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SURGERY WITH FINITE FUNDAMENTAL GROUP
I: THE OBSTRUCTIONS

R. JAMES MILGRAM

This paper determines the surgery obstructions for all surgery
problems of the form

id x σ : M2 x K4k+2 -> Mn x S4k+2

as explicit elements in the surgery obstruction groups Lh

n+2 where
σ: K4k+2 —• S4k+2 is the usual Kervaire problem and Mn is a closed,
compact, oriented manifold with π\(M) finite. Due to the well known
observation that the surgery obstruction for a surgery problem on
a closed manifold depends only on the resulting cobordism class in
Ω*(Bπ{(M) x G/TOP), this is the fundamental step in obtaining the
surgery obstructions for all surgery problems over closed manifolds,
as long as τt\{M) is finite. (In the case τt\{M) infinite, the situation
is much more complex. A key part of the question would be resolved
if one could prove the Novikov conjecture though.)

One of our main results is that only three types of obstruction can
occur. This is, in fact, the first step in proving the oozing conjec-
ture. The proof is completed in part II of this paper where we give
characteristic class formulae for evaluating these obstructions.

In 1965 Dennis Sullivan proved a surgery product formula which
made it possible to write down characteristic class formulae for eval-
uating the surgery obstructions of degree 1 normal maps over simply
connected manifolds. Then in [W2] C. T. C. Wall made a prelimi-
nary study of the problem of characteristic class formulae for surgery
in case the base is a closed manifold with finite fundamental group.
He was able to show that formulae similar to the Sullivan result must
exist in theory, and, moreover, are completely determined if they are
known when the fundamental group is a finite 2-group.

W. Pardon [P] and G. Carlsson-R. J. Milgram [C-M] showed that
if one looked at the surgery obstruction groups Lp

k{Zπ) relevant to
the problem obtained after crossing a given surgery problem with a
circle Sι then these groups are determined entirely by the rational
representation ring of π whenever π is a finite 2-group. Based on this
I. Hambleton [H], and independently B. Williams and Larry Taylor
[T-W], gave an explicit identification of all possible obstructions for
the Sι x ( ) problem, and showed that there were examples for which
each was realized. However, the general case remained out of reach.
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In a sense this was surprising since Hambleton-Milgram [H-M],
had already given effective methods using the LP{ ) groups above,
together with a second explicit functor of the rational representation
ring, to obtain descriptions of the surgery groups Z^(Z(π)) relevant
to the original problem. What resulted were approximately 23 distinct
types of classes which could possibly be obstructions for problems over
closed manifolds, and what was needed was a method for determining
exactly which among them actually occur.

In this paper we consider this question in the basic case of products
with the Kervaire problem, that is, we analyze all problems of the
form

(0.1) id xσ : Mn x KAk+2—>Mn x S4k+2

where σ: K4k+2—>S4k+2 is the simply connected Kervaire problem
and π\(Mn) is finite. In these cases we give explicit recognition for-
mulae for showing exactly which surgery obstructions are possible (ex-
actly 3 of the types above).

In part II, [M4], of this paper we apply these results together with
some explicit calculations to obtain cohomology characteristic class
formulae in the manner of Sullivan's original theorem. As an imme-
diate corollary we then have the proof of the (codimension 3) oozing
conjecture (which will be explained further below).

In order to complete the study of surgery problems on closed mani-
folds with finite fundamental group there remains only the problem of
studying the obstructions in Lfc(Z(π\(Mn)); Z/2) which arise from
problems of the form

(0.2) idxτ : Nw x (Sι xτK
4k+2)—+Nw x (Sι xτS

4k+2)

where Nw is a Z/2-manifold and τ represents the twisted Kervaire
problem [M2], [M-S], [T-W].

Implicit in our results on the ordinary Kervaire problem are the
necessary techniques to analyze the twisted Kervaire problem. We
do not discuss these results here primarily because the length of the
paper would become excessive, but we will present them in part III
[H-M-T-W], which represents joint work with Hambleton, Taylor, and
Williams.

Among the consequences of these results are an effective determi-
nation of the set of homotopy triangulations of a given manifold M
which completes the classification theory for all oriented manifolds
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with finite fundamental group, since it gives an effective determina-
tion of the map d in the surgery exact sequence

( 0 3 )
Λ , G/{TOP

Additionally, using the Quinn-Ranicki assembly maps there are spec-
tra L(Z(π)) whose homotopy groups are the surgery groups Z^(Z(π)).
The surgery exact sequence above can be interpreted in terms of a map
of spectra

d : M+ Λ G/(TOP or PL)—->L(Z(π))

and the cofiber of d is a spectrum closely connected to F{M)j Block
Homeo (M), where F(M) is the space of homotopy equivalences of
M and Block Homeo (M), the space of block homeomorphisms of
M. In this respect, our results lead to an explicit determination of d
on the space level as well, and consequently to an explicit determina-
tion of the homotopy type of the cofiber. Again, we defer a complete
exposition of these results to the sequels.

Before we describe the main result of part I we give more detail on
the history of the problem.

It had become quite clear in the mid '70's that the key question was
to evaluate the obstruction for problems of the form 0.1. In view of
Sullivan's Characteristic Variety Theorem the original way of thinking
about these obstructions was to try to relate them to simply connected
obstructions on various codimension k submanifolds of Mn .

From this point of view J. Morgan originated the so called oozing
conjecture which, in its original form, asserted that codimension 2
submanifolds would suffice. This was shown to be false by Cappell-
Shaneson [C-S], when they showed that the surgery problem

(S3/Qs) x K4i+2—+(S3/QS) x S4i+2

was non-trivial and had to be detected on a codimension 3 subman-
ifold. (Here, Qg is the ordinary quaternion 8 group, and the action
on S3 is the usual one.) However, the only other types of examples
known at that time were the original example of C.T.C. Wall [W3]

Rp4/+1 χ A 4 f c + 2 _ > R p 4 ι + l χ

which he proved represented the non-trivial element in

L*(Z(Z/2)) = Lf(Z(Z/2)) = Z/2,



68 R. JAMES MILGRAM

and the somewhat unexpected example of Morgan-Pardon (see e.g.
[M-R] for a discussion) which has the form

R P 4 / + 1 x L\j+ι x KAk+2—+RP4/+* x L\j+ι x S4k+2

where L4

4

jΊ~ι is the Z/4-Lens space S 4 / : + 1 / ( z / 4 ) . This example rep-
resents the non-trivial torsion element in

Lg(Z(Z/2xZ/4)) = Z 6 Θ Z / 2 .

In [H], [T-W] the question was understood for L£(Z(π)). The result
was that either the problem was already non-trivial when regarded as a
simply-connected problem (hence determined by the previous results
of Sullivan) or there was a homomorphism

φ: π—>Z/2

and the induced (pushed foreward) surgery problem was non-zero and
determined by the formulae of [W2]. (In particular, both the Cappell-
Shaneson example and the Morgan-Pardon example become trivial
when crossed with Sι.)

This prompted an energetic attack on the general problem. First,
new examples were actively sought. Then extensive studies of the
homology of finite two-groups were attempted to see if there were
some limits on the types of classes due to homological restrictions.
Both attacks failed. This is not surprising since we will prove that
all examples are either of the types above or are induced up to larger
groups from subquotients where they have the types above.

Assume that we are given a closed, oriented, manifold M together
with a homomorphism / : π\(M)—+π for a fixed group π. This data
determines a surgery obstruction class σy(idxσ) e L^im,M^2(Zπ).
If TV is a subquotient of π, i.e. there is a subgroup H c π and a
surjection φ:H—+N,

H -+ π

N

then there is a corresponding operation on M: take the induced H
cover M with fundamental group f~ι{H), together with the homo-
morphism φo f\ : πi(Af)—>ΛΓ,

(M,f)»{M,φof\).
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This gives a new surgery obstruction σφof\(iάxσ) e ( )
In what follows \π\ < oo and we are only interested in two special
classes of subquotients:

(1) N is a quaternion group of order 2n , or
(2) N is an abelian quotient of the 2-Sylow subgroup Syl2(π) itself.

Our first main result is

THEOREM 0.4. Let (M, f) be given as above with π finite and
suppose dim(Af) ψ 2(4). Then the surgery obstruction σ/(idxσ) is
non-trivial if and only if one of the obstructions σψof\ (id x σ) is non-zero
as N runs over quaternion type subquotients as above, Z/2 quotients
of Syl2(π), or dim(Λf) = 0(4) and the index of M is odd.

(This is a combination of Theorem 6.1 and Corollary 8.7 in the
body of the text.)

In more detail, the quaternion subquotients correspond to the
Cappell-Shaneson example and give non-trivial elements only for

dim(Λf) = 3(4),

(6.1 and 6.12). The Z/2 quotients of Syl2(π) correspond to Wall's
example and give elements only for

dim(M) = 1(4).

Moreover, the images σy(idxσ) generate a subgroup of L%(Zπ) iso-
morphic to H{(Bπ Z/2), (6.13). The remarkable fact that

σ/(idxσ) = 0 if dim(M) = 0(4)

and the index of M is even is demonstrated in §8. Of course, if the
index of M is odd, then Sullivan, in his thesis, showed that the simply
connected surgery obstruction, σeof(iά xσ) is non-zero where eof is
the projection of π\(M) onto the trivial group.

If the dimension of M is =2(4) the situation is somewhat differ-
ent. In order to explain it we must describe the techniques actually
used to prove 0.4.

We introduce certain intermediate L-groups, L%(Z(λ)π), in §1 and
show that the product formulae discussed above factor through them.
More exactly, it is known, [W2], that the surgery obstruction above
depends only on the bordism class of (Af, /) in Ω*(Z?π) and we
construct homomorphisms
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(see e.g. (1.17)), and homomorphisms τ#: L*(Z(λ)π)—+Z^+2(Zπ) so
that the composite τ# o eλ[(M, /)] = oy(id xcr). Most of our effort
here is devoted to calculating the groups L^(Z(ζ3)π) (a special case
of λ), and the map τ# .

Within these intermediate groups we show that only the classes cor-
responding to the examples above survive to generate candidates for
non-trivial product obstructions when dim(M) φ 2(4). This gives
most of the results above. Explicit calculations for certain model
groups are necessary to complete the proof. These are given in §8.

