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SURGERY WITH FINITE FUNDAMENTAL GROUP
II: THE OOZING CONJECTURE

R. J A M E S M I L G R A M

We determine characteristic class formulae for surgery problems
over any compact oriented and closed manifold with finite fundamental
group. This essentially evaluates the boundary maps in the surgery
exact sequences

^ Lh

n+ι(Zπ) —> %F{Mn) —> [Mn, G/TOP] - ^ Lh

n(Zπ).

(The final step in determining d is carried out in a sequel which rep-
resents joint work with I. Hambleton, L. Taylor, and B. Williams.)
These formulae involve the L-genus of M, pullbacks of the classes
K4i and k4i+2 in H*(G/TOP) and characteristic classes of the
universal covering of M (coming from H*(Bπ^M))) It turns out
that only classes in the first three of these groups, * = 1, 2, 3, are
needed. This can be interpreted as saying that only codimension 1, 2,
and 3 submanifolds are needed to determine the surgery obstruction.
In this form our result was originally conjectured twenty years ago
and has become known as the oozing conjecture.

In [5] I showed that there are only four types of surgery obstruction
possible for surgery problems over closed manifolds with finite π\
when the problem is of the form

M x K4i+2—>M x S 4 / + 2 .

In order to do this I introduced an intermediate L group
Lj(Z(C3)π) and maps

which factor the product formula above. Then I showed that there
were only four types of classes in the image of eζ which could possibly
map non-trivially into the surgery groups.

In this paper I obtain characteristic class formulae for the maps e^ ,
at least as regards the specific classes described above. First recall the
main results of [5]:

THEOREM A. Let π be a finite 2-group, then there are universal
kernels Kt c Lf(Z(ζ3)π) with L%(Z(ζ3)π)/K0 = Z/2, natural with
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118 R. JAMES MILGRAM

respect to restriction and projection maps, so that, if eζ (a) e K[ then
the associated surgery problem above has trivial surgery obstruction.
Moreover, the images of βζ in the groups L^(Z(ζ^)π)/Ki are de-
tected by restriction and then projection to the corresponding groups
L*ϊ(Z(ζi)N)IKi where

(0) the quotient Z/2 for i = 0 detects the index of M reduced
mod (2),

(1) N runs over Z/2-quotients of π when i = 1,
(2) N runs over Z/2 x Z/2 subquotients when i = 2, and
(3) N runs over quaternion subquotients of π when i = 3,

In this paper we evaluate the map eζ for the basic classes of groups
above. For the set of oriented manifolds we obtain complete answers.
In the next three theorems we assume Mn is oriented.

THEOREM B. When the dimension of M is 4/ + 1, and π\{M) is
a finite 2-group then the map eζ is non-trivial if and only if it is non-
trivial on projecting to some group Z/2. After projection it is given by
the formula

σ(idxκ) = (V2Γ(e),[M])χ.

Here χ is the non-zero element in Lfl(Z(ζ3)Z/2)/Kϊ = Z/2 and V
is the total Wu class of M. Finally, f: M-+BZ/2 is the classify-
ing map for the universal covering and e is the non-trivial class in

2; Z/2).

In the case / = 2 the Z/2 x Z/2 's usually occur as subgroups of
dihedral groups. For this reason we state our next result in terms of
dihedral groups.

THEOREM C. When the dimension of M is 4i + 2 then eζ is de-
tected by restriction, projection to a dihedral group or by projection
{factoring through π a b) onto a group Z/2 x Z/2. In the case of the
dihedral group L^(Z(ζ3)D(2i, 2))/K2 = (Z/2)1", but there is a unique
class μι in this quotient which can be in the image of eζ . Moreover,
there is a unique class

which is not in the image of the mod (2) Bochsteίn and the image
of eζ^ is given by the formula (V2f*{w), [M])μiy while in the case
π = Z/2 x Z/2 the evaluation is given by the formula
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THEOREM D. If the dimension of M is 4i + 3, then the map is
detected by restriction and projection onto quaternion subquotients @2>
where we have L^(Z(ζ^2l)/K^ = Z/2 with generator ω, . The for-
mula for the surgery obstruction is (K 2 /*(έ 3 ), [M])ωif where b3 is
the non-zero class in H3(BQ,2^ Z/2) = Z/2.

Note that in each case the deviation from being a pure characteristic
class formula is a class f*(c) where dimension (c) < 3. This is the
content of the oozing conjecture for oriented manifolds.

COROLLARY E. The (codimension 3) oozing conjecture is true for
oriented manifolds with finite fundamental group. That is to say, if π is
a finite group, then the formula for the product with Kervaire obstruction
above has the form (V2f*(κ*), [M]) where K = 1 + K\ + κ2 + κ3,
with the

whenever M is oriented and n\(M) = π .

(From [13], [14] it suffices to verify the result for π a finite 2-group,
but that is the content of Theorems A-D.)

Of course, Theorems A-D make the determination of the K 'S ex-
plicit for any finite group π .

Actually, somewhat more is true. The map βζ is associated to a
stable map

sπ:Σ°Bπ ^h(Z(ζ3)π)

where J?{Z(ζ?)π) is the Ranicki spectrum [10] for the L-groups
above. At the prime 2, -2S( ) is a generalized Eilenberg-MacLane
space and the oozing conjecture can be regarded as determining the
images of the fundamental classes i e Hj(J%( ) π/(-2i( ))) after re-
stricting to integral homology. But the topological maps have inde-
pendent interest. Here is what we know in the cases of our model
groups.

THEOREMF. The image of si : H*{£?{Z(ζ3)π;Z/2)—+H*{Bπ;Z/2)
is always a module over the mod 2 Steenrod algebra, and is generated
by e when π = Z/2, e® 1, l ® e , and e®e when π = Z/2 x Z/2.
When π = Q(2ι) the image is the set of elements of dimension < 4.

In the case of the dihedral group we have

H*(BD(2l2);Z/2) = V2[x,y,
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with dim(x) = dim(y) = 1, dim(w) = 2, and Sq^tu) = (x + y)w
(Theorem 1.25). The generators over the Steenrod algebra of
im(s* 2, ) are then x , y, and it;.

For example, the module generated over s/{2) by e in
H*iBz/2 z /2) is the F 2 vector space with generators e, e2, e4, ... ,

Our procedure is very close in spirit to that of [3]. There is a com-
mutative diagram

®Z/2

Ω*(5π; Z/2) - ^ Lί(Z(C3)π; Z/2)

and exactly as was done in [3], characteristic class techniques can be
used to obtain from the evaluation of the map έζ , the image of the
associated cohomology map s*.

It may be possible to prove an analogue of Theorem A for the groups
L^(Z(C3)π; Z/2), but this is not obvious. There are two families of
classes (in even dimensions) which we could ignore in Part I, since
they were torsion free. But they cannot be ignored here, and moreover,
they do not appear to be detected on any reasonably small set of model
groups. Nonetheless they should not matter and we make the

Generalized oozing conjecture. For any finite group π the image
of (s*) in mod 2 cohomology is generated over s/(2) by a finite
number of elements of dimensions < 4.

In Part 3 of this work [2], using different techniques we obtain more
complete information about these mod 2 images, indeed, we obtain
sufficient information to prove the conjecture, and this, in turn gives
complete characteristic class information for evaluating surgery prob-
lems over manifolds with finite fundamental group. This work was
completed while the author was a visiting professor at Northwestern
University and the University of California at San Diego.

1. Preliminaries. Throughout this paper we assume that all spaces
considered have the homotopy types of locally finite CW complexes.

