume that Γ is fixed. It seems to be an interesting
question to ask whether the existence of point spectrum really depends
or not on the data {ax y}x yev(Γ) under the conditions (£Π) and
(W2).

REMARK 4. A modified version of Theorems 1 and 2 is probably
true even if the action of G is not necessarily free, provided the quo-
tient G\T is finite. But the author does not know any answer.

REMARK 5. Theorem 1 (iii) remains valid when T is a finite con-
nected tree and A is a linear operator on 12{T) defined as in (1.1).
In this case Wx{z), x G T, are rational in z . Hence there occur only
V\(T) and V-\{T). Theorem 1 can then be modified as follows:

THEOREM la. For an eigenvalue λ of A, we denote by N\ and 7V_i
the numbers of V\(T) and K_i(Γ) respectively, and by N[ the number
of edges in T connecting vertices in V\(T). Then

(3.31)
χeV(T)
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