When dim(M) = 2(4) we find, corresponding to the Morgan-Pardon
example above, that further cases are necessary. We prove

THEOREM 0.5. Let π be finite, then

im{eζ3:Ω4ι+2(Bπ)-+Lh

2(Z(ζ3)π))

is contained in the torsion subgroup and there is a "kernel" V2 c
tor(Z^(Z(C3)π)), natural with respect to restriction and projection, so
that if βζ^M, f) G V2 then τκ o e^{M, f) is zero in L* (Zπ). More-
over, the composite map

Ω4ι+2(Bπ) X Xor(Lh

2(Z(ζ3)π))-^tor(Lh

2(Z(ζ3)π))/V2

is non-zero on {(M, /)} G ζl4i+2(Bπ) if and only if there is a subquo-
tient

Z/2 xZ/ltH^π

so that eζi(M,φof\) φ 0 in tor(Z^(Z(C3)Z/2 x Z/2))/F2 = Z/2.

(This comes from 6.1, (7.3) and 7.9.) Using (7.3) and 7.11 we see
Φ

that, given a subquotient Z/2 x Z/2 +— H <-> π, the map above will
be non-zero whenever there is a homology class β G H2{Bπ\ Z) so
that, under the composite map

yθ D _\ yO D Ίif± yO u

we have t r*o(Σ%)*(^) φ 0 in H2(Bz/2xZ/2 Z) = Z/2. (In [M4]
we show the converse.)

Thus we identify the image of βζ in L\{Z{ζ3)π), and the resulting
surgery obstructions are then given as

We know from the Morgan-Pardon example that iχ is non-trivial in
some cases. However, we do not, at this time, know exactly when an
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element in im(^ζ ) lies in Ker(T^) for an arbitrary finite 2-group π.
Hopefully 0.6 will clarify this statement.

REMARK 0.6. The dihedral groups D2» for n > 3 give examples
where the map βζ : Ω2(B£>2n)—+Lij,(Z(ζ3)D2») is non-trivial. In par-
ticular, these dihedral groups give examples in dimensions congruent
to 2 mod(4) where non-trivial restriction and projection are neces-
sary to detect what is happening. Unfortunately, for these classes the
image of τ# is zero, so they do not give examples where the actual
surgery obstruction is non-zero. It is currently unknown whether such
examples exist.

The intermediate groups, L%(Z(λ)π), play a crucial role in part II,
([M4]), as well. Indeed, we will actually prove a strengthened form of
the oozing conjecture there which holds at the level of the intermediate
groups themselves and pushes forward to the surgery groups to give
the original conjecture—that codimension 3 ooze suffices when π is
finite—as a corollary. In other words, in part II we will study the map
eχ and, based on the calculation of the groups L%(Zπ) here, will give
characteristic class formulae to determine eλ.

It seems that these intermediate groups provide a new and pow-
erful invariant for closed manifolds. By way of further illustration,
in part III, ([H-M-T-W]), we will construct a second type of surgery
factorization, using the same kinds of intermediate surgery groups.
This factorization enables us to analyze the Z/2-surgery obstructions
in (0.2). But that essentially completes the analysis of (/z-cobordism)
classification when τt\ is finite!

There still remains the more delicate problem of s-cobordism clas-
sification, but the current techniques seem to even have implications
here. For these intermediate L-groups it seems to be possible to an-
alyze the Ls

k( ) groups. (We have already analyzed the L'k( ) groups
here and only certain SK\ ( ) groups need to be understood to get to
the 5-cobordism category, but results of Oliver [O] imply that this is
within range.) Thus we appear to be very near complete understanding
of classification for manifolds with finite fundamental group.

This work evolved primarily during visits at The University of
Edinburgh, Northwestern University, and McMaster University. In
particular I would like to thank J. Davis, I. Hambleton, A. Ranicki,
and B. Williams for their help and hospitality.

1. The Clauwens factorization and its refinements. We begin by de-
scribing a universal construction based on the following observation
which I believe is due to Max Karoubi.
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PROPOSITION 1.1. If A is a ring with involution—for which there is
a central element a with a + ά = 1 then the natural inclusion

is an isomorphism where L*(A) is the surgery obstruction group and
L*(A) is the Mishchenko-Ranicki symmetric L-group.

Proposition 1.1 holds with any of the usual decorations, s, h, p,
or ' . Let A be any ring with involution Define a new involution on
the polynomial ring A[s] by setting as1 = α(l - s)* and define the
map

(1.2) υ:

as the composite

L*(A) ^ L*(A) ® L*(Z[s]) - ^ L*(A)[s])

where r is the Ranicki pairing and 1 ® (s) sends the #-dimensional
symmetric Poincare complex (C,φί)9 {φ{ : Cn~j-*Cj+k, satisfy the
conditions

where δσ-j = (-l)Jδ : Cn-J->Cn-J+ι} to the complex (C, φί) ®
(Z[,s], 5). (Again, see [R2], in particular p. 91, for more details on the
definitions and properties of (C, φί).) Explicitly, the correspondence
is given by sending C* to the tensor product with Z[s], and φί to

i

Before we can exploit (1.2) we need to examine a somewhat more
general construction. The modules and maps we are about to intro-
duce are not difficult when dealing with free ^4-modules, but we need
them for a wider class of ^4-modules in our applications.

Assumptions. A is a unitary ring with involution τ , S c A is
a central unitary subring fixed under τ , N is a finitely generate4
free S-module, p(s) e S[s] is a polynomial fixed under the extended"
involution on S[s], (i.e. p($) = p(l - s)).

Let a e Hom s (N, N) satisfy p(α) = 0, then we see that
(1) if β E Hom s(N*, N*) is 1 - ά, {N* = Hom s (N, S)}, then
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(2) a defines an (obvious) action of S[s] on N by
0(^)> b e S, which factors through the quotient Sp =

(3) Similarly, β defines an action of Sp on N*, and we will assume
these actions in the remainder of this section.

We use the notation A^ = A ® s Sp, and define functors

®α'• A ^ C — > A C , ®β : A^C—• A C

by ®α(M) = M®s N> a n d ®Λ(M) = M ® S N*. (This makes sense
since Sp is central in Ap.) Also, define a map ^ : ^ * x iV*—•
Map(M x iV, A) by the rule

(1.3) [e'c(φ x p)](m x n) = p(φ(m) ®L Λ) = Φ(m)p(n).

LEMMA 1.4. (a) e£ factors through a map ec : M* ® s ΛΓ*~^
( M ® s N)*.

P

(b) ec w an isomorphism if M w a projectίve Ap module.
(c) Suppose λ e Aut s(N, N*) and β = ^αλ" 1 , then φ : M-^M*

^/ve« implies that
(φxλ): M x AT—+M* x TV*

factors through a well defined map (denoted φ®λ by a mild abuse of
notation since the two tensor products are over Different actions)

φ®λ\ M ® s TV—>M* <g>s N*
P P

and (φ<8>λ)* = φ*<g>λ* when M is projective.

Proof. To check (a) one verifies the following three equations:
(1) ec(φ x p)(sm xn-mx an) = 0
(2) (ec(sφ x p) - ec(φ x βp))(m x n) = 0
(3) (ec(aφ x p)) = a*(ec(φ x p))(m x n).
To prove (b) it suffices to check on free modules since ® preserves

direct sums. Indeed, in this case the elements ec(φ x τ) are dense in
the Horn group, and the finite dimensionality of N over S implies
the result.

To prove (c) note that

(φ x λ)(sm xn-mx an) = (sφ(m) x λ(n) - φ(m) x βλ(n))

for all m, n if and only if λa = βλ.

REMARK 1.5. ec induces a natural transformation (again called ec)

ec: <8>α—>®β

and on the subcategory of projectives (ec)
2 = id.
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EXAMPLE 1.6. Suppose an isomorphism λ : N—+N* is given as λ =
θ ±θ* (so θ represents a non-singular ± symmetric quadratic form
on N). Then if we set a = λ~ιθ we have β = 1-α* =
but θ* = ±(λ - θ) so

and non-singular quadratic forms over S provide non-trivial examples
of the functors ec, ® α , ®^ as discussed above.

Given 0 as above we can define a mapping τ$ on quadratic com-
plexes (C*, 0*) over Ap where the C/ are projective Ap modules
by the correspondence

τθ((C*, φ*)) = (®α(C), l ®

and the 0/ are maps
C n—*—/ /^

with 0o a chain map. By naturality we thus have

THEOREM 1.7. TQ induces maps of L-groups,

Now, consider the composite

(1.8) τθμ: L*{A)—>1

THEOREM 1.9. The following diagram commutes

Lk(A) - ^ Lk{Ap)

Lk(A)t»L{lTl)(B) ^

where (x) is the Ranicki product pairing.

Proof. If (C, 0) represents a e L*(̂ 4) then μ(a) is represented
by (C ®Λ A[s], φs). Consequently, τeμ(C, </>) is represented by

= {0o (8) θ},

and the result follows since this is the definition of the Ranicki prod-
uct (x) .
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REMARK 1.10. In case k is even and p = 0, the above construc-
tion and factorization of (x) is a direct generalization of a construc-
tion due to F. B. J. Clauwens [Cl]. Of course, in that same paper
Clauwens actually proves that his map τ# depends only on the class of
0 G l ( i T i ) ( S ) when k is even. However, in the refined factorization
above, XQ most definitely does depend on the particular representative
chosen within its class in L( l T l )(S), as we will see in Example 2.5.