A. Classifying spaces and extensions for finite 2-groups. When X
is an associative //-space with unit it has a classifying space 3χ [4],
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which satisfies Ω(Bχ) (the loop space of Bx) is homotopy equivalent
to I as a unitary //-space. Moreover, Bx is unique up to homotopy
type. Among the more useful properties of this construction are that
Bχxγ = Bx x By when X and Y are both associative //-spaces
with units. Additionally, the construction is natural, so that given an
associative //-map / : X—+Y there is induced a map /?/: Bχ—+Bγ
with all the expected naturality properties.

When X is a commutative topological group then Bx can again be
assumed to be a commutative topological group, and in this case the
construction can be iterated. (See e.g. [4] for details.)

In particular, if π is an Abelian group, then there is an associative,
commutative multiplication

(1.1) BπxBπ-^Bπ

making Bπ into a topological group. (The circle Sι ~ Bz is a special
case of this construction.)

But more is true. Consider a central group extension sequence

(1.2) //—π-^τr///

where, of course, He center (π). It is standard that the isomorphism
classes of exact sequences (1.2) with //, π/H fixed correspond 1-1
with

(1.3) Ext2

z{π/H)(Z; A) = H2(Bπ/H;H).

This correspondence has a geometric interpretation.
Note that B^B ) = Bjj is an Eilenberg-MacLane space, and conse-

quently, the set of homotopy classes of maps

(1.4) [X,B2

H] = H2(X;H).

Also, there is a principal BE fibering

BH —> E{BH)

(1.5) f

with contractible total space E{BH), and we have

THEOREM 1.6. The map

Bp\ Bπ—>Bπ/H
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induced from (1.2) is a principal fibering with fiber BH > Moreover, the
classifying map γp for Bp,

γP:Bπ/H-+K(H,2)

satisfies γp(ή = K e H2(Z(π/H); H) where K is the class in (1.3)
corresponding to the extension (1.2).

In particular, corresponding to the multiplication map H x π—>π
(which is itself a homomorphism of groups in this case) there is a map

BH x Bπ—*Bπ

and this map is homotopic to the action of BH on Bπ , now regarded
as the total space of the principal fibering in 1.6.

EXAMPLES 1.7. The sequence

Z/2—+Z/4—+Z/2

is associated to the non-trivial element e2 e H2(Z/2 Z/2) = Z/2.
The sequence

Z/2—+£>(4, 2)—>Z/2 x Z/2

is associated to the classes

e\e2, ei(ex +e2), (e\ +e2)e2

{all of which are identified via the action of the group of outer auto-
morphisms of Z/2 x Z/2,

(Out((Z/2)2) = GL2(F2) = ^ 3 ?

where S^ is the symmetric group on three letters)}. Similarly, the
sequence

Z/2—»Z/4 x Z/2—^Z/2 x Z/2

is associated with the invariants

e\, e\, (ex+e2)
2 = e\ + e\

and the sequence

Z/2—+Q(S)—+Z/2 x Z/2

is associated to the single element

Here D(2 /, 2) represents the dihedral group of order 2 / + 1 with pre-
sentation

(1.8) £>(2Z',2) = {τ, T\ τ2 = T2'= (τT)2 = 1}
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while Q(2') is the quaternion group of order 2ι,

(1.9) Q(V) = { τ ? Γ | τ 2 = Γ2Z'2 = (τΓ) 2}.

B. Z/2 manifolds and bordism. A Z/2 manifold is a compact man-
ifold with first Stief el-Whitney class given as the restriction of an inte-
gral cohomology class, together with a specified integral lifting of w\.
Thus, a Z/2 manifold consists of a pair

{M9f:M-+S1}

where / is defined up to homotopy and f*(ι) is the integral lifting
of w\. If Mn and Ns are Z/2-manifolds then

Wχ(MnxNs) = ^i(JI/ Λ )®l + l®tt;i(JVs)

is again the restriction of a (specific) integral class, so that Mn x Ns

is also a Z/2-manifold. If the boundary of Mn is empty and Mn is
a Z/2-manifold then it has a unique non-trivial fundamental class in
Hn{Mn\ Z/2) = Z/2.

The Z/2-bordism group of the space X, denoted Ωsk(X; Z/2), is
the set of bordism classes of maps

/ : Mn—+X

where Mn is a Z/2-manifold without d. Specifically, (f\, Afj1) ^
(/2, Nξ) if there is a Z/2-manifold pair {Wn+\ p) with aH^ =
M% u Λ7^ and p restricted to Mf is //. There is a Hurewicz ho-
momorphism

h:Ω*(X;Z/2)—>H*{X\ZI2)
defined by the rule h{(M, /)} = /*([MΛ]) G / / „ ( * ; Z/2), where
[Mw] G Hn{M\ Z/2) is the fundamental class.

Likewise, there is an associative pairing

e j .y : Ω*(X; Z/2) β Ω*(7; Z/2)-^Ω*(X x Y Z/2)

defined on generators by

^ , y ( { M 1 , / 1 } x { M 2 , / 2 } ) = { M 1 x M 2 , / 1 x / 2 }

so Ω*(pt Z/2) = Jζ inherits the structure of a graded ring with unit
and Ω*(X Z/2) is always a graded module over JV. Λb = Z/2 and
there is a natural augmentation ε : yΓ —• Z/2 with kernel the ideal
S = 0 7 >o ̂ / . Then the composition

Λ o ̂ , j X : J? ® Ω*(X Z/2)—+H*(X; Z/2)

is the zero map. It follows that there is a well defined homomorphism

(1.10) h: Ω*(X; Z/2) ® ^ ((^*/^) = Z/2)—>#*(* ; Z/2).

The following result is well known.
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THEOREM 1.11. (a) h is surjective

(b) h above is an isomorphism. In particular

Ω*(X Z/2) = Λς ® z / 2 H*(X Z/2)

(c) Ω*(X x Y; Z/2) = Ω*(X; Z/2) <g>̂  Ω*(7 Z/2).

As an alternate means of studying Ω*(X; Z/2), note that we also
have the exact sequence

where Ωrt(ΛΓ) is the usual oriented bordism group of X. In particu-
lar, let δM be the transverse inverse image of a point on Sι under
the map ίb\: M-+Sx corresponding to the particular integral lifting
of the first Stiefel-Whitney class of M, then the class of (M, /) in
Ωn(X) is completely specified by the evaluation of the mod 2 charac-
teristic numbers on (δM, /\SM) > a n d o n the oriented manifold with
boundary (M - δM, d[M - δM), /) independently.

The most important group for our applications is ~Z/2 itself,
and for this group we now give explicit systems of generators for
Ω*(5Z/ 2; Z/2) a s a 4 module.

Recall that

Hi(Bz/2\ Z/2) = Z/2, ι > 0 ,

and, if yz denotes the non-zero element in dimension /, then

YiVj = (̂  y

Thus, as a graded ring,

(1.13) H*(Bz/2 Z/2) = E{eι)®E(e2)®E(e4) ® £(έ?2/) •

an exterior algebra on generators in each dimension a power of 2.
We have an action of Z/2 on RP" defined by the rule

T[XQ , . . . , Xn) = [XQ , . . . , Xn-\ , — Xn)*

T is orientation reversing when n is odd. Define

(1.14) M2n = Sι xRP2n~ι/{(y,x)~(-y, Tx)}.

