POINT SPECTRUM ON A QUASI HOMOGENEOUS TREE

K. Аомото
Dedicated to Professor Sh. Murakami on his 60th birthday

Abstract

By using the algebraicity of the Green kernel it is shown that a linear operator of nearest neighbour type on a quasi homogeneous tree i.e. a tree admitting of a group of automorphism with finite quotient has no point spectrum on the space of square summable functions, provided the tree has a regular property and that the operator is invariant under the group of automorphism.

0. Introduction. This result is an extension of spectrum theorem on an anisotropic random walk on a homogeneous tree (see [A01] and [Fi]). In case of one dimensional lattice relevant results have been obtained in full generality (see [Mo1] and [Mo2]). See [Ko] for a similar problem on a Riemannian manifold. The author is indebted to the referee for various improvements of statements in this note. Among other things, in Theorem 1 the author has originally restricted himself to the graph Γ without loops and multiple edges. The referee has suggested the more complete present form with its proof.
1. Basic properties of the Green kernel. Let T be a connected locally finite tree with the set of vertices $V(T)$ and the set of edges $E(T)$. Let A be a symmetric operator on $l^{2}(T)$, the space of square summable complex valued functions on $V(T)$:

$$
\begin{equation*}
A u(x)=\sum_{\left\langle x, x^{\prime}\right\rangle} a_{x, x^{\prime}} u\left(x^{\prime}\right)+a_{x, x} u(x) \tag{1.1}
\end{equation*}
$$

for $u(x) \in l^{2}(T)$, with $a_{x, x}$ and $a_{x, x^{\prime}}=a_{x^{\prime}, x} \in \mathbb{R} .\left\langle x, x^{\prime}\right\rangle$ means that two vertices x, x^{\prime} are adjacent to each other with respect to an edge $\overline{x, x^{\prime}}$ binding x and x^{\prime}.

We assume first that A is regular in the following sense:

$$
\begin{equation*}
a_{x, x^{\prime}} \neq 0 \text { for all }\left\langle x, x^{\prime}\right\rangle . \tag{E1}
\end{equation*}
$$

Suppose further that a discrete group of automorphism G of T acts fix point-freely on T :

$$
\begin{equation*}
G \times V(T) \ni(g, x) \rightarrow g \cdot x \in V(T) \tag{1.2}
\end{equation*}
$$

and that the quotient $\Gamma=G \backslash T$ is a finite graph. Recall that $V(\Gamma)=$ $G \backslash V(T)$ and $E(\Gamma)=G \backslash E(T)$, where $G \bar{x}, \bar{y}$ connects the vertices $G x$ and $G y$ of Γ. Observe that Γ may have loops and multiple edges. In particular, G must be a finitely generated free group (see $[\mathbf{S}]$ or $[\mathbf{T}]) . \Gamma$ is locally homeomorphic to T. We call the tree T "quasi homogeneous". T can be regarded as the set of paths in T from a base point $* \in V(T)$ to points in $V(T)$.

We set up the following condition:
A is invariant under the action of G.
Then A becomes a bounded and hence self-adjoint operator with domain $\mathscr{D}(A)=l^{2}(T)$. So the resolvent $(z-A)^{-1}$ is uniquely defined for $z \in \mathbb{C}-\mathbb{R}$. We denote by $G(x, y \mid z), x, y \in V(T)$ and $z \in \mathbb{C}-\mathbb{R}$, the Green kernel for A, i.e., the matrix elements of the resolvent: $\left(e_{x},(z-A)^{-1} e_{y}\right)$ for $e_{x}, e_{y} \in l^{2}(T)$, where (,) and e_{x} denote the inner product on $l^{2}(T)$ and the function on $V(T)$ which is equal to 1 at x and zero elsewhere respectively.
It is obvious that

$$
\begin{equation*}
G(g \cdot x, g \cdot y \mid z)=G(x, y \mid z) \tag{1.3}
\end{equation*}
$$

for an arbitrary $g \in G$. We denote by $W_{x}(z)$ the inverse $G(x, x \mid z)^{-1}$. As a function of x, W_{x} depends only on the coset $G \cdot x \in V(\Gamma)=$ $G \backslash V(T)$.

We shall frequently use the following lemma which has been proved in our previous paper [A02].