In the remainder of this paper the key example is the Kervaire-Arf
form

(1.11) K = (ϋ)
a quadratic reduction of the non-singular skew-form (_°j Q ) = λ.
Note that

and this latter matrix satisfies the characteristic equation p(x) = x2-
x + 1. But this is the irreducible equation of the 6th root of unity
- £ 3 . Consequently

)) = z(C3),
and from the naturality of the map XK in 1.9 we have

THEOREM 1.12. For the Kervaire form in (1.11) we have the factor-
ization of the Ranicki product

X*(Z(π)) - ^ - > Lk(Z(ζ3)(π))

Lk(Z(π))®(K) —^ Lk+2(Z(π))

where {K) represents the Kervaire form and Z(ζ^)π is given the invo-
lution

REMARK 1.13. There is nothing magical about Z(ζ$) in 1.12. In-
deed, if we choose alternate representatives for the Kervaire form we
factor through other quadratic extensions of Z . For example if we
set

0 n
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then this also represents (K) when n is odd, but the associated ex-
tension is

and since n is odd, 1 - An is congruent to 5 (mod 8). Thus, there
will be a factorization for each quadratic extension

2

where υ = 5 (mod 8). Indeed,

is only singled out for convenience.
In [H-M-T-W] the factorization that will be used is through

Z ( ^ ^ ) , a ring in which the fundamental unit ε = ^ ^ satisfies
ε = -ε~ι. But this implies that L0(Z(ε), - ) = Z/2, and conse-
quently 2 x L*(Z(ε)π, -) = 0 for all π . This extra relation gives
a factorization of the twisted Kervaire problem, and allows us to
handle the remaining questions on surgery with finite fundamental
group there. However, it turns out, [M-O], that the natural map
L%(Z[s]π, -)—*Z^(Z(£3)π, -) is very close to being and injection,
and hence, the information we obtain about L^(Z(ζ3)π, - ) gives us
the basic structure of the universal groups L%(Z[s]π, -) themselves.

EXAMPLE 1.14. Let C* be the chain complex

A(C3)Π = Cj Λ Co = A(C3)
Π

for some ^(C3)-map d , and (C*, φo, 0i) be a non-singular symmet-
ric complex representing the formation ( Q θ C 1 , C°), (in Ranicki's
terminology [R2], this means that the chain map φo is a chain ho-
motopy equivalence, and the inclusion C°—>Q θ C 1 is just the pair
(0Q, δ)), then if we set

Φi = 01,1 + 0

the representatives for τ^((Ci © C 1 , C0)) are given by the maps

1
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1 0

0 l

0 -I

Note in particular that the coboundary maps are what one would ex-
pect from just tensoring, but the matrices multiplying φχ9χ and 02,1
have been modified by multiplying with λ.

REMARK 1.15. We should also note that the correspondence

M—*Λ

is just the forgetful map taking any A(ζ3)-module M to the same M
but now just regarded as an A-module.

The Ranicki pairings

Lk(A)®Ls(S)—+Lk+s(A)9

Lk(A)®Ls(S)-+Lk+s(A)

behave nicely with respect to μ. Indeed it follows directly from the
definitions that the following diagram commutes

ZΛ(Zπi) ® Ls{Zπ2) —• Lk+s(Z{πx x π2))

0 1 /Γ\
.10) (l<g>μ) (μ)

Lfc(Zπi) (8) L5(Z(C3)π2) —• Lk+s{Z(ζ3){πχ x π2))

The case πx = 1 is especially important. Here, Ranicki's map from
bordism to symmetric L-groups gives the comutative diagram

Ωk(pt)®Ωs(Bπ

(1.17)

Lk (Z) ® Ls (Zπ)

Lk+s(Zπ)

Lk(Z) ® Ls(Z(ζ3)π)

In particular, (1.17) plays a key role since for k > 2 Ranicki shows
[R2] that

( Z k = 0 (mod 4),

\Lk(Z) = \
[ ' ] 0 k = 2 (mod 4),

0 k = 3 (mod 4).
Note that the product pairing above implies that the class γ in
L 4 z + 1(Z) when tensored with the Kervaire problem K must give 0
in Z,4/+3(Z) = 0, so that, by the associativity of the product pairing,
the product γb ® K = 0 in L*(Zπ) for any b e L*(Zπ). Hence, we
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have

COROLLARY 1.18. τκ(γβ) is not in the image of L*(Zπ) ® K for
any b e L*(Z(C3)π).

REMARK 1.19. Recent work of W. Luck and A. Ranicki, [L-R], in-
terprets the construction just given of TK as a transfer map associated
to a specific quadratic form. They also construct transfers associated
to quadratic formations (H®H*, K), again see [R2] for a definition.
These transfers have the form

for appropriate rings A, B. Indeed, this odd dimensional transfer is
the actual tool used in [H-M-T-W] to study products with the twisted
Kervaire problem. However, for that application, as was indicated in
1.13, one can construct the required map explicitly, taking advantage
of the fact that e = -ε~x gives an explicit reason for the triviality
of multiplication by two in the group L*(Z(ε)π, —). This was the
approach originally taken by the author.

2. The evaluation of τ#. There is an involution defined on Ko(A(π))
by the rule {P} <-* {/>*}, where, as usual, P* = HomA{π)(P, A{π))
made into a left A(π) module via the involution on A(π). This
involution makes Ko(A(π)) into a Z(Z/2)-module, and we have the
Tate homology groups //*(Z/2; KQ(A(U))) . Likewise, the involution
gives rise to an involution on K\(A(π)) and the quotient Wh(A(π)) =
jKΊ(A(π))/{C/(A) π} where C/(A) is the group of units in A, induced
from the operation of taking a matrix to its conjugate-transpose, and
we have the Tate homology groups H*(Z/2 Wh(A(π))(^ί(π))). These
groups are periodic of period 2 and become the relative terms in the
exact sequences

>Hi(Z/2 Wh(Λπ))—-*L\(An)—-+L1}(Aπ)

Let A be one of the rings Z, Zp, Q, Qp, or a subring such as
Z(l/6). Let

e: K0(A(ζ3)π)-^K0(Aπ), e:
be the forgetful maps. Specifically, regard an ^(ζ3)-module M as
an ^-module, and v4(ζ3)-module maps M—>N as ^4-maps. e is
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involution preserving since inner automorphism induces the identity
map on K*() and hence induces maps

e* : #*(Z/2; KQ(A{ζ3)π))—>H*{Z/2; K0{Aπ))

e*: H*(Z/2;Wh(A(ζ3)π))—>H*(Z/2:

We now have the preliminary

LEMMA 2.2. There are commutative diagrams

Ht(Z{2; K0(Aπ)) L>(Λπ)

; K0(Aπ))

Ht(Z/2;Wh(A(ζ3)π))

Ht(Z/2;Wh(Aπ))

L*(A(ζ3)κ)

//^(Z/2; Whμπ)) > L^^Aπ) • •••

Proof. It suffices to check that the diagram commutes at the Tate ho-
mology groups. So first we recall the maps H*(Z/2; Ko(B))—^L^(B).
These are given as follows. If * is even then [P] represents β
in #*(Z/2; K0(B)) implies that P Θ P* is free and we have that
dβ = (P e P*, φ) where φ(a, b) = b(a). Similarly, if * is odd, then
[P] represents β in H*(Z/2; K0(B)) means that P = P* and we
have that

dβ = {(P Θ (-P*)) Θ (P* Θ (-P)) , P Θ - P } .

Suppose * is even and ^ € Lf (5) is represented by the pair (P, 0)
with P a finitely generated projective and φ : P —• P* a JB map
such that φ ±φ = λ is an isomorphism. Then d(P, φ) = [P]. On
the other hand, if * is odd and β e l£(B) is represented by the
formation (P®P*, Q), then

d{P@P\ Q) =
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From these definitions it is clear that the diagrams above commute
for the first sequence. The commutativity of the second sequence is
similar.

Next we need

LEMMA 2.3. The diagram of localization sequences below commutes
for A = Z or Zp and S any multiplicative set in A,

> Lξ(A(ζ3)π) —

Lζ(Aπ) —>

Lξ>lOΐ(A(ζ3)π,S)

Lζ>t0T(Aπ,S) —+ Lζ_

(This is direct from the fact that the definition of XK was carried
out for chain complexes. See e.g. [R2] for the requisite naturality
properties.)

Finally, we consider the case where A is the field Q or Q p . In this
case L2i(A(ζ3)π) is the (Hermitian) Witt ring of the centers of the
irreducible representations of π while L^i+χ(A(ζ3)π) = 0> (see e.g.
[C-M] for details), and the map

τκ : Lh

2i{A{ζ3)π)-+Lh

2ί+2{Aπ)

is given by first making the calculation in L^(^4(C3)π) and then using
the embedding of L^Aζζ^π) in Lp

2i{A{ζ>$)π) to give the explicit final
result. To do this recall that

(2.4) c 3 -
0 \ ' \-l 0

Then a form which diagonalizes to something of the type J_, (α/ £3 + &/ )
with the at, bi in the fixed field under the Galois automorphism
{C3 — (C3)-1} will go to

- 1 - l λ , / 0 1
0 -17 Ί - l 0U at

Of course, things are somewhat more complex in case the summand
of Lp

2i(A(ζi,)π) in question is for example a matrix algebra over a
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non-trivial division algebra, but this is only because the a\ and b\ in
the formula above will be elements in the division algebra in general,
rather than in its center.

REMARK 2.5. Consider the class w = (£3 - (ζi)~ι) in L2(Q(C3)π).
We have

ι ° -3/2 J
and this class has index - 2 , hence infinite order in LQ(Q) . In partic-
ular this shows that the Clauwens factorization mentioned in 1.10 can-
not be independent of the representative of the Kervaire form for the
extension to L*(Q(ζ3)π). Moreover, since rationally L*(Z(£3)π) c
L*(Q(£3)π), the map τ# depends on the representative chosen for K
in L*(Z(C3)π) as well!

3. Explicit calculations for π a finite 2-group. We need some nota-
tion. Let ζ2i denote a primitive 2I'th root of unity, and set

(3.1) λi = ζr + ζ-t

ι, βi = ζτ-ζ-1,

then we have

PROPOSITION 3.2. Let π be a finite 2-group, then

where Fz is one of the three fields

Q(ζ3, λi), Q(C3, μ*),

Proof From [F] or [Ml] we have that

Q(π) =

where L, is one of the three fields Q(A, ), Q(///), or Q(ζ2>), and D,
is the Quaternion algebra

Hence, after tensoring with Q(C3),

We have

LEMMA 3.3. Q ( C 3 ) ® Q D / = M2(Q(C3? A/)).

Proof. The Brauer invariants of D; are 1/2 at all the infinite places
(and 1/2 at 2 if there is only one infinite place). But at each infinite
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place tensoring with Q(ζ$) give a copy of C, so the Brauer invariants
there become zero. Likewise, Q2(^/)®Q(ί3) = Q2(Λ? C3) is the degree
2 unramified extension of Q(λ/), so at 2 as well the Brauer invariant
becomes zero. Since all the Brauer invariants are now zero the result
is a matrix algebra over its center, and 3.3 follows.