EXAMPLE 1.15. The first of these, M2 = Sι xτS
ι is just the Klein

bottle, with fundamental group Z x j Z = { Γ , τ | τTτ~ι = T~1} . The
remaining manifolds all have Abelian fundamental group (Z/2) x Z.
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We have

LEMMA 1.16. M2n is the projectivized sphere bundle of the vector
bundle ω = {In - l)ε θ ζ\ over the circle S1, where ζ\ is the non-
trivial line bundle and ε is the trivial line bundle. Consequently

H*{M2n Z/2) = H*(RP2n-{ Z/2) <g) H*(Sι Z/2)

and, if e\ is the generator dual to the section y—+{y, ( 1 , 0, ,0))
{thought of as the generator on the fiber), then

e2n =

is the non-trivial class.

(Recall that e\n = Σ^wi(ω)e2n~i {see e.g. [8]} where the Wi(ω)
are the Stiefel-Whitney classes of the bundle ω, and, since W{ω) =
!+/**(/)> the result follows.)

COROLLARY 1.17. (a) M2n is bordant to zero in 0>2n{pt\ Z/2).
(b) The ith Wu class of M2n is given as

(Indeed,

and it is easily checked that V[ above when cupped with these classes
gives the same result.)

REMARK 1.18. For future use, let Mι = Sι, and M{i) = M2'.
Then for each of the spaces M{i), / = 0 , 1 , 2 , . . . we have that
V2 is just the class 1 in dimension 0, while K S q ^ F ) , (Sq1 V)2 are
identically zero.

COROLLARY 1.19. Let pm: M2n-+BZ/2 be the map sending the fun-

damental class in Hι{BZ/2 \ Z/2) to e\, then the composite map

M2n χ M2n ^« , ^ χ ^ J^ ^

represents 0 in Ω4n{BZ/2;Z/2).
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Proof.

δ(M2n x M2n) = (HP 2 "" 1 x

where T acts diagonally on R P 2 " " 1 x R P 2 " 1 , and freely on Sι.

The interchange map on M2n x M2n restricts to the map on
δ(M2n x M2n) which just interchanges the two copies of R P 2 " " 1

and is fixed on Sι. In both δ{M2n x M2n) and M2n x M2n the class
{e(pxp)*)ι = (τ+ί)A9 where τ is the cohomology map induced by
the involution above. From this it follows (since the Stiefel-Whitney
classes of M2n x M2n and δ{M2n x M2n) are invariant under τ) that
every characteristic class in top dimension is of the form (τ + \)B for
some B, but since τ = 1 in dimension In all these classes are zero
and the result follows.

COROLLARY 1.20. Ω * ( % / 2 r ; Z/2) = ®J=ι...n®iE({M(i)9 /)•}),
where fj maps M{i) into the jth summand of B^^y = {Bz/i)n cis
a ring over yK .

C. The homology and bordism of the dihedral groups D(2n, 2)
the quaternion groups Q(2i+1). We have the following central exten-
sion sequences for D(2i, 2), and Q{21),

>ι 2) >D(2ι~ι 2)-
(1.21) * - ' - " y ' ' } ( ' '

Thus, we proceed by using the first of these sequences to study
D(2ι, 2), and then use the second to obtain Q{2i) from our knowl-
edge of the dihedral groups.

A more symmetric presentation (and one more adapted to the use
of 1.21 than that in 1.8) is given by

(1.22) D{2',2) = {x,y \ x2 = y1-.

(set y = τT, x = τ in (1.8)), and we have two homomorphisms

(1.23) φ[,φγ.ZI2xZI2—+D{2i,2),

Note also that (D(2 ;, 2))a b = Z/2 x Z/2, and let the projection be
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denoted by p . We then have the commutative diagram

Z/2 —^-+ Z/2

(1.24) Z/2XZ/2 D(4,2) , 2) Z/2 x Z/2

Z/2 x Z/2 —J—> D(2ι, 2) > Z/2 x Z/2

and the composite 0j</>2 is ^y1"1. Specific classes (x), (y) in

Hι(D(2ι , 2) Z/2) are given as the composites p*λ*(e) where

are the projections onto the yth factors (so e.g. λ\p(x) = T, λ\p(y) =
1) and e is the non-trivial class in Hι(Z/2; Z/2). Then we have

THEOREM 1.25. (a) H*{D{2i,2)\ Z/2) = F 2[x, y, w]/xy = 0,
w/ίΛ x,y both \-dίmensίonaly and w 2-dimensional. Moreover,
Sqλ(w) = (x + y)w, and the k-invariant for the extension sequence
above {with i replaced by i + 1) is w .

(b) The two inclusions

together surject in mod 2 homology.

(c) The inclusion of the center a: Z/2—>D(2i, 2) induces

α* : //*(Z)(2/, 2) Z/2)—*/Γ(Z/2 Z/2),

ΛΛrf α*(ty) = e 2 , α*(jc) = α*(y) = 0.

(d) 77ze ί>v6> m ^ 0j satisfy φι*{w) = y2 + xy, while φι{{x) = x,

Φϊ(y) = 0, φι

2*(x) = 0, φ?(y) = x.
Proof. The proof is by induction. First some general remarks are re-

quired. Assuming that the result is true for D(2i, 2) we note that the
k-invariant for D(2 / + 1 , 2) must be Wf. Indeed, from (1.24) we have
that φfa) is a suitable ^-invariant for D(4, 2). But, by the induc-
tion, the only image which is suitable for such a /c-invariant is y2+xy .
Moreover, there must be some element γ in H2{D{2ιJrl, 2); Z/2)
with composite image under all four of the maps Φ2Φι

k the ^-invariant
for a dihedral extension.
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But, as we just observed, there is only one such image from
H2(D(4, 2) Z/2). So there is an element in H2{D{2M , 2) Z/2)
which we can take to be our new class Wi+\. Moreover, again referring
to (1.24) and the definitions of x, y, it is direct to see that the maps
φγι behave correctly on x and y. So, to continue the induction we
need only show the injectivity of these two maps in cohomology, and
the fact that Sq^iϋf+i) = (x + y)wM.

For the moment let us assume the injectivity. Then

Sqι(φf(wM)) = xy2 + x2y = x{φf\wM)).

But the only class which can have this image under both maps is
{x + y)Wi+ι, and the proof will be complete once we have demon-
strated that H*(D(2M , 2) Z/2) has the form stated in the theorem.

For this consider the Serre spectral sequence of the fibering asso-
ciated to the central extension giving Z>(2/+1, 2). Its E2

J term is
Hi(D{2i, 2) W{Z/2 Z/2)) which can be written as

Eι

2

J = WiDiV , 2) Z/2) ® Hj(Z/2 Z/2).

The differential is completely determined by d2[e{) = u>;, and we
have that

2s3*'* = {Z/2[x, y]/(xy = 0)}®Z/2[e2].

But d3{e2) = Sqι{wt) = (x + y)Wi = 0 in Ep°, so E3 = E^, and
this completes the inductive step.

The proof of 1.25 will be completed once we show we can start the
induction. So construct D(4, 2) from the extension sequence

Z/2—+D(4, 2)—>Z/2 x Z/2

with /c-invariant xy. First, a spectral sequence argument identical
to that above shows H*(D(Λ9 2); Z/2) = Z/2[x,y, w]/(xy = 0).
Next, we must check that the image of wι under the two maps φj is
as stated. Note first that on going up to Z>(8, 2) the original center
of D(4, 2) is embedded into the extension sequence

Z/2—»Z/4—>Z/2

This implies that y2 must be part of the image of w . On the othep
hand, the image of w must also include xy, since the extension
induced on Z/2 x Z/2 is D(4, 2). Now the proof is complete.

