THE p-PARTS OF BRAUER CHARACTER DEGREES IN p-SOLVABLE GROUPS

You-Qiang Wang

Abstract

Let G be a finite group. Fix a prime integer p and let e be the largest integer such that p^{e} divides the degree of some irreducible Brauer character of G with respect to the same prime p. The primary object of this paper is to obtain information about the structure of Sylow p-subgroups of a finite p-solvable group G in knowledge of e.

As applications, we obtain a bound for the derived length of the factor group of a solvable group G relative to its unique maximal normal p-subgroup in terms of the arithmetic structure of its Brauer character degrees and a bound for the derived length of the factor group of G relative to its Fitting subgroup in terms of the maximal integer e when p runs through the prime divisors of the order of G.

All groups considered are finite. Let G be a group and p be a prime. We denote by $\operatorname{IBr}_{p}(G)$ the set of irreducible Brauer characters of G with respect to the prime p. For the same prime p, let $e_{p}(G)$ be the largest integer e such that p^{e} divides $\varphi(1)$ for some $\varphi \in \operatorname{IBr}_{p}(G)$. Let P be a Sylow p-subgroup of G. Then the Sylow p-invariants of G are defined as follows:
(1) $b_{p}(G)$, where $p^{b_{p}(G)}$ is the order of P;
(2) $c_{p}(G)$, the class of P, that is, the length of the (upper or) lower central series of P;
(3) $d l_{p}(G)$, the length of the derived series of P;
(4) $e x_{p}(G)$, where $p^{e x_{p}(G)}$ is the exponent of P, that is, the greatest order of any element of P.

For a p-solvable group G, we let $l_{p}(G)$ and $r_{p}(G)$ denote the p length and p-rank (respectively) of G, i.e. $r_{p}(G)$ is the largest integer r such that p^{r} is the order of a p-chief factor of G.

We give a linear bound for $r_{p}\left(G / O_{p}(G)\right)$ and a logarithmic bound for $l_{p}\left(G / O_{p}(G)\right)$ in terms of $e_{p}(G)$. Then, using induction on $l_{p}\left(G / O_{p}(G)\right)$, we obtain bounds for $c_{p}\left(G / O_{p}(G)\right), d l_{p}\left(G / O_{p}(G)\right)$ and $e x_{p}\left(G / O_{p}(G)\right)$ in terms of $e_{p}(G)$.

As one application, we bound the derived length of $G / F(G)$ for a solvable group G in terms of $f(G)$, where

$$
f(G)=\max \left\{e_{p}(G)|p||G|\right\}
$$

and $F(G)$ is the Fitting subgroup of G.

1. p-rank and p-length. For p-solvable G, we bound in this section $r_{p}\left(G / O_{p}(G)\right)$ and $l_{p}\left(G / O_{p}(G)\right)$ in terms of $e_{p}(G)$.

Lemma 1.1. Let G have a nilpotent normal p-complement M and let $O_{p}(G)=1$. Then
(1) $b_{p}(G) \leq 2 e_{p}(G)$;
(2) if $|G|$ is odd, then $b_{p}(G) \leq e_{p}(G)$;
(3) if a Sylow p-subgroup of G is abelian, then $b_{p}(G) \leq e_{p}(G)$.

Proof. Let $\Phi(M)$ denote the Frattini subgroup of M. Since M is nilpotent, $M^{\prime} \leq \Phi(M)$ and hence $M / \Phi(M)$ is abelian (see Gorenstein [3, Chapter 6, Theorem 1.6]). Notice that $\Phi(M) \triangleleft G$. Consider the factor group $G / \Phi(M)$. Let P be a Sylow p-subgroup of G. Then

$$
G / \Phi(M)=M P / \Phi(M)=M / \Phi(M) \cdot P \Phi(M) / \Phi(M) .
$$

Write $G_{1}=G / \Phi(M), M_{1}=M / \Phi(M)$ and $P_{1}=P \Phi(M) / \Phi(M)$. Then M_{1} is an abelian normal p-complement of G_{1}, and $P_{1}=$ $P \Phi(M) / \Phi(M) \cong P / P \cap \Phi(M) \cong P$. By Huppert [5, Chapter 3, Satz 3.18], P acts faithfully on M_{1}, and hence P_{1} acts faithfully on M_{1}. Then $O_{p}\left(G_{1}\right)=1$ and P_{1} acts faithfully on $\operatorname{Irr}\left(M_{1}\right)$ which is an abelian p^{\prime}-group.

By Corollary 2.4 of Passman [16], there exists $\theta \in \operatorname{Irr}\left(M_{1}\right)$ such that $\left|I_{P_{1}}(\theta)\right| \leq\left|P_{1}\right|^{1 / 2}$. So $\left|P_{1}: I_{P_{1}}(\theta)\right| \geq\left|P_{1}\right|^{1 / 2}$. By Clifford's Theorem, $p^{e_{p}\left(G_{1}\right)} \geq\left|P_{1}\right|^{1 / 2}$. Since $\left|P_{1}\right|=|P|$ and $e_{p}(G) \geq e_{p}\left(G_{1}\right), 2 e_{p}(G) \geq$ $b_{p}(G)$. This gives (1).

If $|G|$ is odd or P is abelian, then we can apply Lemma 2.2 and Corollary 2.4 of Passman [16] to conclude that there exists $\theta \in \operatorname{Irr}\left(M_{1}\right)$ such that $I_{P_{1}}(\theta)=1$. By Clifford's Theorem, $\left|P_{1}\right| \leq p^{e_{p}\left(G_{1}\right)}$, that is, $b_{p}(G) \leq e_{p}\left(G_{1}\right)$. So (2) and (3) hold.

Lemma 1.2. Let G have a normal p-complement M and let $O_{p}(G)$ $=1$, where p is an odd prime. Let $M=M_{1} \times \cdots \times M_{n}$, where all M_{i} 's are isomorphic nonabelian simple groups. Then
(1) $b_{p}(G) \leq 2 e_{p}(G)$;
(2) if $e_{p}(G)=1$, then $b_{p}(G)=1$.

Proof. Let P be a Sylow p-subgroup of G. Notice that for any $x \in P$ and $M_{i}, x M_{i} x^{-1} \in\left\{M_{1}, \ldots, M_{n}\right\}$. We write $N_{i}=\operatorname{Stab}_{P}\left(M_{i}\right)$ and $C=\bigcap_{i=1}^{n} N_{i}$. Also, we let

$$
C_{i}=C_{C}\left(M_{i}\right)=\left\{x \in C \mid x y x^{-1}=y \text { for all } y \in M_{i}\right\}
$$

For each $i, C / C_{i} \leq \operatorname{Out}\left(M_{i}\right)$. By Lemma 1.3 of Gluck and Wolf [2], C / C_{i} is a cyclic p-group. Let $\Omega_{1}\left(C / C_{i}\right)=\left\langle x \in C / C_{i} \mid x^{p}=1\right\rangle$, then $\Omega_{1}\left(C / C_{i}\right)$ is a cyclic group of order p.

