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ON THE RIM-STRUCTURE OF CONTINUOUS
IMAGES OF ORDERED COMPACTA

J. NIKieL, H. M. TuNcALL AND E. D. TYMCHATYN

Let X be a Hausdorff continuous image of an ordered continuum.
Mardesi¢ proved that X has a basis of open sets with metrizable
boundaries. We use T-set approximations to obtain bases of open sets
for X whose boundaries satisfy a variety of conditions. In particular,
we prove that

dimX = ind X =Ind X
= max{l, sup{dimY : ¥ C X is metrizable and closed}}.

1. Introduction. In this paper we study the rim-properties of images
of ordered continua and, more generally, of compact ordered spaces.
Mardesi¢ proved in [M1] that a Hausdorff space which is a contin-
uous image of a compact ordered space is rim-metrizable. In [N3],
the first author proved that every hereditarily locally connected con-
tinuum is a continuous image of an ordered continuum. Then he used
the approximation by T-sets of cyclic elements in images of ordered
continua to prove that every hereditarily locally connected continuum
is rim-countable. We use the techniques of [N3] to improve the result
of Mardesi¢ and to answer a question of Mardesi¢ and Papi¢ [MP]
about dimension-theoretic properties of continuous images of ordered
continua and ordered compacta. We improve a result of Simone [Sil]
by proving that if X is a continuous image of an ordered contin-
uum and X contains no nondegenerate metric continuum, then it is
rim-finite. We also prove that if a rim-scattered space is a continuous
image of an ordered compactum, then it is rim-countable.

All spaces in this paper are Hausdorff. A continuum is a compact
connected (Hausdorff) space. An ordered compactum is a compact
space which admits a linear ordering such that the order topology is
the given topology. Ordered continua are locally connected; they are
often called arcs.

A point p of a connected set X is a separating point of X if X—{p}
is not connected. We let E(X) denote the set of all separating points
of X.

Let X be alocally connected continuum. A connected subset Q of
X 1is acyclic element of X if Q is maximal with respect to containing
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no separating points of itself. Each cyclic element of X is a locally
connected continuum. The theory of cyclic elements is presented in
[Wh1, Ch. 4] for the case of metric locally connected continua. We
shall use some extensions of this theory to the non-metric setting as
set out in [Wh2] and [C], see also [N4].

A collection A of subsets of a compact space X is said to be a null-
family in X if, for every open covering U of X, the subcollection
{B € A: B is not contained in any ¥ € U} is finite.

Let 4 be a subset of a locally connected continuum X. We let
K(X — A) denote the set of all components of X — 4. We will say
that A is a T-set in X if A is closed and each component of X — A
has a two-point boundary.

Let Y be a cyclic element of a locally connected continuum X .
We say that a sequence {A4;, A3,..., Ay, ...} of T-subsets of Y
T-approximates Y if

(1) A; is metrizable,

(2) An C An+1 s

(3) if Z e K(Y — Ay), then E(CI(Z)) C Ayt1,

(4) if Z € K(Y — 4,) and C is a nondegenerate cyclic element
of CI(Z), then CNA,,; is a metrizable set which contains at
least three points.

Note that the conditions of the above definition imply that Cl({J;>; 4x)
=Y (see [N1, Lemma 3.4]).

In [N1], there are given several characterizations of continuous
Hausdorff images of ordered continua. One of them is the follow-
ing:

THEOREM 1 [N1, 1.1]. Let X be a locally connected continuum.
Then the following are equivalent:

(1) X is a continuous image of an ordered continuum,
(2) if Y is a nondegenerate cyclic element of X, then there is a
sequence {Ay, Ay, ...} of T-sets in Y which T-approximates Y .

Further properties of continuous images of arcs and ordered com-
pacta can be found in survey articles [M3], [TrW] and [N4]; see also
[N1].

Let P be a property of sets. A space X is said to be rim-P if it
has a basis of open sets whose boundaries have property P. A set
is said to be scattered if each of its non-empty closed subsets has an
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isolated point. Recall that compact, metrizable, scattered spaces are
countable. For definitions of dimensions dim, Ind and ind, the
reader is referred to [E].

For a compact space X, we define

a(X) =sup{dim Z : Z is a closed metrizable subset of X}.

