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THE COCHRAN SEQUENCES OF
SEMI-BOUNDARY LINKS

GYO TAEK JIN

For a 1-dimensional semi-boundary link, Cochran constructed a
sequence of Sato-Levine invariants of successively derived links. This
is a linear recurrence sequence and conversely any linear recurrence
sequence can be constructed in this way. An upper bound for the
growth of this sequence is obtained.

1. Introduction. An ordered pair L = (M, K) of oriented circles
which are disjointly and smoothly embedded in S 3 is called a semi-
boundary link if the linking number lk(M, K) is equal to zero [Sa]. If
L = (M9 K) is a semi-boundary link, then there exist Seifert surfaces
V of M and W of K which intersect only in the interiors and
transversely. We call (V, W) a Seifert pair for L.

The orientations on V and W 9 which induce the orientation of
L on the boundaries, determine a normal 2-frame field on V n W.
The Sato-Levine invariant β(L) of the link L is the homotopy class
in π-$S2 = Z which is represented by the Thom-Pontryagin construc-
tion on the 2-frame field. It is proven in [Sa] that this integer is
independent of the choice of the Seifert surfaces and that it is a link-
concordance invariant. The following well-known proposition is in-
cluded for completeness.

PROPOSITION 1.1. If L = (M, K) is a semi-boundary link, then
(a) β(L) = 0 if L is a boundary link.
(b) β(L) = β(L) where Z=(K,M).
(c) β(Lx) = β(L) where Lx is the same as L with the orientation

of either M or K reversed.
(d) β{-L) = -β{L) where -L is a mirror image of L.

Proof, (a) is obvious by the definition of the Sato-Levine invariant.
(b), (c) and (d) easily follows fromt he fact that

in π 3 S 2 where / : S 3 -• S 2 , g: S 2 -• S 2 and h: S 3 -+ S 3 are contin-
uous maps [Hu]. D
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Let (V, W) be a Seifert pair for a semi-boundary link L = (M,K).
We may assume that the intersection F = V Π W is connected, by
a surgery on the Seifert surfaces. In this case, we call (V9 W) a
special Seifert pair for L. Since W is oriented, we can push a small
tubular neighborhood of F in W off F in a normal direction of W.
Call this surface W. Then W7 is a Seifert surface for K such that
F n ^ ' = 0 . Therefore D(L) = (F, K) is a new semi-boundary link
derived from L = (M, K). We follow Cochran in calling D(L) a
derived link or a derivative of L. /)(£) is well defined only up to an
equivalence relation called weak-cobordism which is weaker than the
link-concordance [C]. Since D(L) is a semi-boundary link, its Sato-
Levine invariant is defined. We can iterate this procedure to get a
sequence of integers as follows:

(i) βι(L) = β(L),

(ii) βi(L) = β(Di~ι(L))9foτ i>2.

This sequence {/?/(£)}/Si is w e U defined and depends only on the
weak-corbordism class of L. We call it the Cochran sequence of L.

By Proposition 1.1 (a), {βi{L)}^λ is identically zero if L is a
boundary link. One of the most important properties of this sequence
is that it is additive under componentwise oriented connected sum of
semi-boundary links [C].

2. Kojima's function. Recall the definition of Kojima's function first
given in [KY]. Let L = (M, K) be a semi-boundary link and let Xκ

be the infinite cyclic cover of S3\A' whose covering transformation
group is generated by t. Denote by / a zero-push-off of M, i.e., / is
isotopic to M in a small tubular neighborhood of M and lk(/, M) =
0. Let / and M be near-by lifts of / and M in Xκ. Since the
Alexander polynomial Δ#(ί) of K annihilates the Z[ί, /"^-module
Hχ(Xκ), Aκ(t)/~ bounds a 2-chain ζ in Xκ.

DEFINITION.

where Int(, ) stands for the usual intersection number in
For any semi-boundary link L = (M, K), */£,(ί) is an invariant of

/-equivalence class of L satisfying the following properties:
(iii) ηL(Γι) = ηL(t),
(iv) ifc(l) = 0.

Since Δ^(ί) can be normalized to satisfy Δ^(ί" ι ) = Aκ(t), one can
change the variable by x = (1 - ί)(l - 1/ί) to get a rational function
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AL(X) from ηL(t). Cochran proved in [C] that ηι(t) is equivalent
to the sequence {fii(L)}^lx. The relation is given by the Maclaurin
series expansion.

(v) hL{x)^YZχβi{L)xi.
In other words, HL(X) is the generating function for the Cochran
sequence {βi{L)}%x.

3. Linear recurrence sequences.

DEFINITION. An infinite sequence {fl/}^ of integers is a linear
recurrence sequence if there exist integers N > 0, a\, . . . , ad such
that

"i+d + *i */+</-1 + + adnι = 0
for all i> N.