On the other hand, since C / C_{i} acts faithfully on M_{i} and since $p \nmid\left|M_{i}\right|, C / C_{i}$ acts faithfully on $\operatorname{Irr}\left(M_{i}\right)$ (see Isaacs [9, Theorem 6.32]). Thus

$$
\bigcap_{\theta \in \operatorname{Irr}\left(M_{t}\right)} C_{C / C_{t}}(\theta)=1
$$

So, there exists some $\theta_{i} \in \operatorname{Irr}\left(M_{i}\right)$ such that

$$
\Omega_{1}\left(C / C_{i}\right) \cap C_{C / C_{i}}\left(\theta_{i}\right)=1
$$

This forces that $C_{C / C_{i}}\left(\theta_{i}\right)=1$, that is, $C_{C}\left(\theta_{i}\right)=\mathcal{C}_{i}$.
Let $\theta=\theta_{1} \times \cdots \times \theta_{n}$. Then $\theta \in \operatorname{Irr}(M)=\operatorname{IBr}_{p}(M)$ and $I_{C}(\theta)=$ $\bigcap_{i=1}^{n} C_{C}\left(\theta_{i}\right)=\bigcap_{i=1}^{n} C_{i}$. Since P acts faithfully on $M, \bigcap_{i=1}^{n} C_{i}=1$, and hence $I_{C}(\theta)=1$. Since $C \triangleleft P, M C \triangleleft G$ and hence $e_{P}(M C) \leq$ $e_{p}(G)$. Applying Clifford's Theorem to the group $M C$, we have $|C|=$ $\left|C: I_{C}(\theta)\right| \leq p^{e_{p}(M C)}$. Hence

$$
\begin{equation*}
|C| \leq p^{e_{p}(G)} \tag{A}
\end{equation*}
$$

On the other hand, P / C is a permutation group on the set $\left\{M_{1}, \ldots\right.$, $\left.M_{n}\right\}$ and p is an odd prime. So, by Corollary 1 of Gluck [1], we may assume without loss of generality that $\operatorname{Stab}_{P / C}\left\{M_{1}, \ldots, M_{t}\right\}=1$, that is $\operatorname{Stab}_{P}\left\{M_{1}, \ldots, M_{t}\right\}=C$ for some suitable $t \in\{1, \ldots, n\}$.

Choose $\theta_{j} \in \operatorname{Irr}\left(M_{j}\right)$ with $\theta_{j} \neq 1, j=1, \ldots, t$. Let $\theta=$ $\theta_{1} \times \cdots \times \theta_{t} \times 1 \times \cdots \times 1$. Then $\theta \in \operatorname{Irr}(M)=\operatorname{IBr}_{p}(M)$ and $I_{P}(\theta) \leq \operatorname{Stab}_{p}\left\{M_{1}, \ldots, M_{t}\right\}=C$. Applying Clifford's Theorem to the group G, we get $\left|P: I_{P}(\theta)\right| \leq p^{e_{p}(G)}$. Hence

$$
\begin{equation*}
|P: C| \leq p^{e_{p}(G)} \tag{B}
\end{equation*}
$$

Combining (A) with (B), we obtain $|P| \leq p^{2 e_{p}(G)}$. This gives (1).
Suppose that $e_{p}(G)=1$. By (A) and (B), we know that $|C| \leq p$ and $|P: C| \leq p$.

In the following, we want to show that either $C=P$ or $C=1$. Assume not. Then we have $|C|=p$ and $|P|=p^{2}$.

Since P acts faithfully on M, C acts faithfully on M. Since $|C|=p$, there exists some M_{k} such that $C_{k}=C_{C}\left(M_{k}\right)=1$, that is, C acts faithfully on M_{k}. Thus C acts faithfully on $\operatorname{Irr}\left(M_{k}\right)$. Hence there exists some $\theta_{k} \in \operatorname{Irr}\left(M_{k}\right)$ such that $\theta_{k} \neq 1$ and $C_{C}\left(\theta_{k}\right)=1$.

Since $\operatorname{Stab}_{p}\left\{M_{t+1}, \ldots, M_{n}\right\}=\operatorname{Stab}_{p}\left\{M_{1}, \ldots, M_{t}\right\}$, we may assume without loss of generality that $k=1$. Choose $\theta_{j} \in \operatorname{Irr}\left(M_{j}\right)$ with $\theta_{j} \neq 1, j=2, \ldots, t$. Let $\theta=\theta_{1} \times \theta_{2} \times \cdots \times \theta_{t} \times 1 \times \cdots \times 1$. Then $\theta \in \operatorname{Irr}(M)=\operatorname{IBr}_{p}(M)$ and $I_{P}(\theta) \leq \operatorname{Stab}_{P}\left\{M_{1}, \ldots, M_{t}\right\}=C$. So $I_{P}(\theta)=I_{C}(\theta)=\bigcap_{i=1}^{t} C_{C}\left(\theta_{i}\right)=1$ (because of $C_{C}\left(\theta_{1}\right)=1$). Thus there exists $\theta \in \operatorname{Irr}(M)=\operatorname{IBr}_{p}(M)$ such that $I_{P}(\theta)=1$. By Clifford's Theorem, $|P|=\left|P: I_{P}(\theta)\right| \leq p$. This contradicts to $|P|=p^{2}$. So (2) holds.

Theorem 1.3. Let G be p-solvable. Then

$$
r_{p}\left(G / O_{p}(G)\right) \leq 2 e_{p}(G) .
$$

Proof. By induction on $|G|$, we may assume without loss of generality that $O_{p}(G)=1$.

If $p=2$, then G is solvable, and we are done by Manz and Wolf [13, Theorem 2.3]. In the following, we assume that p is an odd prime.

Let M be a minimal normal subgroup of G and let $N / M=$ $O_{p}(G / M)$. By the inductive hypothesis, we may assume that $N / M \neq$ 1.

Since G is p-solvable and $O_{p}(G)=1$, we have the following two cases:

Case 1. M is an elementary abelian q-group for some prime $q \neq p$;
Case 2. M Is the direct product of isomorphic nonabelian simple p^{\prime}-group.

Consider the group N. Notice that $M=O_{p^{\prime}}(N)$ and $O_{p}(N)=1$. Applying Lemma 1.1 (1) and Lemma 1.2 (1) to the group N, we get $b_{p}(N) \leq 2 e_{p}(N)$. Since $N \triangleleft G, e_{p}(N) \leq e_{p}(G)$ by Clifford's Theorem. Hence $b_{p}(N) \leq 2 e_{p}(G)$.

By the inductive hypothesis, the p-rank $r_{p}(G / N)$ of G / N does not exceed $2 e_{p}(G / N) \leq 2 e_{p}(G)$. Since $r_{p}(G) \leq \max \left\{r_{p}(G / N), b_{p}(N)\right\}$, $r_{p}(G) \leq 2 e_{p}(G)$.

By using Lemma 1.1 (2) instead of Lemma 1.1 (1), the same proof yields the following improvement for groups of odd order.