Thus, the discussion above for 2?z/2χz/2 gives us control of the
Z/2-bordism of BD,2ι 2\
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C O R O L L A R Y 1.26.

JT(β(2θ Z/2) = Z/2[* , y, Vi]/(x* = y* = xy = 0)

for i > 3, vv/πfe

iT(Q(8);Z/2)

= Z/2[*, j , ^i]/(x2 + x j + y2 = 0, xy 2 + x2j> = 0)

w/zere v/ has dimension 4.

Proof. Consider the diagram of central extensions

Z/2 —> Q(8) —• Z/2xZ/2

Z —* β(2 ί + 2 ) —^ £>(2ι'-1,2)

From 1.25 and its proof the A:-invariant for the bottom extension
must be Wj-\ + x2 + y2. Hence, in the spectral sequence d2(e) =
x2 + y2 + Wi-ι, so d3(e2) = (x + y)w^ι =χ3+y3 in JE | ' 0 . But from
this ds(e4) = 0 and E4 = JEΌo. The result follows for / > 1. The
case i — \ is virtually the same.

In particular the quaternion groups are periodic of period 4, with

fΓ1(β(2 /); Z/2) = // 2(Q(20; Z/2) = (Z/2) 2,

and / f 3 (β(2θ; Z/2) = Z/2. Moreover, the central inclusion

Z / 2 — θ

induces a surjection of i/4*(Z/2; Z/2) onto the periodicity classes
in the homology of β(2*). Explicit representatives for the classes in
dimension 1 are the maps

(1.27) /i./.-S 1—>*β ( 2 ')

given by surjection onto the subgroups generated by T, τ , respec-
tively. Similarly, explicit representatives for the classes in dimension
2 are given by the two maps

surjecting Z x Γ Z onto β(2*'), by sending T to T, τ to τ , Γτ ,
respectively. Finally, an explicit representative for the class in dimen-
sion 3 is given by the quotient 53/β(2 1 '), where the action is the usual
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one. Then we have

THEOREM 1.28.

, {Sι

 f A}, {Sι, f2},

as a module over Ω*(2?Z/2 Z/2).

REMARK 1.29. Since S7>/Q(2i) is oriented its total Wu class is 1,
and all our models for generators over Ω*(pf Z/2) have the prop-
erty that all three classes (V2), FSq 1 V, (Sq1 K) 2 , are 0 in positive
dimensions. As a consequence, the JC, , τ, , %. of the introduction in
H*(Bπ Z/2) for π one of the groups above, are calculated directly
from the evaluation of the images of the {M9f} in Z^(Z(C3)π; Z/2)
without the necessity of solving complex equations involving the in-
version of the F 2 , K S q 1 ^ , ( S q 1 ^ ) 2 .

2. The restriction theorem. The discussion of the boundary map b
in the exact sequence

>Hk(Z/2;K0(Z(ζ3)π))-^Lh

k(Z(ζ3)π)

given in §6 of [5] (in particular the paragraphs immediately preceding
and following 6.2) admits a more intrinsic description. Recall that
the essential tool introduced in [5] to study Hk(Z/2; K0(Z(ζ3)π))
was the exact sequence valid for an arbitrary finite 2-group

(2 2) O^U
£ ( Z ( C ) ) 2 — 0 .

See in particular Remark 5.8 and Corollary 5.9 there. Since

(2.3) i/*(Z/2; C/^1(Q2(C3)π)/^ί(Z2(C3)π))) = 0

thehomologyof ^ 0 (Z(ζ 3 )π) is determined by that of UfK[(Z(^,ζ3)π).
Denote by b' the composite map

; K0(Z(ζ3)π))

Hk(Z/2;U'K[(Z(l/2,ζ3)π))
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then we have

LEMMA 2.4. (a) The determinant map ([Z(l/2, C 3)πf, B) ->
Kι(Z(l/2, C3)π), when restricted to the quadratic forms coming from
Lp

k(Z(ζ3)π) induces a well defined map (the discriminant),

d*: L2k(Z(ζ3)π)-+H2k(Z/2; UfK[(Z(l/2, ζ3)π))

and d* is exactly the map b' above.
(b) Let a e Lp

2k+χ(Z(ζ3)π) be represented by the formation
(H®H\ K) with

0—•A'-^/Γ —-+F—>0

an exact sequence and V an odd torsion module over Z(ζ3)π. Let

{PH} = d e UKι(Q2(ζ3)π)

represent pHf then {d*/d} in UK1(Q2(ζ3)π)/K[(Z2(ζ3)π) = p(ά)
for some a in U'K[(Z(l/2, £3)π), and

b\a) = {a}eH2k+ι(Z/2;K[(Z(l/2,ζ3)π)).

((2.4) is just a reformulation of the remarks in §6 of [5] already
referred to.)

Since π is a finite 2-group, all its irreducible representations arise
via induction from various subquotients. Specifically, given an irre-
ducible Qπ representation, rz, there is a subgroup πz and a surjection
Pi: πi—^Mi, where M/ is a model group (i.e. one of the groups Z/2 7 ,
D{V , 2), Q{V), or SD(2l), {cyclic, dihedral, quaternionic, or semi-
dihedral, notation as in [1]}). Then, Afz- has a unique faithful Q
representation φt, and

n = iπ

πp\{φi)

where p\ is the composition map taking representations on Mi to
representations on π z , and 1% is the induction map taking represen-
tations on m to representations on π.

In the situation above we also have the restriction (forgetful) map
R% which takes representations on π and restricts them to represen-
tations on πz and the push-forward map p/j taking representations
on Ui and pushing them forward ( ® with QM/) to representations on
Mi. The induction and restriction maps are related by the Frobenius
reciprocity law

(2.5) (r,/ί(r/)) = (Λί(r),r/>.
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Now define the total restriction maps

Rπ:R{Qπ)-+ΣR(QMi), and

(d = h or p ) as the sum over / of the compositions /?/j o R% , and
let pj be projection onto the summand corresponding to Mj. As a
consequence of (2.5) we have

LEMMA 2.6. Let the irreducible Q representations ofπber\,...9

rny then p{ o Rπ(n) = φif and pj o Rπ(n) = ^2niikvkffor J Φ *>
where the v^ run over the non-faithful Q representations of Mj . In
particular Rπ is an injection on representation rings.

Proof. The second statement follows directly from the first. To see
the first statement note that by the reciprocity law

Pi°Rπ(n) = Φi

and we must show that all the n7 are 0. But the Q-rank of the rep-
resentation I*p\ (Vij) is [π : 7Γ/j o {Q-rank Vij}, and this is strictly
smaller than the Q-rank of rι• = [π : π{\{Q-rank φi} . Consequently,

( / ί | o p j ( t ; / J ) , r / ) = 0 ,

and by the reciprocity rule again (vz j 7 , P\jRπ{^i)) = 0. This com-
pletes the proof.

REMARK 2.7. The same result holds (with the same proof) for all
fields F of characteristic different from 2. Additionally, away from 2,
Zπ is a maximal order, and the result holds for Zπ away from 2 as
well. In particular, if we consider an odd order Zπ torsion module
TV, we see that N = ΣNt , one direct summand for each irreducible
Q representation of π, Rπ{N) = ΣiV, one copy for each /, but
after tensoring with ZΛ// we get TV/ © V where V is a module over
the Vij.