3.3 implies 3.2 directly.
We must be careful about the involution when we use the decom-

position of 3.2. Every involution τ on Mn (Fz ) which agrees with
complex conjugation on the center F, is equivalent to the usual involu-
tion (") conjugate transpose, M-+M, w, 7—*fnμ. Precisely, there is
a matrix S so that

SMS~{ = τ(Af).

Moreover, τ(S) = ±S, and we say that τ has type Πa if S can be
chosen so that τ(S) = S. Otherwise, τ has type lib.

LEMMA 3.4. L/(Mw(F/),τ) = L / + 2(A/n i(F/),") if τ has type lib.
Otherwise

(See eg. [C-M] for a discussion.)
In the current case each simple summand of Qπ is invariant under

the involution so the same is true for each summand of Q(£3)TΓ . More-
over, each summand of Qπ of the form Mn(Q(λi)), Mn (Q(///)), or
AfΛ.(Q(C20) 5 o n tensoring with Q(Cβ) gives rise to a Ha summand in
Q(ζ3)π while each of the summands of type Mn (D, ) gives rise to
a type lib summand in Q{ζ$)π. Thus, the distinction between the
quaternion and matrix representations in Q{ζi)π appears only in the
shifting of their contributions to L*(Q(ζ3)π) according to 3.4.

It should also be noted that 3.4 holds at all the completions of F/,
and that S above will be integral over Z(l/6, ζ$)π. Consequently,
we can use the Mayer-Vietoris sequence

(3.5) -*4 + 1 (Q 2 (C 3 )π) Θ Lp

k+ι(Q3{ζ3)π)->Lp

k{Z(ζ3)π)

to calculate the groups
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We introduce the notation

(3.6) λ(π) = number of Mn.(Q(λ, )) summands of Qπ,

d(π) = number of Mn.(Dz ) summands of Qπ,

c(π) = number of conjugacy classes in π,

and taking account of 3.2, 3.4 we obtain

THEOREM 3.7. The groups L£(Z(C3)π) are given as follows,

Lp(Z(ζ3)π) = (Z/2)^)-1

Lf (Z(C3)π) =

. Let A(ζ3)π be a direct sum II ̂ ( ^ ( £ 3 ) ) with the involu-
tion either fixing each summand or interchanging them in pairs. (Here,
as usual, ^-(£3) represents the ring of algebraic integers in the center
of the /th summand of B(ζ$)π where B is the quotient field of A.)
Then Morita equivalence gives an isomorphism

(3.8) Lp(A(ζ3)π) = U Lp

k+2ό{Si(ζ3)π)
fixed

summands

where δi = 0 or 1 as discussed above.
Moreover, whenever 1/3 & A, then multiplication by (£3 - (C3)"1)

induces isomorphisms

Lp{A(ζ3)π) ~ Lp

+2(A(ζ3)π)

and L%k χ(A(ζ$)π) = 0 whenever each ^/(C3) summand in (3.8) is a
field K/ [Rl]. In this case note that the involution on K, is a Galois
automorphism and F/ <-* K/ is the fixed field.

We now use the prime decomposition of the fields Q(C20
 t 0 8 e t the

fields in the cases needed to apply (3.5).

For / = 2 there is one prime over 3, but for / > 2 there
are two primes interchanged by the involution. Hence
there are also 2 primes over 3 in Q(μ/) interchanged
by the involution, and there is only one prime over 3
in Q(Λ/). Finally, there is exactly one (totally ramified)
prime over 2 for each of these fields.

When we adjoin ζ3 to any of these fields what happens at 3 is that
the prime or primes there ramify with degree 2, while at 2 we get the
(unique) degree 2 non-ramified extension.
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Since there is only one prime over 2 in each of these fields,

2 ®Q Q2(C3> vd) is identified with the Witt ring of Hermitian

forms over Q2(C3, Vi), so from [M-H] (Appendix 2) we have

Vi)) = Z/2ΘZ/2 ( ι > 2 )

with generators (1) and (πz ) where π/ is either the uniformizing

parameter for Q2(£3> C2)

(3.9) m = (ζ,ζτ + (ζ3)~ι)(ζ~ι - I)

or an appropriate norm of (3.9) if V[ is Λ/ or μι . Note for later refer-
ence that ζτ,ζ21 + (C3)-1 is a global unit so the uniformizing parameter
actually generates the prime ideal over 2 in Z(ζi, ζγ) -

Since Q3(C3) is a ramified extension of Q3, it follows that (-1)
represents the non-norms so

= Z/4 with generator (-1)

and, for / > 2,

Λ/)) = Z/2ΘZ/2, generators (1), (m/>

where m/ represents a non-square in F3/(/) (/(/) = 2 /~2). Since these
are fields we have that the odd L-groups are identically zero [Rl].

For the discrete valuation rings similar arguments (see e.g. [C-M])
give the table

(3.10)

L-group

L2k+ι(Z2(ζ3)π)

L2k+l(Z3(C,,Vi))

L2k(22(ζ3)n)

£ 2 ( Z 3 ( C 3 , A,))

L0(%(ζ3))

L0(Z3(C3,A,))(/>3)

Value

0

0

Z/2

0

Z/4

Z/2 θ Z/2

Generator

(1)

Moreover, the last two cases in (3.10) map isomorphically to the
corresponding groups for the quotient fields, while in the second case
the Z/2 injects.

This reduces the effective use of (3.5) to the analysis of
Z,fc(Z(l/6, £3)^) which we discuss now. To begin we need two re-
sults on the arithmetic of these rings.

LEMMA 3.11. The 2-primary part of Λ 0̂(Z(C3 > vi)) is zero for vt =
λi, μi, or ζγ (notation from (3.1)).
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Proof. It is well known that ϊ{ζ^) is a principal ideal domain, so
its projective class group is trivial. But now, the extension

(3.12) Z ( ί 3 , ^ ) ^ Z ( C 3 )

is unramified at infinity and at the finite primes ramifies only at 2
which is totally ramified. Hence (3.12) satisfies the conditions of The-
orem 10.4(a) of [WA], and as a result \CL(Z(ζ3, v, )| is prime to 2 as
desired.

Also, recall that π/ is the uniformizing parameter in the maximal
real subfield of Q(C3, ζγ) given in (3.9). We have

LEMMA 3.13. (a) The units in the real subfield of Q(C3, A/) mod
squares have independent signs at the various real places.

(b) The Galois submodule of Q{ζ?>, i>/) (mod squares) generated by
the uniformizing parameter π, or its norm (if Vi = μ{) consists of itself
and all the units of the real subfield of Q(ζ$ 9Vj),

(c) The generators mod squares have independent signs at the vari-
ous real places.

Proof. The first statement is clear since the real subfield is just Q(λ, )
and the assertion is well known (see e.g. [M3]). For the other cases
consider the unit ω, = C3C2<-(Cs)"1. Let Λ e Gal(Q(C3x2<)/Q) be the
Galois automorphism defined by h(ζ2,) = ζ2,, h(ζ3) = (C3)2. Then
cύih(cϋi) = £2'(1 +^1) B u t this unit generates all the units of Q(ί2/)
mod squares under the action of the Galois group, and it is also known
that the real units in this set have independent signs at infinity. Thus,
the map u—+uh(u) takes the units mod squares in Q(C3x20

 o n t o

units mod squares in Q(C2<). On the other hand

π M m ) = ω i h ( ω i ) ( ζ v + I ) 2 = ( ζ v ) ' τ τ

and since the last two terms contribute something totally positive the
rest of the lemma follows.

These results together with the explicit calulations in [M-H] for Her-
mitian forms, and the localization sequence with S = { all primes },
gives

L o d d (Z( l/6,C 3 ,^)) = 0,

Lev(Z(l/69ζ39vi))cLev(Q(ζ39υi)).

Thus

Lo(Z(l/6,C3,λ/)) = ^
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where d is the dimension of the fixed field Ff . Generators are given
by (π/) — (1), and {ofi, where the t>/ run over the units of F, mod
squares. On the other hand when Vj = μ\ or ζγ we have

Lo(Z(l/6,C3,Vι) = Z '

with generators given in 3.13. Using these results, 3.7 is a direct ap-

plication of (3.5).

REMARK 3.14. The classes in the groups Lζάά(Z(ζ^)π) come from
the images of the classes (£3 - C3"1) in Lξγ(Q^(ζ^)π) at the appro-
priate representations in the exact sequence (3.5), and the Z's in
Lξy(Z(ζi)π) are detected by the usual Hermitian multi-signatures on
tensoring over Q(C3) with C.

COROLLARY 3.15. The groups Z^(Z(£3)) are

Z i = 0, generator 1
0 ι = l ,
Z / = 2, generator m

^ 0 / = 3.

(This is direct from the proof of 3.7. The key calculation occurs at
* = 2, where

L2(Z( 1/6, f3)) 0 L2(Z2(C3)) Θ L2(Z3(C3)) = (Z θ Z/2) θ (Z/2) θ (0)

while

£2(Q2(C3)) θ L 2 (Q 3 (ί 3 )) = (Z/2 φ Z/2) φ (Z/4).
Just note that the image of ( v ^ ) in L 2 (Z(l/6, f3)) is (v / : : l ) 2 +
(v / Γ 3) 3 , and also, since CL(Z(l/6, C3)) = 0, it follows that Lh{ ) =

REMARK 3.16. We show in [M-O] that the groups

Z z = 0 generator (1)
Z / 2 / = 1 S e n e r a t O r y

0 / = 3

and the reduction map gives an isomorphism in LQ .

4. The map τκ : L£(Z(£3)π)—>Lp

k+2(Zπ). A basic discovery, ob-
tained more or less simultaneously by Carlsson-Milgram [C-M], Par-
don [P], and (possibly) Kolster [K], was that when π is a finite 2-
group, the groups L^(Zπ) depend only on the structure of the irre-
ducible rational representations of π. A detailed summary of this
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dependence was given in [H-M] as

THEOREM 4.1. Let π be a finite 2-group and Qπ = ]CαA* where
the Da are simple involuted algebras.