Theorem 1.4. Let G be a group of odd order. Then

$$
r_{p}\left(G / O_{p}(G)\right) \leq e_{p}(G)
$$

We note that Theorem 1.3 and Theorem 1.4 improve Theorem 2.1 of Manz [12], by the Fong-Swan Theorem.

Theorem 1.5. Let G be solvable and $e_{p}(G)<p$. Then

$$
r_{p}\left(G / O_{p}(G)\right) \leq e_{p}(G)
$$

Proof. By induction on $|G|$, we may assume without loss of generality that $O_{p}(G)=1$.

Let M be a minimal normal subgroup of G and let $N / M=$ $O_{p}(G / M)$. By the inductive hypothesis, we may assume that $N / M \neq$ 1. Since $O_{p}(G)=1, M$ is an elementary abelian q-group with $q \neq p$.

Consider the group N. Since $N \triangleleft G$ and $O_{p}(G)=1, O_{p}(N)=$ 1. Notice that N has a normal p-complement M and $e_{p}(N) \leq$ $e_{p}(G)<p$.

Let P be a Sylow p-subgroup of N. Since $O_{p}(N)=1, P$ acts faithfully on M by conjugation. Hence P acts faithfully on $\operatorname{Irr}(M)$. Since M is an elementary abelian q-group, $\operatorname{Irr}(M)$ is an abelian q-group. Let $\Omega_{1}, \ldots, \Omega_{n}$ be the P-orbits of $\operatorname{Irr}(M)$ and $p^{f}=$ $\max \left\{\left|\Omega_{1}\right|, \ldots,\left|\Omega_{n}\right|\right\}$. We may assume without loss of generality that $\left|\Omega_{1}\right|=p^{f}$. Let $\theta_{1} \in \Omega_{1}$. Applying Clifford's Theorem to the group N, we get $\left|\Omega_{1}\right|=\left|P: I_{P}\left(\theta_{1}\right)\right| \leq p^{e_{p}(N)}$. So $\left|\Omega_{1}\right|<p^{p}$. By Corollary 2.4 of Passman [16], there exists $\theta \in \operatorname{Irr}(M)$ such that $I_{P}(\theta)=1$. We apply Clifford's Theorem to conclude that $|P|=\left|P: I_{P}(\theta)\right| \leq p^{e_{p}(N)}$. So $b_{p}(N) \leq e_{p}(N)$, and hence $b_{p}(N) \leq e_{p}(G)$.

By the inductive hypothesis, the p-rank $r_{p}(G / N)$ of G / N does not exceed $e_{p}(G / N) \leq e_{p}(G)$. Since $r_{p}(G) \leq \max \left\{r_{p}(G / N), b_{p}(N)\right\}$, $r_{p}(G) \leq e_{p}(G)$.

Recall that the rank $r(G)$ of G is the maximum dimension of all chief-factors of G and $f(G)=\max \left\{e_{p}(G)|p \| G|\right\}$.

Corollary 1.6. Let G be solvable. Then
(1) $r(G / F(G)) \leq 2 f(G)$;
(2) if $|G|$ is odd, then $r(G / F(G)) \leq f(G)$.

Proof. Let p be a prime number such that $p||G|$. Then, by Theorem 1.3 and Theorem 1.4, $r_{p}\left(G / O_{p}(G)\right) \leq 2 e_{p}(G) \leq 2 f(G)$, and if $|G|$ is odd, $r_{p}\left(G / O_{p}(G)\right) \leq e_{p}(G) \leq f(G)$. Since $O_{p}(G) \leq F(G)$,
this yields that $r(G / F(G)) \leq 2 f(G)$, and if $|G|$ is odd, $r(G / F(G)) \leq$ $f(G)$.

Combining Wolf [17, Theorem 2.3] with Theorem 1.3, we have
Theorem 1.7. Let G be p-solvable. Then
(1) $l_{p}\left(G / O_{p}(G)\right) \leq 1+\log _{p}\left(2 e_{p}(G)\right)$ if p is not a Fermat prime; and
(2) $l_{p}\left(G / O_{p}(G)\right) \leq 2+\log _{s}\left(2 e_{p}(G) /(p-1)\right)$ where $s=\left(p^{2}-p+1\right) / p$.
2. Sylow p-invariants. In this section, we bound $c_{p}\left(G / O_{p}(G)\right)$, $d l_{p}\left(G / O_{p}(G)\right)$ and $e x_{p}\left(G / O_{p}(G)\right)$ for a p-solvable group G in terms of $e_{p}(G)$. In particular, we show that if $e_{p}(G)=1$, then a Sylow p-subgroup of $G / O_{p}(G)$ is elementary abelian. We also give bounds for $b_{p}\left(G / O_{p}(G)\right)$.

Lemma 2.1. Let G have a normal p-complement and let $O_{p}(G)=$ 1. Then
(1) $d l_{p}(G) \leq e_{p}(G)$;
(2) $e x_{p}(G) \leq e_{p}(G)$;
(3) $c_{p}(G) \leq p^{e_{p}(G)-1}$.

Proof. Let P be a Sylow p-subgroup of G and let H be the normal p-complement of G. Then P acts faithfully on $\operatorname{Irr}(H)$.

Write $\Omega=\operatorname{Irr}(H)$. Let $\Omega_{1}, \ldots, \Omega_{n}$ be the P-orbits of Ω. Then P acts transitively on each Ω_{i}. Let $\varphi_{i}: P \rightarrow S\left(\Omega_{i}\right)$ be the homomorphism induced by the action, where $S\left(\Omega_{i}\right)$ is the permutation group on Ω_{i}. Then we can define a homomorphism from P into the direct product

$$
S\left(\Omega_{1}\right) \times \cdots \times S\left(\Omega_{n}\right)
$$

as follows:

$$
\begin{aligned}
& \varphi: P \rightarrow S\left(\Omega_{1}\right) \times \cdots \times S\left(\Omega_{n}\right), \\
& \varphi(x)=\left(\varphi_{1}(x), \ldots, \varphi_{n}(x)\right), \quad x \in P .
\end{aligned}
$$

Since P acts faithfully on $\Omega, \operatorname{Ker} \varphi=1$, and hence φ is an injection? By the definition of φ, we know that

$$
P \cong \varphi(P) \leq \varphi_{1}(P) \times \cdots \times \varphi_{n}(P),
$$

where each $\varphi_{i}(P) \leq S\left(\Omega_{i}\right)$ is a p-group.