COROLLARY 2.8. The map Rπ : Lξ(Z(ζ3)π)-^ΣLPΛZ(ζ3)Mi) is an_
injection.

Proof. We first verify 2.8 for the odd groups L%M (Z(^)π). A basis
for L^.+1(Z(ζ3)π) is represented by formations

OLj = (H®H\ K)
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each satisfying the hypothesis of Lemma 2.4(b). More particularly, the
odd torsion module Va is an irreducible F3 module corresponding to
the irreducible representation r ; , and for / = 0, the r, run over
all representations induced up from Z/2 's or D(2ι, 2) 's. Similarly
for / = 1, the η run over all the representations induced up from
Q{21) 's. Then the restrictions of these formations represent linearly
independent elements in ^2L^i+ι(Z(ζ^)Mj).

For Lp

li(Z{ζ2>)n) we note that the natural map

is an inclusion, so it suffices to verify the lemma for these latter groups.
But

Lp

2i(Q(ζ3)π) = QL^MniJLi))

where these AfΠ|(Kz ) are the irreducible representations over QKC3).
Once more the restriction and projection maps behave nicely. In par-
ticular,

PioR: Lp

2i(Mni(Ki)) - ^ Lp

2i{Mmι{Ki))

where the only change is in the size of the matrices, not the field.
Consequently, the lemma follows.

Extending 2.8 to the Lh( ) groups is not quite as direct as one
would hope. The difficulty is the classes in L%(Z(ζ3)π) coming from

From [5, §6], these classes are associated to elements coming from
representations onto dihedral subquotients, and Z/2-subquotients.
The dihedral model groups have the desired elements present in their
Lh groups, so they present little difficulty, but the Z/2's are more
complex. In case the representation is a matrix ring of the form
M2i(Q) with i > 0 then it is always possible to take the associated
subquotient to be a dihedral group D(4, 2), and otherwise, the rep-
resentation is pulled back by the map π—>πab. This reduces the
problem to that for π Abelian.

When π is Z/2 x Z/2 the element is already present as we noted
in §7 of [5], so the strategy is to replace the Z/2 's by Z/2 x Z/2 's.

In particular, it is an easy exercise to show that for Abelian groups
π the set of maps # ; : π—»Z/2 x Z/2 give an injection of the exotic
elements in L^(Z(C3)π) into the corresponding elements in the sum
of the Lh( ) for these model groups.
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Rπ also induces maps of the algebraic K groups ϋf/(Aπ)—>
ΣKi(AMi), and in a way virtually identical to the proof above we
have

LEMMA2.9. Themap Rπ :Kx{Z{\/2, C 3)π)-+Σ*i(Z(l/2, ζ3)Mi)
is an injection.

Let us define a further map

(2.10) Sπ : Lh

k(Z(ζ3)π)-+ 0 ^ ( Z ( ( 3 ) Z / 2 x Z/2)

where the sum above runs over all distinct homomorphisms π—>Z/2 x
Z/2. 2.9, together with 2.4 implies the main technical result of this
section.

THEOREM 2.11. The map

Rπ®S: LhΛZ(ζ3)π)—>0Z*(Z(C3)MO e£>?(Z(C3)Z/2 x Z/2)

w #« injection on the subgroups described in Theorem 6.1 o/[5].

Proof. The classes of interest in 6.1 all either inject into Lζ(Z(ζ3)π)
or are associated to one of the Z/2's {that is, the elements ±1 at
the faithful representation of A/j} corresponding to A// = Z/2, a
dihedral group, or a quaternion group. So we must show that Rπ on
such an element is not in the kernel of the map

Hk(Z/2;K0(Z(ζ3)Mi))-^Li(Z(ζ3)Mi).

In the case where k above is even, the situation is quite clear. We
consider first the case k = 3. Then the image of bf consists exactly
of the set of — 1 's at the quaternion representations. In particular, the
- 1 's at all the other representations are not in the image of V, so the
result is true.

When k = 2 the critical elements have already been shown to exist
for the dihedral restriction models and the Z/2 x Z/2 models after
projection to the abelianization.

When k = 1 the image of V consists of all the - 1 's at the rep-
resentations corresponding to Z/2 's or dihedral groups. Once more
there is no overlap onto the faithful representations for the quaternioϊδ
groups, and so the result follows in this case.

Finally, we need the case k = 0. Here, all the elements at all the
Z/2 and dihedral groups are hit, but the homomorphism
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is non-trivial on the element coming from the - 1 at the faithful rep-
resentation, and this provides a homomorphism out, which proves the
injectivity of the map at this level. Thus the proof is complete.

For later use we need the following corollary of 2.11 which reduces
the calculation of the map

(2.12) v : Ωk(Bπ)—+Lh

k(Z(ζ3)π)

to the same problem but only for certain of the model groups.

COROLLARY 2.13. Let a e Ωk(Bπ), then u(a) is non-zero if and
only if there is a π, as above so that PiθRπ(v{a)) is non-zero. In other
words, restriction to the model groups Z/2, D(2ι, 2), or projection
onto groups of the form Z/2 x Z/2 completely determines the map v.

3. L theory with coefficients. There is a natural orientation

(3.1) eζ3: Ω*(2?π; Z/2)—+L*(Z(C3)π x Z")

where the involution on π x Z~ is given by τ <-> τ~ι for τ e π, while
T +~> -T~ι for T the generator of the Z . It is obtained by using the
product

fx{w{}: M—*BπxSι

where w: M-+Sx is the integral lifting of w\, and / : M—*Bπ is the
map which induces the π covering of M.

For these L groups we have (see e.g. [7])

THEOREM 3.2. Let A be any unitary ring with involution

τ : A—+A,

and suppose u e center(^) is a unit fixed under τ . Define an involution

τu: A[t,rι\—>A[t9Γ
ι]

as τ on A and τu(t) = ut~ι, then there is an exact sequence

A special case is τ~ι, which we abbreviate as τ~ . Consequently,
the exact sequence above is extremely efficient for calculating the
groups Z^(Z(ζ3)π x Z " ) , but, because of the group Lξ(Z(ζ^)π) ap-
pearing in the sequence, it is not quite optimally adapted to the study
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of the map sπ of the introduction. For that we need a further class
of L-groups.

The L groups L%(A; Z/2) are defined in terms of algebraic models
which consist of n-dimensional quadratic Poincare complexes D with

dD = δD®δD

where δD is a closed Poincare complex of dimension n - 1. Bordism
is given by an n + 1 dimensional Poincare complex W with

dW = I

There is an exact sequence

(3.3) '

where dC = δD.