(1) There are groups Λ/(Z)α) depending only on the type of Da, the
center of Da, and i such that

L f ( Z π ) = ] Γ Λ , ( A 0 for i = 0,1,2, or 3 .
a

(2) Let I (a) be the number of simple summands in Da ®Q R. The
non-zero groups Λ*(25α) are:

(a) A0(Da) = (Z)1^ for each Da.

(b) Λi(Z)α) = (Z/2)2""2 + 1 ϊ / D α λαjίype S/> and center Q{λk) for
k> 1.

(c) Λ2(Z)α) = (Zyw i/Z)α Λα5 ίype (7; Λ2(Z)α) - Z/2 ifDa = Q
with trivial G-action; A2{Da) = (Z/2)2""2-1 z/Z)Q /zα5 ίype 5 P
α^Jcenter Q(Λ^) ^or k > 2.

(d) Λ 3(A0 = Z/2 z/ Z)α has type O αnJ J3α φ Q w/ίA ίπv/α/

REMARK 4.2. The Z's in 4.1 are detected by signatures at the vari-
ous real embeddings of the centers of the Da . The Z/2 's in Z^(Zπ)
are represented in the Mayer-Vietoris sequence analogous to (3.5) by
(3) 's at the relevant representations, and the elements in Lp

{(Zπ) are
detected entirely by discriminants.

Using 4.1, 4.2 we now determine the map

(4.3) τκ : Lp

k(Z(ζ,)π)-^Lp

k+2(Zπ)

The result is

THEOREM 4.4. (a) The Z's in Lp(Z(ζ3)π) map to Z's in Lp

2{Zπ)
except for the Z's at the type Πa representations with center
Q(C3, λi). The Z corresponding to the trivial representation maps onto
the Kervaire-Arf class.

(b) The Z's in Lp

2(Z(ζ3)π) map into L%(Zπ) but none of them can
be present in the image ofbordism.

(c) The Z/2's in Lp

{(Z(ζ3)π) map to the non-trivial classes for the
corresponding representations in Z^(Zπ).

(d) The Z/2's in Lp(Z(ζi)π) map to the classes with discriminant
(3) at the corresponding representations in Lp

χ{Zπ).

Proof. Note first that the maps

)—>Lp

k(Q(ζ3)π), Lp(Zπ)—
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are injective, but

Z/2
is an exact sequence where the Z/2 kernel is represented by the simply
connected Kervaire form (see e.g. [H-M] for details). Thus, except for
the inverse image of the Kervaire form, the map (4.3) is completely
determined by the rational map

(4.5) Z 4 ( Q ( C 3 ) π ) — Lp

2k+2(Qπ)

but (4.5) is completely determined using formula (2.4). In particular
for the type Πa summands of Q(ζ3)π the map is given on ^
by the correspondence

(4.6) ( M ( C 3 ( f 3 ) ) + t ; > , ^ i ι ^ J I ^ + f ^ ! o

(4.6) simplifies markedly when made explicit at the various field sum-
mands of the center in Q(Cs)π . In particular note that the symmetry
condition implies u = 0 in L0(Q(ζ^)π) while υ = 0 in L2(Q(Cβ)π)
whenever we are in a Mn (Q(ζ?,, /I/)) summand of type Πa. Thus we
have

LEMMA 4.7. The map τκ: Lp

2k(Q(ζ3, A/))—>L^+ 2(Q(^ )) is deter-
mined as follows:

(a) TK is 0 for k even,
(b) τκ((a(ζ3 - (C3)-1))) = (-2a) + <-3α/2) for k odd

When we are in an Afrt.(Q(C3, ///)) or MW.(Q(C3, ζγ)) summand
there exist elements such as μι which are themselves skew sym-
metric so that both u, υ can be non-zero in Lo(Q(ζ?,)π) and

) For these cases we have

LEMMA 4.8. The map τκ : L^(F(ζ 3 , ^ ))-^L^+2(F(z//)) is given
by the formula

(u(ζ3 - (CsΓ1) + υ)-+(-2u) + ((1/ - 2u)(3u2 + v2))

if u is non-zero where vι is any one of λ\, μ\ or ζ2l and F is any
field containing Q but not containing £3. Ifu = 0 then its image
is 0.

Proof. (u(ζ3-(ζ3)-1) + w)-+(_-w

2»u

 w_-«). But this has determinant
3u2 + w2 and hence diagonalizes to the form asserted in the statement
of 4.7 if u is non-zero. It is evidently hyperbolic when u = 0.
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It remains to understand the case

M2 r t /(Q(C3,Λ )) = Q(C3)®AfΛ|(A ).

Using the Mayer-Vietoris sequence (3.5) and naturality which gives an
evident set of commuting diagrams, this is a purely local problem for
the fields Q2 and Q3. But unless we are at 2 and D/ is the ordinary
quaternion algebra Di where

the D/ are just matrix algebras at these places, so the same formula
as in 4.8 holds, though dimensions are reversed as was pointed out in
3.4.

In the case of Di the Z/2 in L^(Z(ζ3)π) can be assumed to occur
at the prime 3, where Di is a matrix algebra. Hence, here too, 4.8
suffices to make the calculation.

To analyze the inverse image of the Arf invariant class in Lp

h{Zπ)
note that the composite

A—>A(π) - ^ A

is the identity, and this splits a natural direct summand Lξ(A) in
Lζ(Aπ). Of course, when A = Z, this splits off the Arf invariant
class, and so it suffices to check things when π = 1. But from the
definitions in 1.6, 1.7, and (1.11) of τ ^ , we have that τ#(l) is the
Kervaire class.

This completes the calculations for k even.
In order to explain the calculations for k odd we again use the

Mayer-Vietoris sequence (3.5). It follows from 2.3 that the diagram

Lh

k(Q2(ζ3)π) ® q(Q3(ζ3)π) —> Lp

k_χ{Z{ζ3)π)

(4.9)

Li+2(Q2π) Θ L'k+2{Q3π)
commutes. Moreover, in case k is even (so fc-1 is odd), the horizon-
tal maps above are surjective. Thus, the odd case follows immediately
from the even calculation. In particular, applying 4.8 completes the
proof.

5. The structure of Ko(Z(ζ$)π). The AΓ-theory localization sequence
for K0(Z(ζ3)π) takes the form

(5.1) -+Kι{Z(ζ3)π)->Kι(Z(l/29 ζ3)π)

^K0(Z(ζ3)π)^K0(Z2(ζ3)π)®K0(Z(l/2,ζ3)π)
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and in the sequences (2.1) what is required is H*(Z/2 Ko(Z(ζ^)π)).
Hence only the 2-torsionin Ko(Z(ζ3)π) is significant. It follows from
3.11 that the map Kι(Q2(ζ3)π) -> K0(Z(ζ3)π) in (5.1) is onto. This
reduces us to a basically local calculation, and we have

from 3.2 and the fact that there is only one prime over 2 in each of the
fields Q(^3, Vf). For complete local fields the multiplicative structure
of the non-zero elements is determined using the log and exponential
map, and the following table results

Field

Q2(C3, λi)

Q2(C3, βi)

β2(C3> ζγ)

Units

Z/6 x Z x Zf2

Z/6 x Z x Z§'~2

Z/(3 2') x Z x Zf'

In each case the Z is generated by the uniformizing parameter π,
given in (3.9), or its norm to the appropriate subfield. The subgroup
of Qiid > ^/)# of the form Z/(3 2j) x zf is called the group of units

DEFINITION 5.2. The image of AΊ(Z2(C3)π) in Kι(Q2(ζ3)π) is de-
noted K[(Z2(ζ3)π). The quotient UKι(Q2(ζ3)π)/K[(Z2(ζ3)π) is
written K'0(Z(ζ3)π).

We also need to keep track of the involution. The following result
is well known.

LEMMA 5.3. The involution on K0(Z(ζ3)π), [P]
age of the involution on Kγ{Q2{ζ2>)π) given by

where

[P*], is the im-

is a non-singular matrix with coefficients in Q2{ζ?>)π.

The next result is our main technical tool, and is ultimately the
reason we can understand the groups L^(Z(C3)π, -) for π a finite
2-group.

THEOREM 5.4. Let π be a finite 2-group, then

H*(Z/2;K'0(Z(ζ3)π)) = 0.
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Proof. The proof is in several steps. We first require

LEMMA 5.5. Let π be a finite 2-group, then

Proof {of 5.5). As was observed in 5.2

but this is even true with respect to the involution. Indeed, in each
summand the involution acts as the usual Galois automorphism corre-
sponding to complex conjugation (~) followed by inversion (τ(α) =
α " 1 ) . We denote the fixed field of (") by F, and note that the exten-
sion Q2(C3? Vj)/¥i is unramified. Hence, by Hubert's theorem 90 it
follows that /7ev(Z/2; Kι(Q2(ζ3)π)) = 0 where the action is now just
conjugation. On the other hand, from local class-field theory,

again where the action is only conjugation and, since the extension is
unramified, the generator is the uniformizing parameter. Now since
inversion only has the effect of shifting homology dimensions by 1,
and since, as we have seen

where the generator of the Z is the uniformizing parameter π, which
is fixed under conjugation from (3.9), the lemma follows.

Next we need to verify the result in the special case that π is abelian.
To do this we first require

LEMMA 5.6. Let π be a finite abelian 2-group, then K[{Z2{ζ3)π) =

; Kx{Z2{ζ3)π)) = 0 for all k.

Proof. Since π is abelian the characterization of units ε in Q2(ζi)π
is that efi Φ 0 for each central idempotent e\. In particular, it
follows that the units of Z2(ζ3)π inject into the units of Q2{ζ3)n 9

and, since these are both local rings and the units generate K\()9it
follows that K\() = K[( ). To prove the remainder of the lemma,
note that U(Z2(ζ3)π) = Z$(l+I) where / is the augmentation ideal
and the Z3 represents the units in the coefficient ring which are not
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of the form 1 + θ, with θ in the maximal ideal (2). In particular,
the exponentiation operator

exp: 4Z2(ζ3)π-^U(Z2(ζ3)π)

defined in the usual way by

(40)'
exp(40) =

n\
converges together with its reciprocal, the log operator, to provide
an identification of l + 4Z2(£3)π c Kx{Z2{ζ3)π) with 4Z 2(ζ 3)π as
abelian groups with involution. Moreover, since the involution on
4Z2(£3)π is evidently free because it is already free on the coefficents

? we have reduced the lemma to showing that

J4 = (l

has trivial homology under the involution.