Since $d l\left(\varphi_{i}(P)\right) \leq d l(P), \max \left\{d l\left(\varphi_{i}(P)\right): i=1, \ldots, n\right\} \leq d l(P)$. On the other hand, we have that

$$
\begin{aligned}
d l(P) & =d l(\varphi(P)) \\
& \leq d l\left(\varphi_{1}(P) \times \cdots \times \varphi_{n}(P)\right) \\
& =\max \left\{d l\left(\varphi_{i}(P)\right): i=1, \ldots, n\right\} .
\end{aligned}
$$

Hence, $d l_{p}(G)=\max \left\{d l\left(\varphi_{i}(P)\right): i=1, \ldots, n\right\}$. Similarly,

$$
e x_{p}(G)=\max \left\{e x_{p}\left(\varphi_{i}(P)\right): i=1, \ldots, n\right\},
$$

and

$$
c_{p}(G)=\max \left\{c_{p}\left(\varphi_{i}(P)\right): i=1, \ldots, n\right\} .
$$

Let $p^{f}=\max \left\{\left|\Omega_{i}\right|: i=1, \ldots, n\right\}$. We may assume without loss of generality that $\left|\Omega_{1}\right|=p^{f}$. By Huppert [5, Chapter 3, Satz 15.3], $d l_{p}(G) \leq f, e x_{p}(G) \leq f$ and $c_{p}(G) \leq p^{f-1}$. Choose $\theta \in \Omega_{1}$. By Clifford's Theorem, $\left|\Omega_{1}\right|=\left|P: I_{P}(\theta)\right| \leq p^{e_{\rho}(G)}$. So $f \leq e_{p}(G)$. Thus the conclusions (1)-(3) hold.

Theorem 2.2. Let G be p-solvable. Then
(1) $d l_{p}\left(G / O_{p}(G)\right) \leq l_{p}\left(G / O_{p}(G)\right) e_{p}(G)$;
(2) $e x_{p}\left(G / O_{p}(G)\right) \leq l_{p}\left(G / O_{p}(G)\right) e_{p}(G)$;
(3) $c_{p}\left(G / O_{p}(G)\right) \leq l_{p}\left(G / O_{p}(G)\right) p^{e_{p}(G)-1}$.

Proof. Since $e_{p}(G)=e_{p}\left(G / O_{p}(G)\right)$, we may assume without loss of generality that $O_{p}(G)=1$. We use induction on $l_{p}(G)$.

Write $E=O_{p^{\prime}}(G)$ and $M=O_{p^{\prime}, p}(G)$. Since $O_{p}(G)=1, O_{p}(M)=$ 1. Clearly, M has a normal p-complement E. Thus, by Lemma 2.1, we have that

$$
d l_{p}(M) \leq e_{p}(M), \quad e x_{p}(M) \leq e_{p}(M), \quad \text { and } \quad c_{p}(M) \leq p^{e_{p}(M)-1}
$$

Since $M \triangleleft G, e_{p}(M) \leq e_{p}(G)$. Hence,

$$
\text { (A) } \quad d l_{p}(M) \leq e_{p}(G), \quad e x_{p}(M) \leq e_{p}(G), \quad c_{p}(M) \leq p^{e_{p}(G)-1}
$$

Since $M=O_{p^{\prime}, p}(G), O_{p}(G / M)=1$ and $l_{p}(G / M)=l_{p}(G)-1$. Then the induction yields that

$$
\begin{aligned}
d l_{p}(G / M) & \leq l_{p}(G / M) e_{p}(G / M), \\
\operatorname{ex}_{p}(G / M) & \leq l_{p}(G / M) e_{p}(G / M), \quad \text { and } \\
c_{p}(G / M) & \leq l_{p}(G / M) p_{p}^{e_{p}(G / M)-1} .
\end{aligned}
$$

Hence, (B)

$$
\begin{aligned}
d l_{p}(G / M) & \leq\left(l_{p}(G)-1\right) e_{p}(G), \\
e x_{p}(G / M) & \leq\left(l_{p}(G)-1\right) e_{p}(G), \\
c_{p}(G / M) & \leq\left(l_{p}(G)-1\right) p_{p}^{e_{p}(G)-1} .
\end{aligned}
$$

$\mathrm{By}(\mathrm{A})$ and (B), we have the conclusions.
Combining Theorem 1.7 with Theorem 2.2, we have
Corollary 2.3. Let G be p-solvable. Then
(1) if p is not a Fermat prime, then

$$
\begin{aligned}
d l_{p}\left(G / O_{p}(G)\right) & \leq\left(1+\log _{p}\left(2 e_{p}(G)\right)\right) e_{p}(G), \\
e x_{p}\left(G / O_{p}(G)\right) & \leq\left(1+\log _{p}\left(2 e_{p}(G)\right)\right) e_{p}(G), \\
c_{p}\left(G / O_{p}(G)\right) & \leq\left(1+\log _{p}\left(2 e_{p}(G)\right)\right) p_{p}^{e_{p}(G)-1}
\end{aligned}
$$

(2) if p is a Fermat prime, then

$$
\begin{aligned}
d l_{p}\left(G / O_{p}(G)\right) & \leq\left(2+\log _{s}\left(2 e_{p}(G) /(p-1)\right)\right) e_{p}(G), \\
e x_{p}\left(G / O_{p}(G)\right) & \leq\left(2+\log _{s}\left(2 e_{p}(G) /(p-1)\right)\right) e_{p}(G), \\
c_{p}\left(G / O_{p}(G)\right) & \leq\left(2+\log _{s}\left(2 e_{p}(G) /(p-1)\right)\right) p_{p}^{e_{p}(G)-1},
\end{aligned}
$$

where $s=\left(p^{2}-p+1\right) / p$.
In the rest of this section, we give some improvements on the bounds we just got for the cases $e_{p}(G)=1,2$ and $e_{p}(G)<p$.

Corollary 2.4. Let G be solvable and $e_{p}(G)<p$. Then
(1) if p is not a Fermat prime, then

$$
\begin{aligned}
d l_{p}\left(G / O_{p}(G)\right) & \leq e_{p}(G), \\
e x_{p}\left(G / O_{p}(G)\right) & \leq e_{p}(G), \\
c_{p}\left(G / O_{p}(G)\right) & \leq p^{e_{p}(G)-1} ;
\end{aligned}
$$

(2) if p is a Fermat prime, then

$$
\begin{aligned}
d l_{p}\left(G / O_{p}(G)\right) & \leq 2 e_{p}(G), \\
e x_{p}\left(G / O_{p}(G)\right) & \leq 2 e_{p}(G), \\
c_{p}\left(G / O_{p}(G)\right) & \leq 2 p_{p}^{e_{p}(G)-1} .
\end{aligned}
$$

Proof. By Theorem 1.5 and Wolf [17, Theorem 2.3], $l_{p}\left(G / O_{p}(G)\right) \leq$ $1+\log _{p}\left(e_{p}(G)\right)$, if p is not a Fermat prime; and $l_{p}\left(G / O_{p}(G)\right) \leq 2+$ $\log _{s}\left(e_{p}(G) /(p-1)\right)$, if p is a Fermat prime, where $s=\left(p^{2}-p+1\right) / p$. Since $e_{p}(G)<p, l_{p}\left(G / O_{p}(G)\right) \leq 1$, if p is not a Fermat prime; and
$l_{p}\left(G / O_{p}(G)\right) \leq 2$, if p is a Fermat prime. Hence the conclusions follow from Theorem 2.2.