Lemma 1.1. $W_{x}(z), x \in V(T)$, satisfy the basic equations:

$$
\begin{equation*}
z-a_{x, x}-W_{x}=\sum_{\substack{\langle x, y\rangle \\ y \in V(T)}} \frac{1}{2}\left(-W_{x}+\sqrt{W_{x}^{2}+4 a_{x, y}^{2} W_{x} / W_{y}}\right) \tag{E}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{x}(z) \sim z \quad \text { for } \operatorname{Im} z \rightarrow \pm \infty \tag{1.4}
\end{equation*}
$$

$W_{x}(z)$ are uniquely determined by (\mathscr{E}) and (1.4).
Since W_{x} depends only on the coset $G \cdot x \in G \backslash V(T)$, there are N algebraic equations for the unknown $W_{x}, x \in V(\Gamma)$, where N denotes the number of vertices in $V(\Gamma)$. Hence $W_{x}(z)$ are all algebraic functions in z.

We shall also write $W_{\bar{x}}(z)=G(\bar{x}, \bar{x} \mid z)^{-1}$ in place of $W_{x}(z)=$ $G(x, x \mid z)^{-1}$ in the case where $G \cdot x=\bar{x} \in G \backslash V(T)$. This will not lead to any confusion. The following is an easy consequence of the spectral representation of the Green kernel (see [Ak or Ca]).

Lemma 1.2. For each $x \in V(T)$,

$$
\begin{equation*}
\operatorname{Im} W_{x}(z) \cdot \operatorname{Im} z>0 \quad \text { for } z \in \mathbb{C}-\mathbb{R} \tag{1.5}
\end{equation*}
$$

The following two were proved in [A02]:
Lemma 1.3. For each adjacent pair $x, y \in V(T)$, the multiplier $\alpha\left(\left.\begin{array}{l}x \\ y\end{array} \right\rvert\, z\right)=G(\omega, y \mid z) / G(\omega, x \mid z)$ is expressed as

$$
\frac{-W_{x}+\sqrt{W_{x}^{2}+4 a_{x, y}^{2} W_{x} / W_{y}}}{2 a_{x, y}}=W_{x} \cdot \frac{-1+\sqrt{1+4 a_{x, y}^{2} /\left(W_{x} W_{y}\right)}}{2 a_{x, y}}
$$

provided x lies on the geodesic line from ω to y. We have thereby

$$
\begin{equation*}
2 a_{x, y} G(x, y \mid z)=-1+\sqrt{1+4 a_{x, y}^{2} G(x, x \mid z) \cdot G(y, y \mid z)} \tag{1.6}
\end{equation*}
$$

Lemma 1.4. For each adjacent pair $x, y \in V(T)$, the function $\left\{-W_{x}+\sqrt{W_{x}^{2}+4 a_{x, y}^{2} W_{x} / W_{y}}\right\}$ is holomorphic in z and its imaginary part has the opposite sign to $\operatorname{Im} z$, provided $z \in \mathbb{C}-\mathbb{R}$.
2. Statement of main theorems. We take and fix a real number λ. Since $W_{x}(z), x \in V(\Gamma)$, are algebraic in z, they are expressed in Puiseux expansions. There exists a minimal exponent ρ_{x} such that

$$
\begin{equation*}
\lim _{\substack{z \rightarrow \lambda \\ \operatorname{Im} z>0}} W_{x}(z) \cdot(z-\lambda)^{-\rho_{x}}=c_{x} \neq 0 \tag{2.1}
\end{equation*}
$$

Owing to Lemma 1.2, we have $-1 \leq \rho_{x} \leq 1$ and $\rho_{x} \in \mathbb{Q}$. Indeed if $\left|\rho_{x}\right|>1$, then

$$
\left|\lim _{z \rightarrow \lambda+0} \arg W_{x}(z)-\lim _{z \rightarrow \lambda-0} \arg W_{x}(z)\right|>\pi
$$

from (2.1), which contradicts Lemma 1.2, $\rho_{x} \in \mathbb{Q}$ follows from the algebraicity of the function $W_{x}(z)$ in z. We denote by $V_{\alpha}(\Gamma)$ the set of vertices $x \in V(\Gamma)$ such that $\rho_{x}=\alpha . \lambda$ is an eigenvalue of the operator A if and only if there exists at least one $x \in V(\Gamma)$ such that $\rho_{x}=1$, i.e., $V_{1}(\Gamma) \neq \varnothing$. In fact the spectral kernel $d \theta(x, y \mid \lambda)$ of the operator A is positive definite:

$$
\begin{equation*}
d \theta(x, x \mid \lambda) \cdot d \theta(y, y \mid \lambda) \geq d \theta(x, y \mid \lambda)^{2} \tag{2.2}
\end{equation*}
$$

and therefore λ is an eigenvalue if and only if

$$
\theta(x, x \mid \lambda+0)-\theta(x, x \mid \lambda-0) \neq 0
$$

for some $x \in V(\Gamma)$ (see [Ca] for details). We denote by N_{α} the number of vertices in $V_{\alpha}(\Gamma)$ for each $\alpha \in \mathbb{R}$ where $-1 \leq \alpha \leq 1$. Then we have $\sum_{-1 \leq \alpha \leq 1} N_{\alpha}=N$.