There is an exact sequence

0—+(2Z(£3)π/4Z(C3)π)+—>Z/3 x /

and since (2Z(C3)π/4Z(£3)π)+ g* F2(£3)π which has trivial Tate ho-
mology groups, it suffices to check that

Let I2 c ¥2(ζ3)π be the augmentation ideal. Then I2 is nilpotent
and there is a natural filtration Fi(Kι(F2(ζ3)π)) defined by setting
Fi = image(l+/^). Then f '/F 1 "* 1 = q/l{+l. But iyψ1 is an
F2(C3) vector space. Indeed,

Ii/lj+ι = (/(F 2 π)7(/F 2 π) / + 1 ) β F2(C3),

and from this the fact that / 2 // 2

+ 1 has trivial homology is direct.
Thus,

; 1 ( 2 ( C 3 ) ) ) ( / ; 1 ( 2 ( C 3 ) ) ) = 0

and 5.6 follows.

COROLLARY 5.7. Let π be a finite 2 group, then

H*(Z/2;K[(Z2(ζ3)π)) = 0.
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Proof. In [O] Oliver calculated the reduced Whitehead group of π
with coefficents in Z 2 (ζ 3 )π and the result was described via a natural
exact sequence

0-+Wh'(Z2(C3)π) _ ^ z 2 ( C 3 ) π — + π a b — , 0

where the middle term has trivial homology. If we consider the com-
mutative diagram

Z/6 Θ π a b - ^ Z/6 Θ π a b

0 K K[(Z2(ζ3)π) 0

( ) — > * ' — > Wh'(Z2(£3)π) — , Wh'(Z2(C3)ττab) —> 0

we see that K and K! are isomorphic, where, of course, K, K' are
the respective kernels. The naturality of Oliver's sequence implies that
the homology of Kf is trivial, hence the same is true of the homology
of K, and using 5.6 the corollary follows.

But 5.7 and 5.5 immediately imply 5.4 and the proof is complete.

REMARK 5.8. There is an exact sequence

UK1{/j{{/Z, (93)π)) ^ 0 V M C 3 W >Ko(/j{Q3)π)(2) yv

which forms the heart of our analysis of the Tate homology groups
H*(Z/2 Ko(Z(ζ3)π)), and 5.4 implies that these groups can be iden-
tified with the homology of the image of UK\(Z(l/6, C3)π) Specifi-
cally we have

COROLLARY 5.9.

where U'K[(Z(l/2, ζ3)π)
UK[(Z(l/29ζ3)π).

is

+ι (Z/2;

the image in

, C3)π))

K'0(Z(ζ3)π) of

We now study ί7A:/

1(Z(l/2, C3)π). In Theorem 3.7 and its proof
the units in Z(£ 3, vfi mod squares were analyzed, but not as a module
over conjugation. To understand this conjugation structure, note that
the special unit β/ = ζ3ζ~ι + ζ3

ι satisfies ε = ζγβ . Also, if g(ζγ) =
1

 ? then (β x g(ε))* = -e x g(e). As an
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easy corollary we have

LEMMA 5.10. UK[(Z(l/2, ζ?>)π) is a direct sum of units at each
irreducible CKC3) representation of π. These units (as a module over
conjugation followed by inversion) are given as follows:

(a) If the center is CKC3, ζ2>) then the module is ( Z 2 " 1 " 2 ) " Θ
(Z/2'θZ) where the last summand has generators A, B with 2ιA = 0
and τ(A) = A, τ(B) = A-B.

(b) If the center is Q(ζ3, μ{) then the module is ( Z 2 " 2 " 2 ) - φ (Z/2θ
Z) where the last summand is as in 5.10(a).

(c) If the center is Q(ζ3, λ{) then the module is ( Z 2 ' " 2 " 1 ) " θ Z/2.

Proof. For cases (a) and (b) see Theorem 4.12 of [WA]. To see that
case (c) is correct note that the only possiblity of an extra unit is some
unit u so that n = -u. But then u(ζi - (ζ$)~ι) would be contained
in Q(λi) and three would ramify there which is impossible. Hence
the result follows.

REMARK 5.11. Note that in UK[(Z(l/2, C3)π) odd index sub-
groups of the units suffice, and 3.7 shows that the cyclotomic units
are such a subgroup, so we can assume the generators in 5.10 are just
cyclotomic units.

Section 6 will show that we are able to ignore the effects of the sub-
modules (Zυ)~ in 5.10. Hence our interest is focused on the modules

Wι = (Z/21" θ Z), τ(A) = A, τ(B) =A-B.

LEMMA 5.12. H0(Z/2; JVf) = Z/2 with generator 2i~xAy while
Hι(Z/2;

Proof. A resolution of Z over Z(Z/2) is given by the long exact
sequence

>Z(Z/2) - ^ - Z(Z/2) - ^ Z(Z/2) - ^ Z(Z/2)—*

Now tensor the resolution above with W[. When we calculate the
induced boundary map d in the resulting chain complex we have

{T- i μ = 0, ( Γ - l)B = A-2B.

From this 5.12 is a direct calculation.
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Next, let K = Z/6 x π a b be the torsion in K[(Z(ζ3)π). Then we
have the diagram

K >

(5.13) K UK[(Z(l/2,ζ,)π) UK[(Z(l/2,ζ})π)/K

U'κ[(Z(l/2, C3)π) > UfK[(Z(\/2, ζ3)π)

with the two middle columns exact. We are particularly interested in
the 3rd column and its homology groups. We have that the groups

f2)w * = 0 m o d 2 ,

0 * = 1 mod 2.•{
Hence,

surjects to

H0{Z/2;UK[(Z(l/29h)π)/K)

H0(Z/2;UK[(Z(l/2,ζ3)π)),

while the group H\(Z/2\ UK[(Z(l/29 ζι)π)JK) injects. Thus, we will
use the middle horizontal sequence in (5.13) to study the
image of H*(Z/2\ K) in //*(Z/2; UK[(Z(l/2, ζ3)π)). Indeed,
we will obtain what we require about the structure of the groups
//*(Z/2; J£o(Z(C3)π)) directly once we have proved

LEMMA 5.14. The inclusion K-*UK[(Z(l/2, ζ3)π) induces an in-
jection in homology.

Proof. Let Z/27 be a direct summand of π a b . Then there is a
splitting homomorphism

φ: π^—^Z/V

and a corresponding sequence of representations

In particular note the two extreme representations

θj: Z/2J—>Z(ζ2J), ΘX:Z/V-+{±1}.
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Looking in homology, Z(ζ2j) carries the class corresponding to the
element {2j~ιg) in Hχ(Z/2; (Z/2j)+) while the Z/2-reρresentation
(among others) carries the image of the class (g) in HQ(Z/2; (Z/2j)+),
and the result follows.

As indicated in the discussion preceding 5.14, we are now able to
present the information we need about the groups

H*(Z/2;U'K[(Z(l/6,ζ3)π)).

DEFINITION 5.15. Let q(π) be the number of irreducible Q repre-
sentations of π, then n(π) = c(π) - 2q(π) + λ(π) + d{π) where c(π),
λ(π), and d(π) are defined in (3.6).

Using q(π) and n(π) we have

LEMMA 5.16. Let UTπ = UK'(Z(l/2, ζi)π)/K, then

; UTπ) =

\ UTπ) =

In Ho the generators are the (vtj) and (-1) at each maximal subfield
in the center of Q(ζ?>)π where the Vij run over a basis for units mod
squares, while the generators for H\ are the (—1)'J as we run over all
maximal subfields of the center having the form Q(ζι, λ, ).

Proof. Note that c(π) is just the dimension (over Q) of the center
of Q(π). Consequently, c(π) - q(π) is the dimension of the lattice
of units (mod torsion) in these centers. In looking at the module
W(π) we see that the (Z)~ summands have dimension exactly n(π).
Likewise, there are exactly q(π)-λ(π) summands Wι, and the result
follows from the previous two lemmas.

As a consequence we have

COROLLARY 5.17.

Ho(Z/2 ,UfK[(Z(l/2,ζ3)π)) =

# ; U'K[(Z(l/29ζ3)π)) =

where a(π) is the dimension of the kernel of the map on units mod
squares induced from the map

UK[(Z(l/2, ζ3)π)-+UfK[(Z(l/2, ζ,)π).
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COROLLARY 5.18. The map

Hk(Z/2; UK[(Z(l/29 ζ3)π))-^Hk(Z/2; U'K[(Z(l/2, ζ3)π))

is surjective for k = 0 {with kernel Z/2 α ^), and injectivefor k = 1.

The groups Hk(Z/2; Ko(Z(ζ3)π)) are isomorphic to the groups

and using this isomorphism we identify these groups in subsequent
discussions.

We call the cokernel of i\ in 5.18 the unit Bochstein group, and
the major object of the next section will be to show that this unit
Bochstein group, while injecting into L%k(Z(ζ$)π), is not in the im-
age of Lf

2k(Z(ζ3)π) and hence cannot represent non-trivial surgery
problems on the image of Ω(Bπ).

Likewise, we will show the unit group

is in the image of the boundary map from Lp

2k(Z(ζ3)π). Hence the
only things which will finally matter are the contributions from the

However, before we can complete the analysis of L%(Z(ζ3)π) we
must look a little more closely at the groups U(Q2(ζ3, V()). The
result is

L E M M A 5.19. (a) As α module over the involution τ ,

( Z 2 ) 2 x Z / 2 , with generators A, B, (-1) and τA = A + (-l), τB =

- 2 Λ - * , τ ( - l ) = <-!>.
(b) As a module over τ, UQ2(ζ3, λ() = Z 2 (Z/2) 2 / " 2 " 2 x t/Q2(C3),

where the skew elements in the free summands are 2-adically generated
by the cyclotomic units of Z(ζ3, Az ).

(c) As a module over τ, UQ2{ζ3, ζ7i) = Z2[ZI2γ~ι-2®{Z2)
AxZI2i

i

where the generators for the non-free summand V\ are A, B} C, D,
and (ζγ) = e, and the involution is given by

τe = e, τA = T~xe -A, τB = e - B,

τC = -2A + C, τD = 2i~1e -B + D.