Lh

n(A; Z/2)

and (3.1), 3.2 fit together to give the commutative diagram

X2

(3.4)

x2

; Z/2)

Lh

t(A[t,Γι},τ-)

We can use the map v in (3.4) to obtain information about

eζi: a*{Bπ Z/2)—>Z*(Z(C3)π; Z/2)

because the following diagram commutes

Ω,(5 π ; Z/2) - ^ L5(Z(C3)π, Z/2)

-(3.5)

This procedure is especially effective when Ko(Z(ζ^)π) = 0 which is
the case when π — 1, Z/2 or Z/4 since then v is an isomorphism.
The point is that standard techniques with standard closed Poincare
duality chain complexes allow us to calculate the image of the map βζ
above, but the map έζ3 is more complex, since it requires Z/2 type
chain complexes, and the interpretation of the image is also more
complex. This will be illustrated in the next two sections where we
study the explicit images of the map βζ for Z/2.
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There is also a product pairing

hi(3.6) 4 ( Z ; Z/2) ® Lj(Z(C3)π; Z/2) -^-> Lf+, (Z(ί 3 )π; Z/2)

which fits into a commutative diagram analogous to (3.5)

(3.7)

Z*(Z(C3)π,Z/2)

T X Z ) > I*(Z(C3)πxZ )

We have from ([10, page 173]) that

' Z/2 generator / , 7 = 0 mod 4

L J ( Z ; Z / 2 ) = L ί ( Z ( Z - ) ) = ^ ? generator y , 7 ^ 1 m o d 4
Λv ' / y ΛV v /y j Z/2 generatorτ, 7 = 2 m o d 4

0 7 = 3 mod 4

Moreover, from [3] or [9], the map

έζi : yn >L*h{Z)

is given by the formula

Thus, we obtain the general form of the evaluation formulae similar
to that given in [13], as

COROLLARY 3.8. There are well defined elements z*>ιc, γ*,κ τ*,κ

in H*(Bπ Z/2) which have the property that the image of {M, /} e
Ω*(J?π, Z/2) in Z^(Z(C3)π; Z/2) is given by a collection of formulae

((V2f*(u,κ), [M]) + (FSq 1 VΓ{V*,κ),[M])

one for each generator K in L^(Z(ζ^)π, Z/2).

In our explicit case it turns out that the terms involving y are 0,
since we have

THEOREM 3.9. The maps

eφ*): Ω*(5π)—l*+1(Z(C3)π)

έφ* ): Ω*(Λ; Z/2)—.Lί+1(Z(C3)π; Z/2)
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are identically zero while the map

eφ* ) : Ω*(Bπ; Z/2)^L*+ 2(Z(C 3)π; Z/2)

is multiplication by the non-trivial element in L%(Z(ζs) Z/2) = Z/2.

Proof, {y} is represented by the formation

z - 1

(3.10)

with generators ^4, B where <9i? = 2^4, and φ\ : B*—+B.
This can be verified by observing that the formation associated to

the complex above (see [10, p. 162], for details on how to obtain this
correspondence) is

But as in ([10, pp. 169-173]) this is the boundary in the (symmetric) lo-
calization sequence of the torsion form {Z/2, 1/2} which represents
the deRham invariant.

y θ y is an explicit boundary as follows. Let {V, d, Ψ} be the
complex

(3.11) = z

ψ=i

with generator a in dimension 0, b in dimension 1. Define

f : γ@γ_^{Vyd9Ψ} b y f(Ai) =

Then we easily verify the formulae

Ψ + Ψ* = fφj* = {6*^

ΘΨ-Ψδ = efφof*,
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so {γ@γ9V,f,φi9Ψ} is a symmetric pair. We check that it is, in
fact, a Poincare pair. Let Y be the mapping cylinder of / , so

Y = F θ Σ ( 7 θ 7 ) with d = (d

ef ®\

and consider the map

(3.12) (φ/*,Ψ):K2-*—+Y.

It is easily checked that (3.12) is a chain homotopy equivalence, but
this is the requirement that we have a Poincare pair.

Now we check the image βζ(γ). It is given by the diagram

(3.13)

Z(C3)

2

ψ =

Z(C3) - ^ - > Z(C3)

From [5] it follows that L\{Z(ζ$)) = 0, so ^ (γ) is a boundary.
Indeed, in the localization sequence the form

'ί3-(C3)2 2
- 2 2(C3-(ί3)2).

has boundary the torsion form (F4, 1). Then it is easily checked that

the 2-dimensional Poincare pair {dW, W) where W = {Wi =

(Z(C3))2, Ψ} has boundary ^ζ(y).
This proves the first two statements in 3.9, so it remains to check

έζ (τ). Consider the union of the Poincare pairs

(see [10, pages 135-136] for details of this construction). This is
a closed Poincare complex in Z^(Z(ζ3)), and its image in
L\(Z(C3) Z/2) represents eζ(τ). On the other hand,

Z = L

is an injection, so, in order to evaluate the class of Yf in
we need only evaluate its image in L^(Q(ζ^)). But

since βζ(y) and βζ ( ) are rationally trivial.
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From the definition of { W, Ψ} it follows that

W®Q = {Q(C3)ΘQ(C3),Ψ}

diagonalizes to

3 - ( ί 3 ) 2 0
0 2(C3 - (C3)2)

in L%(Q(ζ$))9 and twice this is the image of the generator of

L%(Z(ζ3)). The proof of 3.9 is complete.

REMARK 3.14. In particular 3.9 implies that the only coefficients
appearing in the general product formulae have the form {(V)2f*(κ),
[M]) or ((Sq1 V)2f*(κ'), [M]). The first terms are unavoidable, but
the second terms are highly undesirable. For our model groups we will
return to these second terms in §6.

4. The products Sι xτ KP4n~ι. The fundamental group of Sι xτ

RP 4 "- 1 is Z x Z/2 = {τ, T \ T2 = 1, Tτ = τT} and the associated
involution of the group ring Z(Z x Z/2) is generated by τ ^ - τ " 1 ,
T <-+ T, moreover its universal cover is R x S4n~ι.

An equivariant cell decomposition is given as the product of the
usual decomposition of S4n~ι into + and - hemispheres and the
line into the union of its integer points and the intervals [m, m + 1],
as m runs over the integers. Moreover, on cells of the form e\ ® βj,
the operation of the fundamental group is just the product action as
long as j Φ An - 1, but for j = 4n - 1 we have

T(βi x e+n_x) = βi x e~n_x, while τfo ® e+n_x) = - τ ( ^ ) x e^n_x.

Our object in this section is to study the class of the image (Z, -(£3))
® {^, φ} in Lg(Z(C3)Z/2 Z/2), where {^, φ} is the Ranicki sym-
metric structure induced on the complex for Sι x ^ R P 4 " " 1 via a suit-
able diagonal approximation to the lifting of the geometric diagonal
map

Δ : Sι xτ RP4*-1—*(R x S4n~ι) xz/2xZ (R x S4n'1).

Specifically, since the first Stiefel-Whitney class of Sι x ^ R P 4 " " 1 is
non-trivial, the generating chain associated to the chain map ^4n-*—•
% actually occurs in the complex {% ® %) ®z(ZχZ/2) Z^ where Zφ

is the Z(Z x Z/2) module induced by the homomorphism
φ : Z x Z/2—^Z/2 associated to the the first Stiefel-Whitney class.
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But it is explicitly given by taking the usual equivariant diagonal ap-
proximation

(Λ\\ Λ Φ ^ &\ Φ

tensoring it with Zφ, and taking the image of the cycle associated to
a generator of the homology group

(4.2) fl4i,(« ®Z(Zχz/2)Z*) = Z.

Recall, that an equivariant diagonal approximation on W(S4n~ι) is
given by the formla

(4.3) Δ#(e+) =

(see e.g. [11] for details), and a Z-equivariant diagonal approximation
on R is given by

On tensoring these maps together we get a suitable diagonal approxi-
mation on the An - 2-skeleton. It remains to extend these maps over
the An - 1 and An skeletons.

On the An - 1 skeleton everything is defined except for the cell
eo χ etn-\ - ® u t o n ^ s c e ^ tk e P r e v i ° u s diagonal approximation pre-
serves the boundary, so extend the map by equivariance to its trans-
lates under Z x Z/2. The carrier of the image is correct (and acyclic),
hence the map is correct on the An - 1 skeleton.