For a group G, Michler [14] and Okuyama [15] show that if $e_{p}(G)=$ 0 , then G has a normal Sylow p-subgroup. The assertion for p solvable groups is elementary and well-known.

Theorem 2.5. Let G be p-solvable and $e_{p}(G)=1$. Then

$$
r_{p}\left(G / O_{p}(G)\right) \leq 1
$$

Proof. The case $p=2$ is done by Theorem 1.5. In the following, we assume that p is an odd prime. By induction on $|G|$, we may assume without loss of generality that $O_{p}(G)=1$.

Let M be a minimal normal subgroup of G and $N / M=O_{p}(G / M)$. By the inductive hypothesis, we may assume that $N / M \neq 1$. Since G is p-solvable and $O_{p}(G)=1$, we have the following two cases:

Case 1. M is an elementary abelian q-group for some prime $q \neq p$.

Case 2. M is the direct product of isomorphic nonabelian simple p^{\prime}-groups.

Consider the group N. Since $N \triangleleft G$ and $O_{p}(G)=1, O_{p}(N)=1$. Then $1 \leq e_{p}(N) \leq e_{p}(G)=1$. Thus $e_{p}(N)=1$. Notice that N has a normal p-complement M. By Lemma $2.1, N / M$ is an abelian p-group. Applying Lemma 1.1 (3) and Lemma 1.2 (2) to the group N, we get $b_{p}(N)=1$.

By the inductive hypothesis, the p-rank $r_{p}(G / N) \leq 1$. Since $r_{p}(G)$ $\leq \max \left\{r_{p}(G / N), b_{p}(N)\right\}, r_{p}(G) \leq 1$.

Since $l_{p}(G) \leq r_{p}(G)$ (see Huppert [5, Chapter 6, Hauptsatz 6.6 (c)]), we get the following corollary by combining Theorem 2.2 with Theorem 2.5.

Corollary 2.6. Let G be p-solvable and $e_{p}(G)=1$. Then a Sylow p-subgroup of $G / O_{p}(G)$ is an elementary abelian p-group.

For $e_{p}(G)=2$, there is no general result similar to Corollary 2.6. Let $G=S_{3} \mathrm{wr} Z_{2}$. Then $e_{2}(G)=2$ and $O_{2}(G)=1$. The Sylow 2-subgroup of G is Z_{2} wr Z_{2}, which is not abelian.

However, for solvable groups, we have the following corollary.

Corollary 2.7. Let G be solvable and $e_{p}(G)=2$ with $p \geq 5$. Then
(1) $d l_{p}\left(G / O_{p}(G)\right) \leq 2$;
(2) $e x_{p}\left(G / O_{p}(G)\right) \leq 2$;
(3) $c_{p}\left(G / O_{p}(G)\right) \leq p$.

Proof. For $p \geq 5$, by Theorem 1.5 and Wolf [17, Theorem 2.3], $l_{p}\left(G / O_{p}(G)\right) \leq 1$ if $e_{p}(G)=2$. Hence the conclusions follow from Theorem 2.2.

In closing this section, we include the following remark, which tells us that logarithmic bounds for the Sylow p-invariants of $G / O_{p}(G)$ in terms of $e_{p}(G)$ are probably the best bounds we can expect.

Remark 2.8. Fix a prime p. Let $G_{0} \neq 1$ be a p^{\prime}-group. We construct groups by iterated wreath products as follows: let $G_{1}=$ $G_{0} \mathrm{wr} Z_{p}$ and $G_{2}=G_{1} \mathrm{wr} Z_{p}$. Following this way, we have $G_{n}=$ G_{n-1} wr Z_{p} for any natural number n.

By Hall and Higman [4, Lemma 3.5.1], $d l_{p}\left(G_{n}\right)=\operatorname{exx}_{P}\left(G_{n}\right)=n$. Since $O_{p}\left(G_{1}\right)=1$ and $\left|G_{1}\right|_{p}=p, e_{p}\left(G_{1}\right)=1$. In the following, we use an induction argument on n to show that

$$
p^{n-1} \leq e_{p}\left(G_{n}\right) \leq\left(p^{n}-1\right) /(p-1)
$$

Suppose that $p^{n-2} \leq e_{p}\left(G_{n-1}\right) \leq\left(p^{n-1}-1\right) /(p-1)$. By the definition of $G_{n}, G_{n}=\left(G_{n-1} \times \underset{p \text {-times }}{\ldots} \times G_{n-1}\right) \rtimes Z_{p}$. Let $H_{n}=$ $G_{n-1} \times \underset{p \text {-times }}{\ldots} \times G_{n-1}$. Then $H_{n} \triangleleft G_{n}$ and $e_{p}\left(H_{n}\right)=p e_{p}\left(G_{n-1}\right)$. Hence $p^{n-1} \leq e_{p}\left(H_{n}\right) \leq e_{p}\left(G_{n}\right)$. In particular, $p^{n-1} \leq e_{p}\left(G_{n}\right)$.

On the other hand, let $\varphi \in \operatorname{IBr}_{p}\left(G_{n}\right)$ such that $\varphi(1)=p^{e_{p}\left(G_{n}\right)} m$. Choose $\theta \in \operatorname{IBr}_{p}\left(H_{n}\right)$ such that $\varphi \in \operatorname{IBr}_{p}\left(G_{n} \mid \theta\right)$. By Clifford's Theorem, $\varphi(1)=e \theta(1)$ with a positive integer e. Also, by Lemma 3.2 of Isaacs [8], φ is an irreducible constituent of $\theta^{G_{n}}$. Thus $\varphi(1) \leq$ $\theta^{G_{n}}(1)=\left|G_{n}: H_{n}\right| \theta(1)=p \theta(1)$. So $0<e \leq p$. This yields that $e_{p}\left(G_{n}\right) \leq e_{p}\left(H_{n}\right)+1$. Hence $e_{p}\left(G_{n}\right) \leq p\left(p^{n-1}-1\right) /(p-1)+1=$ $\left(p^{n}-1\right) /(p-1)$.

Now we consider bounding the $b_{p}\left(G / O_{p}(G)\right)$ for a p-solvable group G in terms of $e_{p}(G)$.

Lemma 2.9. Let G have a solvable normal p-complement H and let $O_{p}(G)=1$. Then $b_{p}(G) \leq 2 d l(H) e_{p}(G)$.

Proof. We use an induction argument on $d l(H)$. Let P be a Sylow p-subgroup of G. Then P acts on H / H^{\prime} by conjugation. Let $Q=$ $C_{p}\left(H / H^{\prime}\right)$.