PROPOSITION 3.1. (a) {Λ/}/^ is a linear recurrence sequence if and
only if its generating function is of the form

b2x
2 + - - + bmxm

a2x
2 H h adx

d

for some integers d > 0, m > 0, αi, . . . , aj and b\, . . . , bm.
(b) /f {w/}^! w ̂  linear recurrence sequence whose generating func-

tion is as in (a), then for all suffiicently large i,

7=1

1 + a\x + aix1 + h adx
d = ΠjLi(l ~ 7jχ)dj * the yj 'S are

distinct, and Pj(i) is a polynomial in i of degree d}? — 1.

Proposition 3.1 is a version of Theorem 4.1 in [St].

THEOREM 3.2. (a) For any semi-boundary link L, {β^L)}^ is a
linear recurrence sequence.

(b) For any linear recurrence sequence {fl/}^, there is a semi-
boundary link L such that {βi(L)}?tx = { n j g j .

Proof, (a) Using the fact that Δ#(l) = ± 1 , it is easy to see that
hL(x) is of the form

b2x
2 + •• + bmxm

a2x
2 + - + adx

d

for some integers d > 0 , m > 0, < z i , . . . , ad and b\9 ... 9bm. Then
(a) follows from Proposition 3.2 (a) and the identity (v).
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(b) Let
2

- aix2 H

be the generating function for a linear recurrence sequence {fl/}^ .
Substituting (1 - ί)(l - 1/ί) for x in h(x), we get

η{t) = J=\ J

1 + ΣL ct(2 - ί< - H )
for some integer a's and dj 's. We may assume that d > m by
adding terms with coefficient zero, if necessary. We will construct a
semi-boundary link Lj, for each j with ε7 ^ 0, satisfying

Bj(2-tJ-r')

where, for each k = 1, . . . , m,

ί 1 i f 4 > 0 ,

εk={ 0 if4 = 0,
[-1 if4<0.

First we will construct a knot whose Alexander polynomial is

d \

as follows [L, Rl, R2].
Let K be an unknot. Embed a solid torus T in S3\K so that
(1) the centerline C{T) of T is unknotted,
(2) lk(tf,C(Γ)) = 0,
(3) there are βjC\, . . . , β/Q twists in Γ separated by strands of T 9

each of which links once around K as shown in Figure 1.
Let λ be a longitude of T such that lk(λ, C(T)) = ε ; when A and

C(Γ) are oriented in the same direction. Since S3\int(Γ) is another
solid torus, there is a homeomorphism

/z:S 3 \int(Γ)-^S 3 \int(Γ)

sending λ into a meridian curve μ of T. Let ϋΓΛ = Λ(ϋΓ) c S 3 and let
X be the infinite cyclic covering space of S3\K^ obtained by attaching
solid tori to the infinite cyclic covering space of S 3\(int(7T)u^). Then
Δ(ί) is the Alexander polynomial of K^ .

Let M be another unknot in S3\(int(Γ) U K) which goes once
around the -th twist of T in Figure 1. Let Mh = h(M) c S 3 . Then
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M

FIGURE 1. This is the case when d = 4, βjC\ =
4, βjC2 = - 2 , βjCi = 0, 6jC4 = - 2 and 7 = 3 .

Lj = (A/^, J£Λ) is a semi-boundary link. Now we compute ηL (t).
Choose a nonsingular disc E bounded by M which intersects dT
in two circles. Let a be one of the circles in E n d T. Choose a
slight push-off Λf of M in £ . Let E be the disc in E such that

; = M'. Define 0 = E\ int(Γ), and β ; = £ '\ int(Γ). Let

M'
n

άC θ'

n
E'

M
n

c ^
n

c i
be a diagram of lifts of a, (9, 0 ; , is, £ ' , M 5 and M' in X . Choose
a generator ί of the covering transformation so that

as 1-cycles inX, where γ is a 2-chain in Vdf and Γ is a lift of Γ
containing ά. Since lk(AΓ5 C(Γ)) = 0 and K is unknotted, there is
a singular disc <5 in S3\K bounded by a O-longitude λ0 of Γ. We
may assume that M and <5 intersect at two points. Then there exists
a lift δ of δ\int(T) in X satisfying

1 if/i = 0,
- 1 if Λ = - 7 ,

{ 0 otherwise.

Then it is not hard to see that

A(t)ά = dδ + dσ
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where σ is a 2-chain in ( J ί u - o o ^ ^ . Let

Then aC = A(t)M'. It is clear that, for any n,

Int(σ, tnM) = Int(0', tnM) = Int(y, tnM) = 0.

Therefore,

Then, by the identity (v) and the additivity of the Cochran sequence,

satisfies ηL(t) = η(t). Finally, {β(L)}£i = Mlίi D

COROLLARY 3.3. (a) Any sequence of integers which eventually be-
comes a geometric progression is a Cochran sequence.

(b) Any sequence of integers which eventually becomes an arithmetic
progresssion is a Cochran sequence.

(c) The Fibonacci sequence { 1 , 1 , 2 , 3 , 5 , 8 , . . . } is a Cochran
sequence.

(d) For any positive integer d, {nd}^Lλ is a Cochran sequence.