(d) As a module over τ, C/Q2(C3, μ, ) = Z 2[Z/2] 2 '~ 2- 2e(Z 2) 4xZ/2,
where the generators for the non-free summand Si are A, B, C, D'
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and (-1) = e. The involution is given as in (c) for A, B, e,
τC" = e - C , τZ>' = Df - ( C + Λ).

REMARK 5.20. Before outlining the proof of 5.19 we describe some
of the generators of the non-free modules. In (a) A can be taken to
be ζ3 - (C3)-"1, while B must exist to make the homology come out
correct. In (b) the generator A is as before, while we can choose B as
the unit ζ3(ζ2<)~~1 + (ζ3)~ι and C is the same as B in5.19(a). Again,
D is just there to make the homology come out correctly. Finally,
in (d) A and B are as in 5.19(a), while C can be taken as the unit
1 - (C3)2///, and D is again just there for the homology.

The key to the proof of 5.19 is the norm theorem for non-ramified
finite extensions L of K where K is itself a finite extension of Q2.
This states that every unit in K is a norm from L if the extension
is Galois with cyclic Galois group. Since the involution in each case
in 5.19 is a Galois automorphism we can apply the norm theorem.
It remains to check that the modules are as stated. This is done by
reducing mod 2. This gets the free parts. The specific elements above
are then analyzed mod 2 to show they are not squares, and application
of Hubert's Theorem 90 completes the verification of 5.19.

6. The analysis of L^(Z(ζ3)π). Recall (from (3.6)) that d{π) is
the number of representations having the form Mn{Ό{) where D, is
a quaternion algebra, then we have

THEOREM 6.1. The groups Lll(Z(ζ3)π) are given as follows for πφ
1, a finite 2-group:

Lh

0(Z(ζ3)π) = Z c « Θ (Z/2)^π) © Vo.

(ζ3)) (/)~rk^~d^-1 © V2.

Lh

3(Z(ζ3)π) = (Z/2)'<*>.

Here, the groups Vo = V2 = (z/2)n^-a^ come from the unit Bock-
stein part fl/5.18, and are not in the image of Ω*(2?π). Also, the
subgroup

injects to corresponding elements in Z^(Zπ a b ). The elements in
come from the ZjTs in H*(Z/2; K0(Z(ζ3)π)) associated to the mod-
ules Wi at the quaternion representations in Q(ζ3)π. Finally, the
elements in V\ go to 0 under XK
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Proof. We have an effective calculation of //*(Z/2 Ko(Z(ζ3)π)) in
§5, and in §2 and §3 we calculated Lζ(Z(ζ3)π). So we can use the
exact sequence in (2.1) to study Z^(Z(C3)π).

Note that the map

Lξγ(Z(ζ3)π)-+ H{(Z/2; K0(Z(ζ3)π))

is given on generators as follows: if γ represents the discriminant of
the form

(Yι)±(γ2)± ..±(γn),

then 7 is a unit in AΓi(Q2(C3)^) fixed under the involution (α <->
α~*). Moreover γ is the image of a class β e K\{Z{ζ3)π). Conse-
quently there is an element δy e Kι{Q2{ζ>3)π) so that {δγ){δγ)~* = γ.
Then {δγ} e Ko(Z(ζ3)π) represents a well defined class μ(γ) in
Hι(Z/2;K0(Z(ζ3)π)) and we have

(6.2) d((γι)±(r2)±-±(γn)) = μ(y)

(See e.g. the discussion in [H-M], in particular Lemma 5.4 there and
its proof.) This shows that every class in H\(Z/2; Ko(Z(ζ3)π)) is in
the image of d except the classes corresponding to (-1) at type lib
representations in the map

d : Lg(Z(C3)π)—ffi(Z/2; K0(Z(ζ3)π)).

(The classes in ^i(Q2(C3)π) corresponding to - 1 at the relevant rep-
resentations are represented by (ζ3-(ζ3)~1) at those same representa-
tions. For more details see the discussion from 5.18 to 5.20.) Likewise
the situation reverses in the map

d : L£(Z(C 3 )*)—#i(Z/2; K0(Z(ζ3)π)).

and we obtain that the (-l)'s at the λ(π) representations which are
not quaternion give rise to the cokernel of d. The situation is not
much different for

; K0(Z(ζ3)π)).

Here it is easily seen that the Z/2's in L^+ 1(Z(C 3)π)) have image
the class {C3 — (C3)"1} at the appropriate representation. Hence, d3

is injective, while d\ surjects onto the

in ^0 with kernel Z/2rk{n*b) and cokernel Z/2^ ( π ) . In both cases the
unit Bockstein part is not in the image of d2k+\ and hence maps into
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L^k(Z(ζ3)π). This completes the first step in the proof of 6.1, the

explicit determination of Lljc{Z{ζ3)π).
We now have to make two further calculations. First we must show

that the elements in V\ map trivially under τκ . But since V\ is in the
image of HQ(Z/2 Ko(Z(ζ3)π)) we can use the results of §4. In partic-
ular, note that the elements in V\ come from the Ch(C3, Λ, ) parts of
Kι(Q2(ζ3)π), and so the Norm map under the Galois automorphism
(3 <•+ C3"1 is identified with the Norm map under the involution. But
the representatives for V\ all have norm - 1 under the involution,
and so the (-1) at the corresponding representations give the image
of V\. The elements surviving to V\ all come from representations

and (-1) for the corresponding representation Mn(Q(λi)) is the im-

age of a global unit, hence represents 0 in Ko(Zπ). On the other

hand the generators for the (Z/2)^π) in L§(Z(£3)π) all come from

(-l)'s at the representations 02(^3) ® Mn (Dz ) with Dz a non-trivial

quaternion algebra. These elements are not a priori 0 in K${Zπ).
The final step in the proof is to handle the unit Bochstein classes.

For this we find it convenient to use Wall's intermediate L-groups
[W3] which he denotes Lf

k(Z(ζ3)π). Recall (5.3) that K[(Z(ζ3)π) is
the image of Kι(Z(ζ3)π) in ^i(Q2(C3)π) under the usual inclusion.
Also,

Wh'(Z(C3)ττ) = *ί(Z(C3)π)/(torsion) = (Zw)~

is the group at the top of the third column in (5.13). There is an exact
sequence

(6.3) ->#*(Z/2 Wh;(Z(C3)*)) ^L'k(Z(ζ3)π)->Lh

k(Z(ζ3)π)

and the map Ls

k(Z(ζ3)π)->Lh

k(Z(ζ3)π) factors through Lf

k(Z(ζ3)π).
(In (6.3), to be more consistent with the Ko involution we choose the
involution a <-• (ά" 1 ) on K[, rather than the more usual α <-> ά,
which explains the dimensions of the homology groups.)

The proof of 6.1 will be complete when we have shown that the
map

b: Lh

k(Z(ζi)π)-+Hk(Z/2; Wh'(Z(C3)π))

in (6.3) is injective on V^ for k even.
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To begin note the projection

p : K[(Z(ζ3)π)-^Ψh'(Z(ζ3)π)

inducing the map

p* : £*(Z/2; K[(Z(ζ3)π))-+ £*(Z/2; Wh'(Z(C3)π)).

From (5.13), 5.14 we see that #*(Z/2; K[(Z(ζ3)π)) = H*(Z/2;K) Θ
B, and /?* identifies B with //*(Z/2; Wh'(Z(C3)π)). We also have
the short exact sequence

(6.4) 0^K[(Z(ζ3)π)^UK[(Z(l/29ζ3)π)^Uf

which gives rise to the long exact sequence

(6.5) >Hk(Z/2',κ[(Z(ζ3)π)) >Hk(Z/2',UK[(Z(l/2,ζ3)π))

>4(Z/2; u'K[{Z(C3)n))-^Hk_x(Z/2'9 κ[(Z(ζ3)π))

Finally, recall the isomorphism (5.10)

(6.6) #*(Z/2; K0(Z(ζ3)π)) ^ Hk^{Z/2\ U'K[(Z(ζ3)π))

induced from the exact sequence

LEMMA 6.7. There is a commutative diagram

Hk+ι(Z/2;K0(Z(ζ3)π)) — Hk(Z/2; U'K[(Z(ζ3)π))

b'

Lh

k(Z(ζ3)π) ^U Hk

where b = p±b" is the map in the sequence (6.3), b' is the associated
map for the sequence

d is the map in (6.5), and d' is the map in (6.6).

REMARK 6.8. 6.7 is (probably) folklore, but, as far as I know, there
is no proof in the literature, so we now indicate how the proof pro-
ceeds. The first step is to note that in our case only k even matters as
df is 0 when k is odd. But here b'({P}) is represented by the obvious
plus or minus symmetric pairing α on P © P*, and P 0 P* is free.
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Now, a becomes a non-trivial matrix when we choose a free basis for
PφP*, and we need to calculate its discriminant. The module P is
given as a pull back as follows

P • Z(l/2,C 3 )π'

where γ is an appropriate isomorphism, and the other arrows are the
usual inclusions.

The conditions imply that {γ} represents the class of P in
K\{Qi{ζι)π) > {y}2 is the image of some class from ΛΓi(Z(C3)π), and
{γγ~*} is in the image from K[(Z(l/2, £ 3 )π). Thus the same is true
at least up to commutators for the matrices

2 ) = A and [ Λ ,_+,)= B
0 γ2

Now consider the diagram

0 γ(γ-*)

[Z2(ί3)π]

(6.9)

The top row defines the free module Z{ζτ,)π21 since the matrix

y 0
0 y~x

is a commutator, and by the remarks E and F above exist, and the
diagram commutes up to some commutators. But the bottom row
defines the module PφP*, and we have the diagram

[Z2(ί3)π]2
[Q2(ζ3)π > [ β 2 ( ί 3 ) π ] 2

[Z(l/2,ί3)π]

(6.10)

[Z2(f3)πf
V 0 y>
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where G is the matrix
'0 1
ε 0,

and ε is ± 1 . This induces the evident dual pairing on P © P*, and
when followed by the dual of (6.9) gives the associated map

a:Z(ζ3)π2i->(Z(ζ3)π2iy.