Since P / Q acts faithfully on $H / H^{\prime}, P / Q$ acts faithfully on $\operatorname{Irr}\left(H / H^{\prime}\right)$ which is an abelian p^{\prime}-group. By Corollary 2.4 of Passman [16], there exists $\theta \in \operatorname{Irr}\left(H / H^{\prime}\right)$ such that $\left|C_{P / Q}(\theta)\right| \leq|P / Q|^{1 / 2}$. So $\left|P / Q: C_{P / Q}(\theta)\right| \geq|P / Q|^{1 / 2}$. Consider $\theta \in \operatorname{Irr}(H)$ with $H^{\prime} \leq \operatorname{Ker} \theta$. By Clifford's Theorem, $\left|P: I_{p}(\theta)\right| \leq p_{p}^{e_{p}(G)}$. Since $\left|P: I_{P}(\theta)\right|=\mid P / Q$: $C_{P / Q}(\theta)\left|,|P / Q|^{1 / 2} \leq p^{e_{p}(G)}\right.$. Hence $\left.\log _{p}\right| P / Q \mid \leq 2 e_{p}(G)$. If $Q=1$, then we are done.

Next, we assume that $Q \neq 1$. We claim that Q acts faithfully on H^{\prime}. Assume not. We may assume without loss of generality that Q acts trivially on H^{\prime}. Since $Q=C_{P}\left(H / H^{\prime}\right), Q$ acts trivially on H / H^{\prime}. Since $(|Q|,|H|)=1, Q$ acts trivially on H (see Huppert [5, Chapter 3, Hilfssatz 13.3 (b)]). But since P acts faithfully on H, we must have $Q=1$. This contradicts to $Q \neq 1$.

Write $G_{1}=H^{\prime} Q$. Then G_{1} has a normal p-complement H^{\prime} and $O_{p}\left(G_{1}\right)=C_{Q}\left(H^{\prime}\right)=1$. Furthermore, we claim that $G_{1} \triangleleft G$. Since $H^{\prime} \triangleleft G$ and $Q \triangleleft P$, we only need to show that $h Q h^{-1} \subseteq H^{\prime} Q$ for all $h \in H$. Let $q \in Q=C_{p}\left(H / H^{\prime}\right)$. Then $q^{-1} h q h^{-1} \in H^{\prime}$. Hence $h q h^{-1} \in q H^{\prime} \subseteq Q H^{\prime}=H^{\prime} Q$. Thus $G_{1}=H^{\prime} Q \triangleleft G$. By Clifford's Theorem, $e_{p}\left(G_{1}\right) \leq e_{p}(G)$.

Since $d l\left(H^{\prime}\right)=d l(H)-1<d l(H)$, by induction, $\log _{p}|Q| \leq$ $2 d l\left(H^{\prime}\right) e_{p}\left(G_{1}\right)=2(d l(H)-1) e_{p}\left(G_{1}\right)$. Hence,

$$
\begin{aligned}
b_{p}(G) & =\log _{p}|P| \\
& =\log _{p}(|Q||P / Q|) \\
& =\log _{p}|Q|+\log _{p}|P / Q| \\
& \leq 2(d l(H)-1) e_{p}\left(G_{1}\right)+2 e_{p}(G) \\
& \leq 2(d l(H)-1) e_{p}(G)+2 e_{p}(G) \\
& =2 d l(H) e_{p}(G),
\end{aligned}
$$

which is the claim.
The following Lemma is a corollary of Lemma 1.1.
Lemma 2.10. Let G be solvable, $O_{p}(G)=1$ and P a Sylow p subgroup of G. Let G have a normal p-complement. Then

$$
b_{p}(G) \leq 2 e_{p}(F(G) P) .
$$

Proof. Since $O_{p}(G)=1$, the Fitting subgroup $F(G)$ is a p^{\prime}-group. By Huppert [5, Chapter 3, Satz 4.2], $C_{G}(F(G)) \leq F(G)$ and hence $C_{P}(F(G))=1$. Let $G_{1}=F(G) P$. Then G_{1} has a nilpotent normal p-complement $F(G)$ and $O_{p}\left(G_{1}\right)=C_{P}(F(G))=1$. By Lemma 1.1, $b_{p}\left(G_{1}\right) \leq 2 e_{p}\left(G_{1}\right)$. Since $b_{p}\left(G_{1}\right)=b_{p}(G), b_{p}(G) \leq 2 e_{p}(F(G) P)$.

To handle p-solvable groups with arbitrary p-length, we introduce the following definition.
Definition 2.11. For a prime p and a positive integer n, we define $\lambda_{p}(n)$ and $\beta_{p}(n)$ by

$$
\lambda_{p}(n)=\sum_{i=1}^{\infty}\left[n / p^{i}\right]
$$

and

$$
\beta_{p}(n)=\sum_{i=0}^{\infty}\left[n /(p-1) p^{i}\right] .
$$

Proposition 2.12. If p is a prime and n is a positive integer, then

$$
\lambda_{p}(n) \leq n-1 \quad \text { and } \quad \beta_{p}(n) \leq 2 n-1 .
$$

Proof. Since $\lambda_{p}(n) \leq(n-1) /(p-1), \lambda_{p}(n) \leq n-1$. Since $p \geq 2$, $2(p-1)^{2}-p \geq(p-1)^{2}-(p-1)$, and hence $2 n(p-1)^{2}-n p \geq$ $(p-1)^{2}-(p-1)$. So $(2 n-1) \geq\left(n p /(p-1)^{2}\right)-(1 /(p-1))$. Since $\beta_{p}(n) \leq\left(n p /(p-1)^{2}\right)-(1 /(p-1)), \beta_{p}(n) \leq 2 n-1$.

Theorem 2.13. Let G be p-solvable and $O_{p^{\prime}}(G)$ be solvable. Suppose that $O_{p}(G)=1$. Then
(1) $b_{p}(G) \leq 6 \operatorname{dl}\left(O_{p^{\prime}}(G)\right) e_{p}\left(O_{p^{\prime}, p}(G)\right)-1$; and
(2) $b_{p}(G) \leq 4 d l\left(O_{p^{\prime}}(G)\right) e_{p}\left(O_{p^{\prime}, p}(G)\right)-1$ unless p is a Fermat prime.

Proof. Write $E=O_{p^{\prime}}(G)$ and $M=O_{p^{\prime}, p}(G)$. Since $O_{p}(G)=1$, $O_{p}(M)=1$. Clearly, M has a solvable normal p-complement E. Thus $b_{p}(M) \leq 2 d l\left(O_{p^{\prime}}(G)\right) e_{p}\left(O_{p^{\prime}, p}(G)\right)$ by Lemma 2.9.

Let $b_{p}(M)=m$, hence $|M / E|=p^{m}$. By Wolf [17, Corollary 2.1], we have that
(1) $b_{p}(G) \leq m+\beta_{p}(m)$; and
(2) $b_{p}(G) \leq m+\lambda_{p}(m)$ unless p is a Fermat prime.

Applying Proposition 2.12, we obtain
(1) $b_{p}(G) \leq 3 m-1$; and
(2) $b_{p}(G) \leq 2 m-1$ unless p is a Fermat prime.