Welet a— 1 =00 if a=00.
We shall need the following lemmas.

LEMMA 1 [Tr2]). Let X be a locally connected continuum and A a
T-set in X . There exists an upper semi-continuous decomposition G 4
of X into closed sets such that if X4 denotes the quotient space and
f:X — X4 is the quotient map, then:

(1) fl4 is one-to-one and f(A) is a T-set in X4,
(2) each Z € K(X4— f(A)) is homeomorphic to 10, 1[,

(3) foreach Z € K(X4—f(A)) there exists a unique P; € K(X—A)
such that f(Pz) c CI(Z), and each component of X — A is a Pz for
some Z € K(X4— f(A)).

In the above lemma, f(A4) isa T-setin X, and we call f a T-map
with respect to 4. The space X4 is uniquely determined by X and
A. If the set A is metrizable it follows, by local connectedness of X,
that K(X — A) is countable, [N1, 4.1].

LEMMA 2. Let X be a locally connected continuum and, for every
cyclic element Y of X, let By be a basis for Y. Then X has a basis
B such that, for each U € B, there exist a family A of cyclic elements
of X, non-negative integers m and n, nondegenerate cyclic elements
Yi,...,. Y, of X, sets U € By,....,Un € By , and separating
points xy, ..., xn of X such that

U= (UA) UulUyU---UU, and
Bd(U) = Ble(Ul) U--- UBde(Um) U{xy,..., Xn}.
Proof. The lemma follows from the generalization, by Cornette [C,

p. 225-6], of Whyburn’s cyclic chain approximation theorem [Whi,
IV.7.1, p. 73] to the case of locally connected Hausdorff continua. O

LEMMA 3. Let y be an infinite cardinal number and let P be a
hereditary property of compact sets that is preserved under unions of
fewer than y compact sets. Let X be a locally connected continuum,
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{A4;}2, an increasing sequence of closed subsets of X, and {V;}%, a
sequence of collections of sets such that:
(1) V; is a basis of open sets for A;,
(2) Bd(K) has property P for each K € K(X — A4;),
(3) V €V, implies Bd4 (V) has property P,
(4) V €V, implies {K € K(X - 4;) : BdK)NV # @ and Bd(K)
¢ CI(V)} has cardinality less than 7y,
(5) for each open cover W of X there is an integer i such that
K(X — A;) refines W.
Then X admits a basis of open sets whose boundaries have property
P.

Proof. Let x € X and let U be an open neighbourhood of x. Let
W be an open neighbourhood of x such that CI(W) c U.

Suppose that x ¢ J;>, An. For every n let K, € K(X — 4,) be
such that x € K,,. Then K,,; C K,. By (5), there is an integer
i such that K; is contained either in U or in X — CI(W). Since
x € CI(W)NK;, it follows that K; Cc U. Since X is locally connected,
K; is an open set. By (2), Bd(K;) has property P.

Now suppose that x € A4, for some integer n. By (5), we may
take n to be such that no component of X — 4, meets both CI(W)
and X - U. Let V €V, besuchthat xe€ V c Cl(V) Cc W. Let
V'=VUl{KeK(X—-A4,):BdK)NV #I}. Then V' Cc U. Since
X is locally connected, V' is open and

Bd(V') c Bdy (V)
UU{Bd(K) :KeK(X-4,),BdK)NV #< and Bd(K) ¢ V}.
By (3), (2) and (4), it follows that Bd(¥V’) has property P. O

2. Main results. The proof of the following lemma uses some ideas
from the proof of [N3, Theorem 4.1].

LEMMA 4. Let Y be a continuum with no separating point which is
a continuous image of an ordered continuum. Let a = max{l, a(Y)}.
Then Y has a basis V of open sets whose boundaries are metrizable
sets of dim < a — 1. Moreover, if Y admits a basis of open sets
with scattered boundaries, then the boundaries of members of V are
countable.