The set of vertices $V_{\alpha}(\Gamma)$ and edges connecting vertices in $V_{\alpha}(\Gamma)$ define a finite subgraph Γ_{α} of Γ such that $V\left(\Gamma_{\alpha}\right)=V_{\alpha}(\Gamma)$. We denote by N_{α}^{\prime} the number of edges and L_{α} the number of loops in Γ_{α}. A proper circuit in Γ is a sequence $x_{0}, x_{1}, \ldots, x_{k}$ of successive adjacent vertices such that $k \geq 3, x_{0}=x_{k}$ and $x_{i} \neq x_{j}$ for $0 \leq i<$ $j<k$. Then the main theorem can be stated as follows.

Theorem 1. (i) Γ_{1} has no proper circuit. Thus, Γ_{1} is a disjoint union of pseudo-trees, i.e., trees where loops and multiple edges are allowed. (ii) If $-1<\rho<1$, then no vertex of Γ_{ρ} is adjacent to any vertex of Γ_{1}. (iii) We have the equality:

$$
\begin{equation*}
\sum_{x \in V_{1}(\Gamma)} \frac{1}{c_{x}}=N_{1}-\left(N_{1}^{\prime}-\frac{1}{2} L_{1}\right)-N_{-1} . \tag{2.3}
\end{equation*}
$$

Hence λ is an eigenvalue of A if and only if $N_{1}-\left(N_{1}^{\prime}-\frac{1}{2} L_{1}\right)-N_{-1}>0$.
Remark 1. The sum in the left-hand side in (2.3) is equal to $\sum_{x \in V(\Gamma)} \operatorname{Res}_{z=\lambda} G(x, x \mid z)$.

Theorem 2. If Γ is regular, i.e., if there is an equal number (greater than 1) of edges in Γ emanating from each vertex in $V(\Gamma)$, then the operator A is point spectrum free on $l^{2}(T)$.

Corollary. If T is a Cayley graph of a free group with finitely many generators and G is a subgroup of finite index, then A is point spectrum free.

Remark 2. In this corollary the operator A has at most N bands of continuous spectra in view of the projection freeness theorem for reduced C^{*}-algebras of free groups (see $[\mathrm{Cu}]$ and references therein): It seems likely that there appear exactly N bands for generic A.

The following question raised by the referee seems very likely.
Question 1. Does the set of exponents $\left\{\rho_{x}\right\}$ consist of only $\{-1$, $\left.-\frac{1}{2}, 0, \frac{1}{2}, 1\right\}$?

3. Proofs of the theorems. We start to prove

Lemma 3.1. Γ_{1} has no proper circuit.

Proof. Γ_{1} is decomposed into connected components $\Gamma_{1}^{(1)}, \ldots$, $\Gamma_{1}^{(K)}$. For each $k, 1 \leq k \leq K$, we denote by $T_{1}^{(k)}$ the set of paths in $\Gamma_{1}^{(k)}$ starting from a base point $\bar{x} \in V\left(\Gamma_{1}^{(k)}\right)$ and ending in points of $V\left(\Gamma_{1}^{(k)}\right)$. Then $T_{1}^{(k)}$ can be regarded as a subtree of T. We take an arbitrary adjacent pair $x, y \in V\left(T_{1}^{(k)}\right)$. We have Puiseux expansions at $z=\lambda$:

$$
\begin{align*}
& W_{x}(z)=c_{x}(z-\lambda)+(\text { higher degree terms }), \tag{3.1}\\
& W_{y}(z)=c_{y}(z-\lambda)+(\text { higher degree terms }), \tag{3.2}
\end{align*}
$$

where c_{x} and c_{y} are both positive as is seen from Lemma 1.2. In the same way we have

$$
\begin{equation*}
G(x, y \mid z)=\frac{c_{x, y}}{z-\lambda}+(\text { higher degree terms }) \tag{3.3}
\end{equation*}
$$