Since $m=b_{p}(M)$, we get
(1) $b_{p}(G) \leq 6 d l\left(O_{p^{\prime}}(G)\right) e_{p}\left(O_{p^{\prime}, p}(G)\right)-1$; and
(2) $b_{p}(G) \leq 4 d l\left(O_{p^{\prime}}(G)\right) e_{p}\left(O_{p^{\prime}, p}(G)\right)-1$ unless p is a Fermat prime.

Similarly, applying Lemma 2.10, we obtain the following Theorem.
Theorem 2.14. Let G be solvable, $O_{p}(G)=1$ and P a Sylow p-subgroup of $O_{p^{\prime}, p}(G)$. Then
(1) $b_{p}(G) \leq 6 e_{p}(F(G) P)-1$; and
(2) $b_{p}(G) \leq 4 e_{p}(F(G) P)-1$ unless p is a Fermat prime.
3. The derived length of solvable groups. Let $n=\prod_{i=1}^{k} p_{i}^{a_{i}}$ be the prime number decomposition of a natural number $n\left(a_{i} \neq 0\right)$. We define

$$
\omega(n)=\sum_{i=1}^{k} a_{i}
$$

For a group G, we let

$$
\omega(G)=\max \{\omega(\chi(1)) \mid \chi \in \operatorname{Irr}(G)\}
$$

and

$$
\omega_{p}(G)=\max \left\{\omega(\varphi(1)) \mid \varphi \in \operatorname{IBr}_{p}(G)\right\}
$$

Recall that $f(G)=\max \left\{e_{p}(G)|p||G|\right\}$.
For a solvable group G, we obtain a bound for the derived length of $G / O_{p}(G)$ in terms of $\omega_{p}(G)$ and a quadratic bound for the derived length of $G / F(G)$ in terms of $f(G)$.

Lemma 3.1. Let G be solvable with $O_{p}(G)=1$ and $l_{p}(G)=1$. Then $\operatorname{dl}(G) \leq 5 \omega_{p}(G)$.

Proof. Since $O_{p}(G)=1$ and $l_{p}(G)=1, e_{p}(G) \geq 1$. Thus $\omega_{p}(G) \geq$ $e_{p}(G) \geq 1$. If $\omega_{p}(G)=1$, then $d l(G) \leq 4$ by Huppert [7 , Theorem 1]. So, $d l(G) \leq 5 \omega_{p}(G)$, and we are done in this case.

In the following, we assume that $\omega_{p}(G) \geq 2$. We have two cases to consider.

Case 1. $O_{p^{\prime}, p}(G)=G$.
By Lemma 2.1, $d l\left(G / O_{p^{\prime}}(G)\right) \leq e_{p}(G)$, and hence $d l\left(G / O_{p^{\prime}}(G)\right) \leq$ $\omega_{p}(G)$. Since $O_{p^{\prime}}(G)$ is a p^{\prime}-group, $\omega_{p}\left(O_{p^{\prime}}(G)\right)=\omega\left(O_{p^{\prime}}(G)\right)$.

If $\omega\left(O_{p^{\prime}}(G)\right) \geq 2$, then, by Huppert [6, Theorem 3], $d l\left(O_{p^{\prime}}(G)\right) \leq$ $2 \omega\left(O_{p^{\prime}}(G)\right)$, and hence $d l\left(O_{p^{\prime}}(G)\right) \leq 2 \omega_{p}\left(O_{p^{\prime}}(G)\right)$. Since $O_{p^{\prime}}(G) \triangleleft$ $G, \omega_{p}\left(O_{p^{\prime}}(G)\right) \leq \omega_{p}(G)$ by Clifford's Theorem. So $d l\left(O_{p^{\prime}}(G)\right) \leq$ $2 \omega_{p}(G)$. Thus

$$
\begin{aligned}
d l(G) & \leq d l\left(O_{p^{\prime}}(G)\right)+d l\left(G / O_{p^{\prime}}(G)\right) \\
& \leq 2 \omega_{p}(G)+\omega_{p}(G)=3 \omega_{p}(G) .
\end{aligned}
$$

If $\omega\left(O_{p^{\prime}}(G)\right) \leq 1$, then, by Isaacs and Passman [10, Theorem 6.1], $d l\left(O_{p^{\prime}}(G)\right) \leq 3$, and hence

$$
d l(G) \leq d l\left(O_{p^{\prime}}(G)\right)+d l\left(G / O_{p^{\prime}}(G)\right) \leq 3+\omega_{p}(G)
$$

Since $\omega_{p}(G) \geq 2, d l(G) \leq 2 \omega_{p}(G)+\omega_{p}(G)=3 \omega_{p}(G)$.
Case 2. $O_{p^{\prime}, p, p^{\prime}}(G)=G$.
Write $M=O_{p^{\prime}, p}(G)$. By what we have just proved in the above, we have that
(1) if $\omega_{p}(M)=1$, then $d l(M) \leq 4$;
(2) if $\omega_{p}(M) \geq 2$, then $d l(M) \leq 3 \omega_{p}(M)$.

Since $M \triangleleft G, \omega_{p}(M) \leq \omega_{p}(G)$. Furthermore, since $\omega_{p}(G) \geq 2$, $3 \omega_{p}(G) \geq 6$. Thus $d l(M) \leq 3 \omega_{p}(G)$.

Since G / M is a p^{\prime}-group, $\omega_{p}(G / M)=\omega(G / M)$. If $\omega(G / M) \leq$ 1, $d l(G / M) \leq 3$ by Isaacs and Passman [10, Theorem 6.1]. If $\omega(G / M) \geq 2, d l(G / M) \leq 2 \omega(G / M)$ by Huppert [6, Theorem 3], and hence $d l(G / M) \leq 2 \omega_{p}(G / M)$. Since $\omega_{p}(G / M) \leq \omega_{p}(G)$ and $2 \omega_{p}(G) \geq 4, d l(G / M) \leq 2 \omega_{p}(G)$. Therefore,

$$
\begin{aligned}
d l(G) & \leq d l(M)+d l(G / M) \\
& \leq 3 \omega_{p}(G)+2 \omega_{p}(G)=5 \omega_{p}(G) .
\end{aligned}
$$

This completes the proof of the lemma.
Theorem 3.2. Let G be solvable and $l_{p}\left(G / O_{p}(G)\right) \geq 1$. Then

$$
d l\left(G / O_{p}(G)\right) \leq 5 l_{p}\left(G / O_{p}(G)\right) \Omega_{p}(G) .
$$

Proof. We may assume without loss of generality that $O_{p}(G)=1$ We use induction on $l_{p}(G)$. By Lemma 3.1, we can assume that $l_{p}(G) \geq 2$.
Write $M=O_{p^{\prime}, p}(G)$. Since $O_{p}(G)=1, O_{p}(M)=1$. Clearly, $l_{p}(M)=1$. Thus $d l(M) \leq 5 \omega_{p}(M)$ by Lemma 3.1. Since $M \triangleleft G$, $\omega_{p}(M) \leq \omega_{p}(G)$ by Clifford's Theorem. Hence $d l(M) \leq 5 \omega_{p}(G)$.