Proof. Let {A;, Ay, ...} be a sequence of T-sets in Y which T-
approximates Y . Foreach n,let f,:Y — Yy =Y, beaT-map with
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respect to A4, (see Lemma 1). We let B” = f,(Am) C Y, provided
m < n. Notice that Y, has no separating point, each B is a T-
set in Y, provided m < n, f,| A Am — B isa homeomorphism,
and every component of Y, — B! is homeomorphic to ]0, 1[. Since
Y, has no separating point, it follows that if P is a component of
Y, — B, Bd(P) = {a, b}, then CI(P) is a cyclic chain from a to
b (in the case when m = n — 1, all cyclic elements of Cl(P) are
metrizable—see below).

First, we use an induction to show that, for n=1,2,..., Y, hasa
basis B, such that Bdy (V) is metrizable and dim(Bdy (V)) <a -1
for each V €B,.

Note that Y, = B U (Y, — B}) is a metrizable space which is a
union of the compact metrizable set B} (which is homeomorphic
to A4;) and a countable family of copies of ]0, 1[. By [E, 1.5.3, p.
42], dimY; < max{l, dimB}} < a. Hence, Y; has a basis B; as
required.

Suppose that the required basis B, for Y, has been already defined.
Let y € Y,.; and let V' be an open neighbourhood of y in Y,,;.
If y ¢ By, ,,then y € Q for some Q € K(Y,41 — By,;). Let
Bd(Q) = {a, b}. Then CI(Q) is a cyclic chain from a to b and
E(CI(Q)) c B,'t‘}:l‘ . If Z is a nondegenerate cyclic element of CI(Q),
then By = Bl NZ is a metrizable T-set in Z, Z N(E(CI(Q)) U
{a, b}) consists of exactly two points, and each component of Z — Bz
is homeomorphic to ]0, 1[. Hence, K(Z — Bz) is countable and Z
is metrizable. Now, it is easy to find an open neighbourhood W of y
in Yn4; such that W C VN Q, Bdy (W) is contained in two cyclic
elements Z; and Z, of CI(Q) and for i=1,2

dim(Bdy (W)NZ;) < dimZ; — 1 < max{1, dim Bz} — 1
<max{l, dim4,,;}-1<a—1

provided Z; is nondegenerate (the case when Z; is degenerate is triv-
ial). Thus we have dim(Bdy (W)) <a-1.

Now, suppose that y € B} ,. Let x denote the unique point of
Ap such that f,,(x) =y. Forevery P € K(Y,,1 —B],,) let Qp €
K(Y — A,) be a component such that f,,;(Qp) C CI(P) and let Rp €
K(Y,—B}}) be such that f,(Qp) C CI(Rp). Set Bdy (P)={ap, bp}
and Bdy (Rp) = {a}, bp}, where f;}(an) N 4n = f,;'(a;) N 4n, and
let < denote the natural ordering on CI(Rp) from ajp to by . Choose
rr€Rp andlet Ip={reRp:r<rp} and Jp={r€Rp:rp<r}.
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Let

V= fa(frh(V) N 4n)
U|J{Rp: P €K(Y,,1 - B,,) and CI(P) C V}
Ul J{Ip: P € K(Yns1 — B, ) and ap € V'}
U J{Jp:PEK(Ypi1 — B, ) and bp e V}.

Since {Cl(Rp): P € K(Y,1 — B} )} is a null-family, ¥’ is an open
subset of Y,. Moreover, f,(x) € V'. By the inductive hypothesis,
there is a connected open set W’ in Y, such that fy(x)e W' cCc V',
Bdy (W’) is metrizable and dim(Bdy (W’)) <a—1. Let

H;={PeK(Y,, —B",):dpc W and Rp ¢ W'},
H,={PcK(Y,,—B',):bpc W and Rp ¢ W'}

and

Note that if P € H1 UH;, then RpNBdy (W') is a non-empty open
subset of Bdy (W’). Since Bdy (W) is compact and metrizable, H;U
H, is countable For every P € H; (resp. P € H,), let W} (resp.
W} ) be an open subset of CI(P) such that ap € Wi C V (resp. bp €
W2 c V), Bdop)(W3) is metrizable and dim(Bdgypy(W3)) <a-—1
(resp. Bdcyp)(Wg) is metrizable and dim(Bdcyp)(W3)) < a —1).
Note that Bdcyp)( W{) may be assumed to be contained in one cyclic
element Z of CI(P). By the fact that K(Z — Bz) is countable, it
follows that Z is metrizable and dimZ < «. Let