for $c_{x, y} \in \mathbb{R}$. Let $\left\{u_{j}(x)\right\}_{1 \leq j \leq M}, 1 \leq M \leq+\infty$, be an orthonormal system of λ-eigenfunctions for A. The matrix $\left(\left(c_{x, y}\right)\right)$ defines the projection operator from $l^{2}(T)$ onto the λ-eigenspace. Since $c_{x, x}=$ $1 / c_{x}$ and $c_{y, y}=1 / c_{y}$, we have

$$
\begin{equation*}
\frac{1}{c_{x}}=\sum_{j=1}^{M} u_{j}(x)^{2} \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{c_{y}}=\sum_{j=1}^{M} u_{j}(y)^{2}, \quad \text { and } \tag{3.5}
\end{equation*}
$$

$$
c_{x, y}=\sum_{j=1}^{M} u_{j}(x) \cdot u_{j}(y)
$$

The relation (1.6) shows that

$$
\begin{equation*}
\left\{\sum_{j=1}^{M} u_{j}(x) \cdot u_{j}(y)\right\}^{2}=\sum_{j=1}^{M} u_{j}(x)^{2} \cdot \sum_{j=1}^{M} u_{j}(y)^{2} \tag{3.7}
\end{equation*}
$$

As a result of the Schwarz inequality, this implies that the two M dimensional vectors $\left\{u_{j}(x)\right\}_{1 \leq j \leq M}$ and $\left\{u_{j}(y)\right\}_{1 \leq j \leq M}$ are linearly dependent: $u_{j}(x)=t(x, y) u_{j}(y)$ for $t(x, y) \in \mathbb{R}$. Let $x \in V\left(T_{1}^{(k)}\right)$ be
an arbitrary point such that $G \cdot x=\bar{x} \in V\left(\Gamma_{1}^{(k)}\right)$. Applying the above relation successively we have

$$
\begin{equation*}
u_{j}(x)=t(x) \cdot u_{j}\left(x^{*}\right) \tag{3.8}
\end{equation*}
$$

for an arbitrary $x^{*} \in V\left(T_{1}^{(k)}\right)$ and j such that $u_{j}\left(x^{*}\right) \neq 0$, where $t(x)$ is a real function on $V\left(T_{1}^{(k)}\right)$ such that $\sum_{x \in V\left(T_{1}^{(k)}\right)} t(x)^{2}<+\infty$. But then

$$
\begin{equation*}
\sum_{j=1}^{M} \sum_{x \in V\left(T_{1}^{(k)}\right)} u_{j}(x)^{2}=\sum_{j=1}^{M} u_{j}\left(x^{*}\right)^{2} \cdot \sum_{x \in V\left(T_{1}^{(k)}\right)} t(x)^{2}<+\infty \tag{3.9}
\end{equation*}
$$

Suppose $\Gamma_{1}^{(k)}$ has a proper circuit. Then this represents a non-trivial action of an element g of G on T and it follows from [T] that g must have infinite order. Indeed, by [T], g has either infinite order or order 2. Now one has to verify that the second case is impossible: if $g^{2}=$ identity and the circuit is even then g fixes a vertex of T, in contradiction with fixed point-freeness. If the circuit is odd, then g inverts an edge $\overline{x, y}$ in T whose G-orbit lies on the circuit. But then $G \bar{x}, \bar{y}$ is a loop, in contradiction with properness of the circuit. Since $1 / c_{x}$ is invariant under this action: $1 / c_{x}=1 / c_{g \cdot x}$, we have

$$
\begin{equation*}
+\infty=\sum_{-\infty}^{+\infty} \frac{1}{c_{g} l_{1}} \leq \sum_{j=1}^{M} \sum_{x \in V\left(T_{1}^{(k)}\right)} u_{j}(x)^{2} \tag{3.10}
\end{equation*}
$$

which is finite from (3.9). This is a contradiction. Hence each $\Gamma_{1}^{(k)}$ has no proper circuit and it is a pseudo-tree. T_{1} is itself a disjoint union of pseudo-trees. Lemma 3.1 has thus been proved.

Lemma 3.2. Let $x \in V_{1}(\Gamma)$ and $y \in V_{-1}(\Gamma)$ which are adjacent to each other. We have Puiseux expansions at $z=\lambda$ for $W_{x}(z)$ as in (3.1) and for $W_{y}(z)$ as follows:

$$
\begin{equation*}
W_{y}(z)=\frac{c_{y}}{z-\lambda}+(\text { higher degree terms }) \tag{3.11}
\end{equation*}
$$

where $c_{y}<0$ from Lemma 1.2. Then

$$
\begin{gather*}
c_{x} \cdot c_{y} \leq-4 a_{x, y}^{2} \text { and } \tag{3.12}\\
b_{x, y}=-1 \pm \sqrt{1+\frac{4 a_{x, y}^{2}}{c_{x} \cdot c_{y}}}<0, \tag{3.13}
\end{gather*}
$$

where we take the positive root $\sqrt{ }$ in the right hand side.