Since $M=O_{p^{\prime}, p}(G), O_{p}(G / M)=1$ and $l_{p}(G / M)=l_{p}(G)-1$. Notice that $1 \leq l_{p}^{\prime}(G / M)<l_{p}(G)$. Thus, by induction, $\operatorname{dl}(G / M) \leq$ $5 l_{p}(G / M) \omega_{p}(G / M)$. Since $l_{p}(G / M)=l_{p}(G)-1$ and $\omega_{p}(G / M) \leq$ $\omega_{p}(G), d l(G / M) \leq 5\left(l_{p}(G)-1\right) \omega_{p}(G)$. Hence,

$$
\begin{aligned}
d l(G) & \leq d l(M)+d l(G / M) \\
& \leq 5 \omega_{p}(G)+5\left(l_{p}(G)-1\right) \omega_{p}(G)=5 l_{p}(G) \omega_{p}(G),
\end{aligned}
$$

and the assertion holds.
Combining Theorem 1.7 with Theorem 3.2, we get
Corollary 3.3. Let G be solvable and $l_{p}\left(G / O_{p}(G)\right) \geq 1$. Then
(1) if p is not a Fermat prime, then

$$
d l\left(G / O_{p}(G)\right) \leq 5 \omega_{p}(G)\left(1+\log _{p}\left(2 \omega_{p}(G)\right)\right)
$$

(2) if p is a Fermat prime, then

$$
d l\left(G / O_{p}(G)\right) \leq 5 \omega_{p}(G)\left[2+\log _{s}\left(2 \omega_{p}(G) /(p-1)\right)\right]
$$

where $s=\left(p^{2}-p+1\right) / p$.
As usual, we denote by $F(G)$ the Fitting subgroup of G.
Lemma 3.4. Let G be solvable and $G / F(G)=F(G / F(G))$. Then

$$
d l(G / F(G)) \leq 2 f(G)^{2} .
$$

Proof. Let p be a prime number such that $p||G|$. By Theorem 2.2, $d l_{p}\left(G / O_{p}(G)\right) \leq l_{p}\left(G / O_{p}(G)\right) e_{p}(G)$. Combining $l_{p}\left(G / O_{p}(G)\right) \leq$ $r_{p}\left(G / O_{p}(G)\right)$ with Theorem 1.3, we have

$$
d l_{p}\left(G / O_{p}(G)\right) \leq 2 e_{p}(G)^{2} \leq 2 f(G)^{2}
$$

Since $d l_{p}(G / F(G))=d l_{p}\left(G / O_{p}(G)\right), d l_{p}(G / F(G)) \leq 2 f(G)^{2}$. Since $G / F(G)=F(G / F(G))$,

$$
d l(G / F(G))=\max \left\{d l_{p}(G / F(G))|p||G / F(G)|\right\}
$$

Thus $d l(G / F(G)) \leq 2 f(G)^{2}$.
Theorem 3.5. Let G be solvable. Then

$$
d l(G / F(G)) \leq 2\left(f(G)^{2}+f(G)+1\right)
$$

Proof. Let $F_{2} / F(G)=F(G / F(G))$. By Corollary 1.6, $r(G / F(G)) \leq$ $2 f(G)$. We use Leisering and Manz [11, Lemma 2.3] to embed G / F_{2} in the direct product of some $\operatorname{GL}(2 f(G), p)$, where p runs through the prime divisors of $\left|F_{2} / F(G)\right|$. Consequently, Theorem 2.5 of Leisering and Manz [11] yields that $d l\left(G / F_{2}\right) \leq 2 f(G)+2$.

Applying Lemma 3.4 to the group F_{2}, we have $d l\left(F_{2} / F\left(F_{2}\right)\right) \leq$ $2 f\left(F_{2}\right)^{2}$. Hence $d l\left(F_{2} / F(G)\right) \leq 2 f\left(F_{2}\right)^{2} \leq 2 f(G)^{2}$. Finally,

$$
\begin{aligned}
d l(G / F(G)) & \leq d l\left(G / F_{2}\right)+d l\left(F_{2} / F(G)\right) \\
& \leq 2 f(G)+2+2 f(G)^{2} \\
& =2\left(f(G)^{2}+f(G)+1\right) .
\end{aligned}
$$

Some remarks are appropriate for this theorem.
(1) If $f(G)=1$, then $d l(G / F(G)) \leq 2$.
(2) If G has odd order, then $d l(G / F(G)) \leq f(G)^{2}+f(G)+2$.
(3) Let $n(G)$ be the nilpotent length of G. Then $n(G) \leq$ $2(f(G)+2)$.

Acknowledgment. This paper is a part of my dissertation at Ohio University. I would like to express my gratitude to my advisor Professor Thomas R. Wolf for his invaluable advice, patient guidance and encouragement.

I would like to thank the referee for the helpful suggestions for improving the exposition. These comments were greatly appreciated.

References

[1] D. Gluck, Trivial set stabilizers in finite permutation groups, Canad. J. Math., 35 (1983), 59-67.
[2] D. Gluck and T. R. Wolf, Brauer's height conjecture for p-solvable groups, Trans. Amer. Math. Soc., 282 (1984), 137-152.
[3] D. Gorenstein, Finite Groups, New York, 1968.
[4] P. Hall and G. Higman, On the p-length of p-solvable groups and reduction theorems for Burnside's problem, Proc. London Math. Soc., 6 (1956), 1-40.
[5] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
[6] __, Inequalities for character degrees of solvable groups, Arch. Math., 46 (1986), 387-392.
[7] _-, Solvable groups, all of whose irreducible representations in characteristịic p have prime degrees, J. Algebra, 104 (1986), 23-36.
[8] I. M. Isaacs, Lifting Brauer characters of p-solvable groups II, J. Algebra, 51 (1978), 476-490.
[9] , Character Theory of Finite Groups, Academic Press, New York, 1976.
[10] I. M. Isaacs and D. Passman, A characterization of groups in terms of the degrees of their characters II, Pacific J. Math., 24 (1968), 467-510.
[11] U. Leisering and O. Manz, A note on character degrees of solvable groups, Arch. Math., 48 (1987), 32-35.
[12] O. Manz, Degree problems: the p-rank in p-solvable groups, Bull. London Math. Soc., 17 (1985), 545-548.
[13] O. Manz and T. R. Wolf, The q-parts of degrees of Brauer characters of solvable groups, to appear in Illinois J. Math.
[14] G. Michler, A finite simple group of Lie-type has p-blocks with different defects, $p \neq 2$, J. Algebra, 104 (1986), 220-230.
[15] T. Okuyama, On a problem of Wallace, preprint.
[16] D. Passman, Groups with normal Hall-p'-subgroups, Trans. Amer. Math. Soc., 123 (1966), 99-111.
[17] T. R. Wolf, Sylow- p-subgroups of p-solvable subgroups of $\mathrm{GL}(n, p)$, Arch. Math., 43 (1984), 1-10.

Received June 26, 1989 and in revised form November 3, 1989.
Ohio University
Athens, OH 45701-2979