W= fun(f'Whnd)u |J wiu |J wiu|JHs.
PeH, PeH,

Since K(Y,+1—Bj, ;) is anull-family, W isopenin Z . A straightfor-
ward argument shows that y € W C V' (because if P € K(Y,,1—-B}, )
is not contained in V', then rp ¢ V' and so Rp ¢ W') and

Bdy, (W) = fur1(fy ' (Bdy, (W) N 4y))

U J Bdae(Wp)u | Bdaw)(W3).
PEH, PeH,

Thus Bde(W) is a union of countably many compact metrizable
sets of dim < o — 1. It is well-known that each compact space which
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can be covered by countably many closed and metrizable subsets is
metrizable. Hence, Bdy (W) is metrizable. By [E, 1.5.3, p. 42],
dim(Bdy (W))<a-1. "The inductive argument is complete.

Let P’ "be the following property of compact spaces: a space is
metrizable of dimension < a— 1. Let y = N; be the first uncount-
able cardinal number. Note that Y satisfies all the assumptions of
Lemma 3. Indeed, the condition (2) of Lemma 3 follows immediately
from the definition of a T-set. Let V, = {4, N f;}(U) : U € B,}
for n =1,2,.... Then V, is a basis for 4, which satisfies the
conditions (1) and (3). The condition (4) follows from [N1, 4.1], and
the condition (5) is a consequence of [N1, 3.4]. By Lemma 3, Y
has a basis V of open sets with metrizable boundaries of dimension
<a-1.

Suppose that Y is rim-scattered. Then Y; is metrizable and rim-
scattered. Hence, Y; has a basis of open sets with countable bound-
aries. It is now easy to modify the above argument to show that each
Y, has a basis of open sets with countable boundaries. By Lemma 3,
Y has a basis of open sets with countable boundaries. O

Simone, [Sil] and [Si2], proved that if X is a continuum with de-
gree of cellularity R, , which is a continuous image of an ordered con-
tinuum and which contains no nondegenerate metric subcontinuum,
then X has a basis of open sets with finite boundaries. Simone’s
theorem can be improved as follows:

THEOREM 2. Let X be a continuum which is a continuous image
of an arc and which contains no nondegenerate metric subcontinuum.
Then X has a basis of open sets with finite boundaries.

Proof. Let Y be a nondegenerate cyclic element of X . Since having
a basis of open sets with finite boundaries is a cyclically extensible
property (see Lemma 2), it suffices to prove that Y is rim-finite.

Let {A4;, A2, ...} be a sequence of T-sets in Y which T-approxi-
mates Y and, for n=1,2,...,1let f,: Y — Y, be a T-map with
respect to A, (see Lemma 1). Since A, is metrizable, and, hence,
zero-dimensional, Y; has a basis of open sets with finite boundaries
(see [N1, 4.3]). If U is an open set in Y; which has a finite bound-
ary, then all but at most finitely many components of Y; — A; whose
closures meet UNA; are contained in CI(U). An inductive argument
similar to the one given in the proof of Lemma 4 shows that each Y,
is rim-finite. Taking P to be the property of being a finite set and
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y = R, in Lemma 3, it follows that Y has a basis of open sets with
finite boundaries. O

THEOREM 3. If X is a nondegenerate continuous image of an
ordered continuum, then

max{l, a(X)} =dimX =Ind X =ind X .

Proof. Let o = max{l, a(X)}. Since X is a nondegenerate con-
tinuum, ind X > 1. By general facts (see [E, 3.1.4 on p. 209, 2.2.1
on p. 170, and 1.1.2 on p. 4]), it follows that dimX > dimZ,
IndX >IndZ and indX > indZ for each closed subspace Z of
X . Hence dim X, Ind X, ind X > a. For each normal space X, we
have ind X <Ind X [E, 1.6.3, p. 52] and dim X <Ind X [E, 3.1.28,
p. 220]. Thus it suffices to show that Ind X < a.