Proof. From Lemma 1.4, for $\operatorname{Im} z>0$,

$$
\begin{align*}
& \operatorname{Im}\left(-W_{x}+\sqrt{W_{x}^{2}+4 a_{x, y}^{2} W_{x} / W_{y}}\right) \tag{3.14}\\
& =\operatorname{Im}\left\{c_{x}\left(-1 \pm \sqrt{1+4 a_{x, y}^{2} /\left(c_{x} c_{y}\right)}\right)(z-\lambda)\right. \\
& \quad+(\text { higher degree terms })\}<0 .
\end{align*}
$$

c_{x} being positive, $-1 \pm \sqrt{1+4 a_{x, y}^{2} /\left(c_{x} c_{y}\right)}$ must be negative, i.e.

$$
\begin{equation*}
0 \leq \sqrt{1+4 a_{x, y}^{2} /\left(c_{x} c_{y}\right)}<1 \tag{3.15}
\end{equation*}
$$

Lemma 3.2 has thus been proved.
We shall denote by $\varepsilon_{x, y}$ the sign \pm appearing in the right hand side of (3.14). Note that $\varepsilon_{x, y}$ is symmetric in x, y from Lemma 1.3.

In the sequel, whenever we speak of a sum $\sum_{\langle x, y\rangle}$, where $x \in$ $V(\Gamma)$, the sum refers to all edges from x to y, each carrying the weight inherited from T.

Lemma 3.3. Suppose $x \in V_{1}(\Gamma)=V\left(\Gamma_{1}\right)$. Then there is no $y \in$ $V_{\rho}(\Gamma)$ adjacent to x in Γ for $-1<\rho<1$.

Proof. W_{x} has a Puiseux expansion (3.1). Suppose that there exists one $y \in V_{\rho}(\Gamma),-1<\rho<1$, which is adjacent to x. Let α be the greatest exponent among these ρ. Then comparing the constant term and the term $(z-\lambda)^{(1-\alpha) / 2}$ respectively, we have from (\mathscr{E})

$$
\begin{equation*}
\lambda-a_{x, x}=\sum_{\substack{\langle x, y\rangle \\ y \in V_{1}(\Gamma)}} \varepsilon_{x, y} a_{x, y} \sqrt{c_{x} / c_{y}} \tag{3.16}
\end{equation*}
$$

$$
\begin{equation*}
0=\sum_{\substack{\langle x, y\rangle \\ y \in V_{a}(\Gamma)}} \varepsilon_{x, y} a_{x, y} \sqrt{c_{x} / c_{y}}(z-\lambda)^{(1-\alpha) / 2} \tag{3.17}
\end{equation*}
$$

Here we take $\sqrt{c_{x} / c_{y}}$ as positive. Since, as a result of Lemma 1.4, the imaginary part of each term in the right hand side satisfies

$$
\begin{equation*}
\operatorname{Im}\left\{\varepsilon_{x, y} a_{x, y} \sqrt{c_{x} / c_{y}}(z-\lambda)^{(1-\alpha) / 2}\right\}<0 \tag{3.18}
\end{equation*}
$$

for $\operatorname{Im} z>0$, which is a contradiction to (3.17). Hence the set of $y \in V_{\alpha}(\Gamma)$ which is adjacent to x must be empty. Namely there is no $y \in V_{\rho}(\Gamma),-1<\rho<1$, which is adjacent to x.

Therefore for $x \in V_{1}(\Gamma)$, the equation (\mathscr{E}) becomes

$$
\begin{align*}
z- & W_{x}-a_{x, x} \tag{3.19}\\
& =\frac{1}{2} \sum_{\substack{\langle x, y\rangle \\
y \in V_{1}(\Gamma) \cup V_{-1}(\Gamma)}}\left(-W_{x}+\sqrt{\left.W_{x}^{2}+4 a_{x, y}^{2} W_{x} / W_{y}\right)} .\right.
\end{align*}
$$