The An skeleton is a single copy of Z(Z x Z/2) with generator
e\ x etn-\ > a n c * a l°nS b u t direct calculation gives

A{deixe+n_x)

x Tτ{ex x < π _ i ® 1) + l®^i x ^ _ i

el X ei ® Γ / τ e 0 X e4n-ι-l

^ i eo + τT x τT(e0 x e^n_x ®e0 x £

Once more, the class above has the correct acyclic carrier, hence pro-
vides (after extending equivariantly) a suitable diagonal approxima-
tion.
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THEOREM 4.4. The class of

in L%n(Z(ζ$)Z- xZ/2) is the image of the class (l)-L(Γ) coming from

L%n(Z(ζ2)Z/2) under the usual inclusion.

Proof. After tensoring with Z^ the chain above gives the map φ as
follows:

(0) (ex xe^y—tTτieoxeo)
(1) (e\ x £4/1-2)*—> - ^ o x *i

(2) (e\ x e4n-?)*—• - eo x Γτ^2

(3) (£>i x ^4«-4)*—• - eo x τβ3
i c y /^ c-qn ^y ' Λ c j ' ^ ^2, U 3

(4) (e! x e4n_5)*—^^o :
(eo x £4H_4)*—>^i '

(5) (^i x e4π_6)*—>e§ :

and from here on it is periodic. Thus we have the array

έ?o x 22« <?i x e2n-\ (eι x e2n)* (eQ x e2n+\)*
(e0xe2n)* 1 -ζ + τ~ιTζ2 -(τ"1 +1) T-\

(exxe2n-x)* -Tτζ-ζ2 0 -(Γ+l) 0
e\xe2n τ - 1 -(Γ+l) 0 0

e0xe2n+ι T-\ 0 0 0

Do row reduction so as to replace the second row by the sum

R2 + ζτR4 + C-̂ 3 = -^2

Then the image of R2 is replaced by

(1, -C(Γ+1), - ( Γ + l ) , 0)

and it is easily checked that R'2 and R\ map onto generators for the
image. Thus we choose (R'2, Rι) as a basis for the free complex and
calculate the resulting non-singular form as

1 1
I 1 + Γ.

But this is equivalent to

1
(4.5) v o

and the result follows.
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5. The case Z x Γ Z . Z x Γ Z = {T, τ \ τ~ιTτT = 1}, and a
resolution is given by the complex

where

(5.2) 0[e] = ( Γ - l ) [ l ] ,

= (T~ι + τ-ι)[e] + (τ" 1 T - τ

We define an involution on the group ring Z(Z x^Z) by T +-+ T~ι,
τ <-> ( - τ " 1 ) . Then we have

PROPOSITION 5.3. Gήwz <z homomorphism λ : Z x*^ Z—>π, ί/ẑ r̂  w
an involution preserving homomorphism

X: ZxΓZ—^π xZ",

which, on projection to π is just λ.

(Indeed, Z x^ Z/[Z x ^ Z , Z x^ Z] = Z and the projection p:
ZxγZ—>Z, of Z x ] r Z onto its abelianization is involution preserv-
ing provided Z is given the involution τ <-• - τ " 1 . Then the map λ is
the product λ xp, and it is direct to see that it preserves involutions.)

We now describe the explicit quadratic form associated to this
group, resolution, and involution. With respect to the involution, the
dual complex is

C[ir—+C[e]*®C[f]*-+C[A]*

where

A chain equivalence φ : C2~*—+C* homotopic to the equivalence in-
duced from the geometric diagonal approximation (see the remarks
preceding 4.1, 4.2 in §4) is given by the formulae

(5.4) [AY—+11]

[1]*—>-
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In the mapping cone of φ*, when we look at the boundary map from
dimension 2 to dimension 1 we get the array

[e] [/] [A]*
[e]* ζ-ζ2 -(C + Tζ2) -T + r

1 ' [/]* ζT'ι+ζ2 ζ - ζ2 + ζ2T -
[A] (τ-ι + T~ι) τ~ιT-τ~ι 0

When we apply row reduction to the matrix above we find that the
kernel in dimension one of the boundary map d\ is two copies of
Z(Z x T Z), and it is the image of di. Moreover, two generators which
surject onto ker (d\) can be chosen as

(1 - T)[e]* - T[f]*-+(T - ζ\\ - T))[e] + Γ(l - T)[A\*

and

[eΐ + UT ~ ζT-ιτ[A]—>ζ(l - T~2τ)[e] + / + (τT~ι - T)[A]*.

From this we can easily calculate the matrix of the associated skew
symmetric quadratic form as

(Here Qκ denotes the invariant for the Klein bottle.) Now, consider
the surjection

v\ Zx Γ Z—>Zβ

defined by u(T) = T, v(τ) = 1. As above, this gives the involution
preserving homomorphism

v\

and we have

(ζ2-ζ)(T-l)
f c 7 , ΰ ( Ω x
(5.7) HQK) =

However, the following equivalent form will be more useful to us

1 OW (ζ2-ζ)(T-l) T + ζ2{\+τ-'){T-\)
ζTτ l ) {-T- ζ(l - τ)(T- I) -(ζτ + ζ2τ~')

1 -ζ2Tτ~x

0 1

(C 2 -C)(Γ- i )
-T-(ζ + 2τ)(T-\) -
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In particular we have

PROPOSITION 5.8. (T) ®ϋ(Qκ) ~ (-1) ® 0(QK).

(Indeed, using the conjugate form of 0{QK) given above we see
that

has a kernel with a basis of the form

and the result follows.)
Finally, we need to point out the result of using the product in

Ω*(5Z/2 Z/2), at least as regards its effect on the map λ.

COROLLARY 5.9. The product map

γ:{SιxτS
ι}x {Sι xτS

ι}-+Bz/2 x Bz/2 = Bz/2xZ/2

is represented in L^(Z(£3)Z/2 x Z/2; Z/2) either by 0 or by the image

of the class (l)±(Tι)±(T2)±(TιT2) in Lg(Z(C3)Z/2 x Z/2).

Proof. Denote the product map Bzf2 x BZ/2—>BZ/2 by p, then
the composite map pγ is null cobordant as an element in the
bordism group Ω 4 ( 5 z / 2 Z/2). Consequently, eζjjpy) is also 0 in
L§(Z(C3)Z/2 Z/2). But, at the same time the class of {Sι xγS1} in
Ω*(/^;Z/2) is also 0. Thus all three non-trivial projections
BZ/2xZ/2—*BZ/2 take βζ (γ) to 0. Now, from [5], we know that
Z^(Z(C3)Z/2 x Z/2) = 03, while Lg(Z(C3)Z/2 x Z/2) = Z 4 with gen-
erators (1), (l)±(Tx)9 ( l )±(Γ 2 ),and (l)±(Tι)±(T2)±(TιT2). But it
is direct to check that after tensoring with Z/2, the intersection of the
kernels of the various projections is a single copy of Z/2 generated
by the element in the corollary. The result follows.

6. The proof of the main theorems.

LEMMA 6.1. Let (&, φ*)9 [β, </>*) be Wo symmetric Poincare du-
ality complexes of even dimensions 2n, 2m respectively. Then

where g : Z(C3)—^Z(C3) is the Galois automorphism.

(The proof is direct. The associated class for eζ (& 9 φ*) is
(gf, -(/)*C3), and similarly for 31. When we tensor them together
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we get the complex (^ ® 9!, 0* ® 0UC3)2) N o w > apply the instant
surgery construction, as was done in §4 and §5. It is easily checked
that when the dimensions are both even, exchanging - £ 3 for (C3)2

has the effect of exchanging (£3)2 for £3 and switches the signs on
all the terms in the matrix of the associated non-singular quadratic
form.)