Let x € X and V be an open neighbourhood of x. By Lemmas 4
and 2, there exists an open set W such that x e W Cc V', Bd(W) is
contained in the union of a finite collection {Z;, ..., Z,} of cyclic ele-
ments of X, Bd(W)NZ; is metrizable and dim(Bd(W)N Z;) < a-1
for i=1,...,n. Hence, Bd(W) is metrizable and IndBd(W) =
dimBd(W) < a— 1. By the sum theorem for separable metric spaces,
[E, 1.5.3, p. 42], we have Ind X < c. O

REMARK. In Theorem 3, if a(X) = 0, then X is rim-finite by
Theorem 2.

THEOREM 4. Let X be a continuum which is a continuous image
of an arc. If X has a basis of open sets with scattered boundaries, then
it has a basis of open sets with countable boundaries.

Proof. By Lemma 4, each cyclic element of X is rim-countable.
The theorem follows by Lemma 2. o

The following theorem answers a question of Marde$i¢ and Papi¢
([MP], see also [N4, Problem 4]):

THEOREM 5. Let Z be a continuous image of a compact ordered
space. Then
(1) dimZ = IndZ = indZ. If, moreover, dimZ > 0 then
dim Z = max{1, a(Z)}.
(2) If Z is rim-scattered, then it is rim-countable.

Proof. For every compact space T, Ind7T = 0 iff dimT = 0 iff
indT =0, [E, 3.1.30, p. 221]. Thus we may assume that Z is not
zero-dimensional. Let a = max{1, a(Z)}.
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By [N2, Theorem 2], see also [M1, Lemma 8], there exists a space
X such that X is a continuous image of an arc, Z C X, Z is
a T-set in X, and each component of X — Z is homeomorphic to
10, 1[. If Y is a closed metrizable subset of X, then Y is a union of
Z NY and at most countably many closed sets which are homeomor-
phic to subsets of ]0, 1[. Hence, dimY < max{l, dim(Y N Z)}.
By Theorem 3, a = dimX = IndX = ind X. Since Z is not zero-
dimensional, a < dimZ,IndZ, indZ. However, dimZ < dim X,
IndZ <Ind X and indZ < ind X. This completes the proof of (1).
A similar argument together with Theorem 4 show that (2) holds. O

REMARKS. 1. In the case when a(Z) = 0, the result (1) of Theo-
rem 5 was obtained by Mardesi¢ [M2, Corollary, p. 425].

2. The proofs of Lemma 4 and Theorems 3 and 5 show that if a
space X is a continuous image of an ordered compactum, then it has
a basis B such that Bd(U) is metrizable and dimBd(U) < dim X — 1
for each U € B. This improves results of [M1].

3. Problems. Filippov gave in [F] an example of a locally connected
continuum which admits a basis of open sets with metrizable zero-
dimensional and perfect boundaries and which is not a continuous
image of any ordered compactum.

In general, rim-scattered continua are not continuous images of or-
dered compacta. For example: the space X = L x §/;03xs, where L
denotes the long interval and S = {% :n=1,2,...}U{0}, is a rim-
countable continuum which is a continuous image of no ordered com-
pactum. In fact, X contains a non-metric product of infinite compact
spaces—see [Trl]. However, the space X is not locally connected. In
[Tu], it was proved that rim-scattered locally connected continua do
not contain a non-metric product of nondegenerate continua. Hence
we may ask the following question:

Question 1. Is every locally connected rim-scattered continuum a
continuous image of an ordered continuum?

Filippov’s example shows that rim-scattered locally connected con-
tinua are the largest possible class of spaces defined with the use of
rim-properties that could be contained in the class of continuous im-
ages of ordered continua. Recall the following weaker question which
is still open (see [N3] and [IN4]).

Question 2. Is every locally connected, rim-countable continuum a
continuous image of an ordered continuum?
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Let us also pose the following problem:

Question 3. Is every locally connected and rim-scattered continuum
a rim-countable space?

Recall that, by Theorem 4, Question 3 has a positive answer pro-
vided the space under consideration is a continuous image of an arc.

Added in proof. Recently the authors answered questions 1 and 2
in the negative in the paper: J. Nikiel, H. M. Tuncali, and E. D.
Tymchatyn, A locally connected rim-countable continuum which is the
continuous image of no arc, Topology Appl. (to appear). L. B. Treybig
proved a result which implies Theorem 2 in Proc. Amer. Math. Soc.
74 (1979), 326-328.
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