Comparing the term $z-\lambda$, we have

$$
\begin{align*}
1-c_{x}= & \frac{1}{2} \sum_{\substack{\langle x, y\rangle \\
y \in V_{-1}(\Gamma)}}\left(-c_{x}+\varepsilon_{x, y} c_{x} \sqrt{1+4 a_{x, y}^{2} /\left(c_{x} c_{y}\right)}\right) \tag{3.20}\\
& +\frac{1}{2} \sum_{\substack{\langle x, y\rangle \\
y \in V_{1}(\Gamma)}}\left\{-c_{x}+2 \varepsilon_{x, y} a_{x, y} \sqrt{c_{x} / c_{y}}\left(\frac{c_{x}^{\prime}}{c_{x}}-\frac{c_{y}^{\prime}}{c_{y}}\right)\right\}
\end{align*}
$$

where $c_{x}^{\prime}(z-\lambda)^{2}$ denotes the quadratic term in the Puiseux expansion of $W_{x}(z) \cdot(3.20)$ is reexpressed as

$$
\begin{align*}
\frac{1}{c_{x}}-1= & \frac{1}{2} \sum_{\substack{\langle x, y\rangle \\
y \in V_{-1}(\Gamma)}}\left(-1+\varepsilon_{x, y} \sqrt{1+4 a_{x, y}^{2} /\left(c_{x} c_{y}\right)}\right) \tag{3.21}\\
& +\frac{1}{2} \sum_{\substack{\langle x, y\rangle \\
y \in V_{1}(\Gamma)}}\left\{-1+\varepsilon_{x, y} \frac{2 a_{x, y}}{\sqrt{c_{x} c_{y}}}\left(\frac{c_{x}^{\prime}}{c_{x}}-\frac{c_{y}^{\prime}}{c_{y}}\right)\right\} .
\end{align*}
$$

Summing up both sides over the vertices of $V_{1}(\Gamma)$ and seeing that the terms

$$
\varepsilon_{x, y} \frac{2 a_{x, y}}{\sqrt{c_{x} c_{y}}}\left(\frac{c_{x}^{\prime}}{c_{x}}-\frac{c_{y}^{\prime}}{c_{y}}\right)
$$

are alternating in x and y for the proper edges $\overline{x, y}$ of Γ_{1} (while they are zero for loops), we have that they cancel. We get

$$
\begin{equation*}
\sum_{x \in V_{1}(\Gamma)} \frac{1}{c_{x}}-N_{1}=\frac{1}{2} \sum_{\substack{x \in V_{1}(\Gamma), y \in V_{-1}(\Gamma) \\\langle x, y\rangle}} b_{x, y}-\left(N_{1}^{\prime}-\frac{1}{2} L_{1}\right) \tag{3.22}
\end{equation*}
$$

To compute the right hand side of (3.22), we observe
Lemma 3.4. Let $x \in V_{-1}(\Gamma)$. Then

$$
\begin{equation*}
\sum_{\substack{\langle x, y\rangle \\ y \in V_{1}(\Gamma)}} b_{x, y}=-2 . \tag{3.23}
\end{equation*}
$$

Proof. W_{γ} has a Puiseux expansion as in (3.11)

$$
\begin{equation*}
W_{x}=\frac{c_{x}}{z-\lambda}+(\text { higher degree terms }) \text { for } c_{x}<0 \tag{3.24}
\end{equation*}
$$

We compare the term $(z-\lambda)^{-1}$ in both sides of the equations (\mathscr{E}) and obtain

$$
\begin{align*}
-c_{x}= & \frac{1}{2} \sum_{\substack{\langle x, y\rangle \\
y \in V_{1}(\Gamma)}}\left(-c_{x}+\varepsilon_{x, y} c_{x} \sqrt{1+4 a_{x, y}^{2} /\left(c_{x} c_{y}\right)}\right) \tag{3.25}\\
& +\frac{1}{2} \sum_{-1 \leq \rho<1} \sum_{\substack{\langle x, y\rangle \\
y \in V_{\rho}(\Gamma)}}\left(-c_{x}+\varepsilon_{x, y} c_{x}\right)
\end{align*}
$$

i.e.,

$$
\begin{equation*}
-2=\sum_{\substack{\langle x, y\rangle \\ y \in V_{1}(\Gamma)}} b_{x, y}+\sum_{-1 \leq \rho<1} \sum_{\substack{\langle x, y\rangle \\ y \in V_{\rho}(\Gamma)}}\left(-1+\varepsilon_{x, y}\right) . \tag{3.26}
\end{equation*}
$$

Hence the sum

$$
\sum_{\substack{\langle x, y\rangle \\ y \in V_{1}(\Gamma)}} b_{x, y}
$$

must be an even integer at least equal to -2 . Since every $b_{x, y}$ is negative by Lemma 3.2, this sum is just equal to -2 . Lemma 3.4 has been proved.