Proof, (a) «/+i - rn\ = 0 is the linear recurrence relation for a
geometric progression with common ratio r.

(b) «/+2 - 2«/+i + Ί%i = 0 is the linear recurrence relation for an
arithmetic progression.

(c) «ί+2 - rtj+i - ft/ = 0 is the linear recurrence relation for the
Fibonacci sequence. Figure 2 shows a link whose Cochran sequence
is the Fibonacci sequence.

(d) The following identity

d+\

is a linear recurrence relation for the sequence {nd}™=ι. D

It is obvious that Cochran sequences can be unbounded. But they
cannot grow arbitrarily fast.
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FIGURE 2. Fibonacci link

COROLLARY 3.4. For a semi-boundary link L = (M, K), there exist
constants C > 0 and γ > 0 such that

\βn(L)\ < Cnsγn

for all n, where s is a nonnegative integer less than a half of the degree
of the Alexander polynomial of K.

Proof. This is an easy consequence of Proposition 3.1(b). D

For example, {nn}™=l and {n\}™=ι cannot be Cochran sequences
since, for any C, s, γ > 0,

nn > Cnsγn and n\ > Cnsyn

for all sufficiently large n.
For a semi-boundary link L = (M, K), T = (K, M) is also a

semi-boundary link satisfying β(L) = β(L) as in Proposition
1.1 (b). Therefore the two sequences {fii(L)}VLx and {βifjθ)}%λ have
the same first entries. By the following theorem, this is the only rela-
tion between them.

THEOREM 3.5. For any two linear recurrence sequences {nΐ}^ and
{mi}%\ such that n\ = m\, there exists a semi-boundary link L sat-
isfying {A(I)}£i = {*/}£i and {βi(L)}f=ι = {m^ .

For a semi-boundary link L, and for any integer m, Cochran con-
structed a new semi-boundary link fm L called an m-antiderivative of
L, which is well defined up to weak-cobordism satisfying

(vi) βx(fmL) = m9

(vii) D(fm L) is weakly-cobordant to L and hence

for i > 2.
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FIGURE 3

LEMMA 3.6. D(J0 L) is weakly-cobordant to a boundary link for any
semi-boundary link L.

Proof. Here we use Cochran's construction of antiderivatives. Let
L = (M, K) be a semi-boundary link with a special Seifert pair
(V,W). Let c: V x [0, 1] *-> S3 be a collar of V such that

c ( F x § ) = F and c(V x [0, 1]) ΠK = 0.

Let Vt = c(V x {/}) for / e [0, 1]. Choose orientations on ^ , FJ,
and c(Af x [0, 1]) so that they agree on boundaries. In the procedure
we smooth all the corners whenever necessary. Let γ be a smooth
nonsingular path joining two points P e M and QEK such that

int(y)n(c(Kx[0, l])uW) = 0.

Let / be a small closed interval on M centered at P. Push a copy
of c(/x(0 5 1)) off c(Mx[0, 1]) along γ passing Q slightly, so that
the image of c(J x [0, 1]) becomes a band B connecting Vo and Vx,
which intersects int( W) transversely on the image of c(J x {̂ }) in a
small neighborhood of Q. See Figure 3. Then

is a knot intersecting W in two points. Replacing a small tubular
neighborhood of M1 Π W7 in W by a tube that goes along the lower
half of M1, we get a Seifert surface Wo for # such that W0Γ\Mf = 0 .
Then

(C(MX[091])UB9WQ)
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F I G U R E 4. Whitehead link

is a special Seifert pair for (M' ,K). It is easy to see that

((c(Mx[0,l])uB)ΠW0,K)

is ambient isotopic to (M, K). Since c(M x [0, 1]) is untwisted, we
have β{M',K) = 0. Therefore (M', K) = JQL. Using the same
Seifert surfaces for J^L = (K, M'), we get D{J^L) = (M, M').
Since Fn(F 0 U Vx U5) = 0 ,

D

Proof of Theorem 3.5. By Theorem 3.2, there are semi-boundary

links Li and L 2 such that { A ^ i ) } ^ = {iy}^ 2

 a n d { A ( ^

{}

(AT, Λ/') = ( β F , a(F 0 U Vι LIB))

is a boundary link.

COROLLARY 3.7. {^ί(ϊo^')}Si is identically zero.

Let ίF be the Whitehead link as in Figure 4. Then it is easy to see
that

{βt(W))£i = {fit(W)}£ι = { 1 , 0 , 0 , . . . }

and

{βi(-W)}r=ι = {βi(-W)}f=1 = { - 1 , 0 , 0 , . . . }

where - W is the mirror image of W. Let

W iί

W if «, < 0.

Define

' • { - '

hi
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Then, by the additivity of the Cochran sequence and Corollary 3.7,
we have

βi(L) = f

Πι+0 + 0 if / = 1,

O + m + 0 if i > 1
= r%i for all /.
•{

Similarly,

βi(L) =

m i + 0 + 0 if i = 1_ Γ

0 + 0 + mi if / > 1

z , for all i. •
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