We now consider the case of BZ/2 . From § 1 we need only consider
the images

ζ3 ζ3 eζj(Sι x Γ R P 3 ) , . . . , e^(Sl x

and we have

LEMMA 6.2. Each of the generators above has non-trivial image in
L(j(Z(C3)Z/2 Z/2), but every product maps to 0.

Proof. The results of §4 and §5 imply the non-triviality of the images
of the generators. Moreover, from 4.4 we have that βζ(M(i)) is the
image of (1)_L(Γ) for i > 1. Now, 5.8, 5.9 show that the product of
the generator in dimension 2 with any of the above generators gives 0
in Z^(Z(C3)Z/2; Z/2). Likewise, the product

and this certainly goes to 0 in L^(Z(ζ3)Z/2 Z/2). Finally, the results
of [5] give that ((l)-L(Γ)) ® eζi(Sι) = 0, and 6.2 follows.

COROLLARY 6.3. The K
 ys for BZβ

 a r e non-zero precisely when the
dimension has the form 2ι, for i = 0, 1, 2, . . . .

(Since the model manifolds have trivial Wu-product classes V2,
Σ ^ S q 1 ^ ) , (Sq1 V)2 it follows that the homomorphism into
Z^(Z(C3)Z/2; Z/2) directly calculates the TC'S. See e.g. [13], [3], [14],
and especially Theorem 3.9.)

There are some additional difficulties for the group G = Z/2 x Z/2.

LEMMA 6.4. (a) eζJ,M(ϊ) x 1), eζs(l x M(i))9 ^ 3 ( M ( ° ) x M(0))-

are all non-zero.
(b) eζ+M(i)xM(j)) = eζ3(M(j)xM(i)) all i, j .
(c) eζ (M(0) x M{i)) = 0 for i > 1, while eζ (Af(/) x M{j)) =

(1)±(Γ 1)±(Γ 2)±(Γ 1Γ 2) = VφOfor ij>\.
(d) ^ ( M ( l ) x M ( l ) ) is either 0 or V.
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Proof, (a) L%(Z(ζ3)G) = Z/2 Θ Z 4 and in [7], [5] we showed that
Sι x Sι represents the non-trivial torsion element in this dimension.
Likewise, to see the rest of (a), use the projection BZ/2xz/2~*^z/2

(b) From 6.2 the composite

Pi(eζ3(M(i) x M(j))) e L*(Z(C3)Z/2; Z/2) = 0

for each of the three projections Z/2 x Z/2—>Z/2. Moreover, in di-
mension 0, the intersection of the three kernels is generated by V (in
Lg(Z(C3)Z/2) we have that Pi(V) = 2Xt for each /?/), while in di-
mension 2 the intersection of the kernels is the image of the torsion
element in Lί*(Z(ζ3)G).

(c) The symmetric complex associated to Sι {π\ = Z) is

Z(Z) > Z(Z)

(6.5) τ~ι-ι τ-\

Z(Z) > Z(Z)

Its product with —C37^ gives the formation (over G)

(6.6) (ZCΘZG, K = ZG(Tι-l9 ζ3TxT2 + (ζ3)
2T2)).

Similarly, the product of (6.5) with - ζ 3 gives the formation

(6.7) ( Z G θ Z G , K = ZG{Tx-\, ζT~ι + (C3)
2))

In each case projection to the second factor gives Ff+ θ F3 as
quotient. Moreover, the induced torsion forms on these two modules
are isomorphic, so standard local-global arguments show that their
sum is equivalent to a torsion form with kernel F3~

+ θ F3 which
has Euler characteristic zero. This implies βζ (M(i) x M(0)) = 0. On
the other hand 6.1, 4.5 show that βζ3(M(i) x M(j)) = V for /, j > 1.

d) follows as in the proof of (b).

For D(2ι, 2) we have

LEMMA 6.8. The maps φ) : Z/2 x Z/2-^D(2i, 2) satisfy {φ)){V) φ
0 in the groups

Proof. The ring Q(D(2ιι, 2)) splits as

M2(Q(λi)) ΘAf2(Q(λl - 1 )) θ ΘM2(Q) Θ Q + + θ Q + " θ Q " + θ Q
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where λj = ζ2J + (ζ2j)~ι > a n d M2(F) is the 2-matrix ring with coef-
ficients in F . Let / be the induction map from the representation
ring for G to that for D{2i, 2), and let Vj be the irreducible rep-
resentation associated to the component M2(Q(λj)) above, then we
have

I(Q+ε) = Vl~x Θ Θ Vλ Θ Q + + Θ Q " + Θ Q ~ Θ Q

Hence,

in L*(Q(ζ3)D(2ι, 2)), and the results of [5] show that the correspond-
ing element in

Lh

0(Z(ζ3)D(2ι, 2))

is not divisible by 2.

For the quaternion group Q(2ι) we have

LEMMA 6.9. The generators (in 1.28) all have trivial images in
Lιl(Z(ζ3)Q(2i)\ Z/2) if their dimension are 4 or greater, while those
of dimension < 4 all have non-trivial (and independent) images.

Proof. The non-triviality of all the generators above is clear for di-
mensions < 3. (In dimension 3, this is just the Cappell-Shaneson
example as described in [5, §8], while in dimensions 1, 2 project onto
the dihedral group). The triviality of the classes eζ({M(i)9 f}) fol-
lows from an argument completely analogous to that in the proof of
6.8. The point is that the image of (1)+ for Z/2 is the class (1) in
Lg(Q(C3)Q(2θ), but (l)-L(Γ) is represented by 2(1)+. The proof is
complete.

Finally, to complete the proof of the results in the introduction we
need to consider the extra terms ((Sq1 F)2/*(/c'), [M]) which could
possibly appear in the product formulae for the map eζ . For oriented
M it suffices, as usual to analyze the situation for the model groups,
and we have

THEOREM 6.10. For the model groups the coefficients above are iden-
tically 0 whenever M is an oriented manifold.

Proof. For π = Z/2 or Z/4 we know that Lh

3(Z(ζ3)π; Z/2) = 0,
so e^(τ o M(0)) = 0 in both these cases. Likewise, when / > 1, 6.1
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implies βζ (τoM(i)) = 0. But in any case βζ (τoM(i)) will involve de-

tection by coefficients ((Sq1 V)2f*(b), [M]), and since Sqι(b) = 0,

it follows that

(6.11) (Sq1 V)2Γ(b) = Sqι(VoSqιVof(b))

and so will vanish in top dimension on any oriented manifold.
When π = Z/2 x Z/2 we have that eφ o M(l) x Af(l)) is

represented by either τ o V or 0 from 6.4. But 6.1 implies that τ o
V = 0 so this class vanishes. Otherwise,

= eφτoM{ϊ))xMU)) =
and unless both /, y = 1 the proof for Z/2 implies that the above
class gives 0 in Lj(Z(C3)Z/2 x Z/2; Z/2).

When π = <2(2') we dispose of the classes in dimension 1 by
noting that they factor through Z/4, hence βζ (τ o Af(0)) represents
0 in L^(Z(C3)Q(2/); Z/2). The remaining classes in dimensions 2
and 3 on producting with τ give formulae involving only the classes
in dimensions 2 and 3 in H*(Q(2ι) Z/2), but these classes are all
in the kernel of Sq1, so 6.11 implies the vanishing of these classes on
oriented manifolds and 6.10 follows.
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