Proof of Theorem 1. (i) follows from Lemma 3.1. (ii) follows from Lemma 3.3. (iii) is an immediate consequence of (3.22) and (3.23). Theorem 1 has thus been proved.

Proof of Theorem 2. We have only to show that there never occurs $N_{1}-\left(N_{1}^{\prime}-\frac{1}{2} L_{1}\right)-N_{-1}>0$ for any $\lambda \in \mathbb{R}$. Suppose λ is an eigenvalue of A. Let Γ_{1} be defined as at the beginning of the preceding section. For $x \in V_{1}(\Gamma)$, let $\operatorname{deg}(x)$ be the number of edges of Γ_{1} incident with x. Assume that $m(\geq 2)$ edges emanate from each vertex in T. Let
K be the number of edges between Γ_{1} and Γ_{-1}. Then $K \leq m N_{-1}$. On the other hand, according to Lemma 3.3,

$$
\begin{equation*}
K=\sum_{x \in V_{1}(\Gamma)}(m-\operatorname{deg}(x))=m N_{1}-\left(2 N_{1}^{\prime}-L_{1}\right) . \tag{3.27}
\end{equation*}
$$

Hence, $m N_{-1} \geq m N_{1}-2\left(N_{1}^{\prime}-\frac{1}{2} L_{1}\right) \geq m N_{1}-m\left(N_{1}^{\prime}-\frac{1}{2} L_{1}\right)$, and $N_{1}-\left(N_{1}^{\prime}-\frac{1}{2} L_{1}\right)-N_{-1} \leq 0$. Theorem 2 has thus been proved.

Remark 3. In order to show that A is point spectrum free, it is not sufficient that Γ is finite. The following example is very illuminating as a counter example.

Let Γ be a complete bipartite graph consisting of $(p+q)$ points $\{1,2, \cdots, p+q\}, p>q \geq 2$, such that each vertex $\{j\}, 1 \leq j \leq p$, is adjacent to the points $\{p+k\}, 1 \leq k \leq q$. We assume that $a_{j, p+k}=$ $a_{p+k, j}=1$, and other $a_{x, y}$ all vanish. The group of automorphisms G is isomorphic to the free group of $(p-1)(q-1)$ generators. Then the equations (\mathscr{E}) reduce to $W_{1}=\cdots=W_{p}, W_{p+1}=\cdots=W_{p+q}$ and

$$
\begin{align*}
& z-W_{1}=\frac{q}{2}\left(-W_{1}+\sqrt{W_{1}^{2}+4 W_{1} / W_{p+1}}\right), \tag{3.28}\\
& z-W_{p+1}=\frac{p}{2}\left(-W_{p+1}+\sqrt{W_{p+1}^{2}+4 W_{p+1} / W_{1}}\right), \tag{3.29}
\end{align*}
$$

i.e.,

$$
\begin{align*}
& \frac{z}{W_{1}}-1=\frac{q}{2}\left(-1+\sqrt{1+4 /\left(W_{1} W_{p+1}\right)}\right), \\
& \frac{z}{W_{p+1}}-1=\frac{p}{2}\left(-1+\sqrt{1+4 /\left(W_{1} W_{p+1}\right)}\right) .
\end{align*}
$$

Hence

$$
\begin{equation*}
\frac{1}{q} G(1,1 \mid z)-\frac{1}{p} G(p+1, p+1 \mid z)=\left(\frac{1}{q}-\frac{1}{p}\right) \frac{1}{z} \neq 0 \tag{3.30}
\end{equation*}
$$

This shows that $G(1,1 \mid z)$ or $G(p+1, p+1 \mid z)$ has a pole at $z=0.0$ is an eigenvalue. Indeed in Theorem 1 we have $V_{1}(\Gamma)=\{1,2, \cdots, p\}$ and $V_{-1}(\Gamma)=\{p+1, p+2, \cdots, p+q\}$ so that $N_{1}-N_{1}^{\prime}-N_{-1} \rightleftharpoons$ $p-q>0$. Hence

$$
\sum_{j=1}^{p} \frac{1}{c_{j}}=\frac{p}{c_{1}}=p-q, \quad \text { i. e. } \quad 1 / c_{1}=1-\frac{q}{p}>0
$$

The spectrum of A^{2} in this case coincides with a part of the one of an operator obtained from a random walk on a barycentric subdivision of polygonal graphs investigated by G. Kuhn-P. M. Soardi, J. FaraultM. A. Picardello or J. M. Cohen-A. R. Trenholme (see [Ku], [Fa] or [Co]). By using this result one can also compute the point spectrum of A as above. The author is indebted to the referee for having informed it to us. See also [B].

Question 2. Assume that Γ is fixed. It seems to be an interesting question to ask whether the existence of point spectrum really depends or not on the data $\left\{a_{x, y}\right\}_{x, y \in V(\Gamma)}$ under the conditions ($\mathscr{C} 1$) and (22).

Remark 4. A modified version of Theorems 1 and 2 is probably true even if the action of G is not necessarily free, provided the quotient $G \backslash T$ is finite. But the author does not know any answer.

Remark 5. Theorem 1 (iii) remains valid when T is a finite connected tree and A is a linear operator on $l^{2}(T)$ defined as in (1.1). In this case $W_{x}(z), x \in T$, are rational in z. Hence there occur only $V_{1}(T)$ and $V_{-1}(T)$. Theorem 1 can then be modified as follows:

Theorem 1a. For an eigenvalue λ of A, we denote by N_{1} and N_{-1} the numbers of $V_{1}(T)$ and $V_{-1}(T)$ respectively, and by N_{1}^{\prime} the number of edges in T connecting vertices in $V_{1}(T)$. Then

$$
\begin{equation*}
\sum_{x \in V(T)} \operatorname{Res}_{z=\lambda} G(x, x \mid z)=N_{1}-N_{1}^{\prime}-N_{-1} \tag{3.31}
\end{equation*}
$$

References

[Ak] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Vol 1, §82, Pitman, (1977)
[Ao1] K. Aomoto, Spectral theory on a free group and algebraic curves, J. Fac. Sci., Univ. of Tokyo, 31 (1984), 297-317.
[Ao2] __, Algebraic equations for Green kernel on a tree, Proc. Japan Acad., 64, Ser. A, No. 4 (1988).
[Ao3] _, Self-adjointness and limit pointness for adjacency operators on a tree, J. d'Anal. Math., 53 (1989), 219-232.
[B] F. Bouaziz-Kellil, Représentations sphériques des groupes agissant transitivement sur un arbre semi-homogène, Bull. Soc. Math. France, 116 (1988), 255278.
[Ca] T. Carleman, Sur les équations intégrales singulières à noyau réel et symétrique, Lundequistska Bokhandeln, Uppsala Univ. Årsskrift, 1923.
[Co] J. M. Cohen and A. R. Trenholme, Orthogonal polynomials with a constant recursion formula and an application to harmonic analysis, J. Funct. Anal., 59 (1984), 175-184.
[Cu] J. Cuntz, K-theoretic amenability for discrete groups, J. Reine Angew. Math., Bd. 344 (1983), 180-195.
[Fa] J. Farault and M. A. Picardello, The Plancherel measure for symmetric graphs, Ann. Mat. Pura Appl., 138 (1984), 151-155.
[Fi] A. Figà-Talamanca and T. Steger, Harmonic analysis for anisotropic random walks on a homogeneous tree, to appear in Mem. Amer. Math. Soc.
[H] M. Hashizume, Selberg trace formula for bipartite graphs, preprint 1987.
[I] W. Imrich, Subgroup theorems and graphs, in Combinatorial Math. V, Lecture Notes in Math., vol. 622 (1976), 1-27.
[Ko] T. Kobayashi, K. Ono and T. Sunada, Periodic Schrödinger operators on a manifold, Forum Mathematicum, 1 (1989), 69-79.
[Ku] G. Kuhn and P. M. Soardi, The Plancherel measure for polynomial graphs, Ann. Mat. Pura Appl., 134 (1983), 393-401.
[Mo1] P. van Moerbeke, The spectrum of Jacobi matrices, Invent. Math., 37 (1976), 45-81.
[Mo2] P. van Moerbeke and D. Mumford, The spectrum of difference operators and algebraic curves, Acta Math., 143 (1979), 93-154.
[Mo3] B. Mohar and W. Woess, A survey of spectra of infinite graphs, Bull. London Math. Soc., 21 (1989), 209-234.
[S] J. P. Serre, Trees, Springer, 1980.
[T] J. Tits, Sur le groupe des automorphismes d'un arbre, in Essays on Topology (Memoires dédiés à G. De Rham), Springer (1970), 188-211.

Received April 17, 1989 and in revised form January 18, 1990.
Nagoya University
NAGOYA 464, JAPAN