But in view of this, {a} in K[(Z(l/29 £3)π) is {BB*} = {A2}, and
this implies Lemma 6.7.

REMARK 6.11. 6.7 takes care of the differentials for all elements in
L^(Z(C3)τr) which are associated to non-trivially truncated elements
in U'K[(Z(ζ$)π). The remaining elements (associated to the α(π) in
5.17, 6.1) are in the image of torsion free classes mapping to generators
in L^k(Z(ζi)π). This follows from a straightforward modification of
the proof of 6.7. (See also §2 in [M4].) In particular b in (6.3) is
surjective. However only the torsion classes of L%k(Z{£$)n) matter in
studying τκ.

6.1 is now a direct consequence.
This completes the L-group calculations.

REMARK 6.12. 6.1 is already enough to establish our main results
in odd dimensions, since the classes in L%(Z(ζ$)π) are evidently as-
sociated to induced images from quaternion subquotients of π of
the classes in Ljj(Zπ) associated to the spheres S*k+2 with the usual
quaternion actions. Of course, we should emphasize that not all of
these classes can actually occur as surgery obstructions. The discus-
sion in §7 will clarify this.

The generators in L^(Z(ζ^)π) are associated to the images of cer-
tain lens spaces obtained from mapping Zβi into π to account for
each Z/2^ in π a b . Explicitly, choose a generator γ for π a b . Then
there is a β in π with image γ, and /?2" = 1 for some sufficiently
large d. Thus, we have the diagram

and the composite is surjective. The map of classifying spaces is the
one referred to above.

This case differs from the situation for the quaternion groups since

is an isomorphism for a finite 2-grouρ π. Because each generator a e
H\ (π Z/2) can be represented by a map λa : Sι —+Bπ , we see that the
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map is also an isomorphism in oriented bordism Ωi(2?π)—»Ωi(2? ab).
But for an abelian 2 group it follows from Wall's original result, [Wl],
that the surgery obstruction map {(M, /) e Ω ^ ^ ) } ι-» σy(idxσ)
gives at least an injection Ωj (Bπ)®Z/2—+L%(Zπ). On the other hand,
6.1 shows that the image can be no bigger than this. We have thus
proved

COROLLARY 6.13. The image of the surgery obstructions σ/(id xσ)

in L\{jLπ) is isomorphic to H\{π Z) ® Z/2 for any finite group π.

REMARK 6.14. In L^k(Z(ζ3)π) the torsion free elements must be
in the image of the torsion free part of Ω,2k(Bπ), and since π is fi-
nite we have that ζlAi(Bπ) = Zw Θ {torsion} with the Zw coming
from Ωto{pt) while Ω4ki+2(Bπ) = {torsion}. But things coming from
&4i(pt) factor through the usual simply connected product formula
for which only the index matters. Thus, the only torsion free class
which can be in the image of bordism is the class (1). This is rep-
resented by the complex projective space CP21, and by the simply
connected product formula, ([Wl] Lemma 13B.4, p. 177), the product
of CP2n with the Kervaire problem is non-trivial, so τ^((l)) = usual
Kervaire class is the only geometrically non-trivial class in dimensions
congruent to 2 mod 4 coming from torsion free elements.

Similarly, the torsion free part of L2{Z(ζ?>)π) cannot be geometri-
cally interesting.

7. Explicit calculations for dihedral groups when k = 2. At the end
of §6 we finished the discussion of the possible surgery obstructions for
odd dimensional products with the Kervaire problem. Additionally,
for the even groups L^k(Z(ζ3)π), 6.1 shows that the elements in Vo,
V2, cannot be in the image from Ω*(5π). But more is true. Since

π) is torsion, and Ω4k(Bπ) = Q^k(pt) ©torsion, we see that

(7.1) im(Ω4k{Bπ)) c L4k(Z(ζ3), ") Θ torsion

while

(7.2) im(

In this section we calculate on model groups to determine the image
in (7.2), and in §8 we will determine the image for (7.1). In fact, in
view of the history of the elements in (7.2), (the fact that they project
non-trivially to π a b or are induced up from dihedral subquotients),
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we need only study (7.2) for the groups Z/2 Θ Z/2, and the dihedral
groups

D2M = {x,y\x21 =y2 = (xy)2=l}.

This reduction is formalized and discussed at length in §2 of [M4],
but it just amounts to realizing that restriction to subgroups and then
projection to quotients will detect all the elements in the subgroups de-
scribed in (7.1), (7.2). Consequently, these elements are in the image
of Ω2*(Bπ) only if the corresponding elements for the subquotients
are in the image.

Φ
Of course, this condition is not sufficient. If N +— H ^ π gives a

key representation by inducing up from the model representation on
N, then the map

^ ) — Lh

2i(Z(ζ3)π)

is non-trivial on the associated class in L^Z^^n). Moreover, as we
run over all these maps for the various representations of the given
type, the maps are independent, hence, taken together, they detect all
the classes of this type in L^(Z(C3)π).

Let tr : Σ°Bπ—+Σ°BH be the stable transfer map. Then the following
diagram commutes:

(7.3) μe.

res

μe. μe.

(Recall the discussion of eχ in the introduction, §1, and of μ in
1.12.) Consequently, if (μβζ) is known on the model groups then it
is determined on Ω2*(#π) from 7.3.

These questions will be considered in more detail in Part II. Now
we begin the explicit calculations by considering the group Z/2 x Z/2.

LEMMA 7.4. KQ(Z(ζ3)Z/2 x Z/2) = Z/2 with generator given as the
image of the class

{ 1 , 1 , 1 , 1 + 2ζ3} e Kx{Q2{ζ3)ZI2 x Z/2)

under the map d in the Mayer-Vietoris sequence of {5A) where the
coefficients are the corresponding units at the four representations + + ,
+ - , —h, and — .
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Proof. Set π = Z/2 x Z/2 = {JC, y \ x2 = y2 = (xy)2 = 1}. We
know [W4] that

Kλ{Z2{ζ3)π) = Z/6 x π a b x Wh(Z2(C3)π)

= Z/6x(Z/2xZ/2)x(Z+) 8 ,

and the elements - £ 3 , x, y generate the torsion part. To make the
calculation required for 7.4 we need explicit generators for the torsion
free part as well. To this end we consider W = AΊ(Z2(C3)/(8)(π)),
and the filtration

U2CUχCW

where
Ut = K^τ{W—,Kι(Z2(ζ3)/(2i)(π))}.

It is direct that
U2 3 F4(Z/2 x Z/2)+

with generators 5, l+4£ 3 , 1 +4(JC— 1), 1 + 4 C 3 ( J C - 1 ) , l + 4 ( y - l ) ,
l+4f 3 (y- l ) , l + 4 ( x - l ) ( y - l ) ? a n d l+4ζ3(x-l)(y-l). Similarly,

with generators - 1 , 1 + 2ζ3, 1 + 2{x - 1), 1 + 2ζ3(x - 1), etc.. When
we square these generators in W we see that all the generators for C/2

above are accounted for except 1 + 4£3. Finally,

and has generators ζ 3 , x, y, 1 + C3(x - 1), 1 + C3(y - 1), 1 +
(x - l)(y - 1), and 1 + C3(x - ί)(y - 1). Squaring the non-torsion
generators we see that 4 of the generators for U\ are redundant, and
a set of torsion free generators in ifi(Z2(C3)Z/2 x Z/2) are given as
the elements 1 + ζ3(x - 1), 1 + ζ3(y - 1), 1 + ζ3(x - ί)(y - 1),
l + ( x - l ) ( y - l ) , 1+2C3, 1+2C 3(*-1), l+2ζ3(y-l) and 1+4C3.
Next note that

C/^(Q2(C3)Z/2 x Z/2) = {t/Q2(ί3)}4 = {Z/6 x ZJ x Z\}\

The generators above for ^!(Z2(C3)Z/2 x Z/2) map into these units
via the correspondence

x—>(1,-1, 1,-1), y — ( 1 , 1,-1,-1), * j > — ( 1 , - 1 , - 1 , 1).

Hence a direct calculation shows

) ( 2 ) = Z/2xZ/2



SURGERY WITH FINITE FUNDAMENTAL GROUP I: THE OBSTRUCTIONS 107

with generators { 1 , 1 , 1 , - 1 } and {1, 1, 1, 1 +2£ 3} . But the image
of the global units

UK[(Z(l/2,ζ3)π) = (Z/6)4

is evidently the equivalence class of the element { 1 , 1 , 1 , - 1 } and
7.4 follows.

It should be noted at this point that K0(Z(Z/2 x Z/2)) = 0. This
has the effect in L^(Z(Z/2 x Z/2)), of making certain elements which
should have been present actually equal to 0, and was the core of the
problem with previous attempts to understand the possible surgery
obstructions for closed manifolds. It is precisely because Ko(Z(ζ3)π)
contains elements such as the Z/2 in 7.4, that the current approach
works.

COROLLARY 7.5. (a) Lh

ι(Z(ζ3)Z/2 x Z/2) = (Z/2)3, with image in
L\(Z(C3)Z/2 x Z/2) a copy of (Z/2)2.

(b) Lh

0(Z(ζ3)Z/2 x Z/2) = Z 4 injects into Lp

0(Z(ζ3)Z/2 x Z/2) =
Z 4 with Z/2 cokernel An explicit basis for this latter group is

( 1 , 1 , 1 , 1 ) , ( 1 , - 1 , 1 , 1 ) , ( 1 , 1 , - 1 , 1 ) , a n d ( 1 , 1 , 1 , - 1 ) .

Each of these last three elements maps onto the Z/2 cokernel
(c) L*(Z(C3)Z/2xZ/2) = 0.

(d) L*(Z(C3)Z/2xZ/2) surjects onto Lp

2(Z(£3)Z/2 x Z/2) with
kernel Z/2.

Proof. To begin note that

L£(Z(C3)Z/2 x Z/2) =

Specifically, the generators for Lg(Z(C3)Z/2 x Z/2) are (1), and three
forms given by specifying indexes at the four irreducible representa-
tions as

{ 0 , 2 , 0 , 0 } , { 0 , 0 , 2 , 0 } , and {0,0, 0,2}

respectively. Thus, since (1 + 2£|)/(1 + 2ζ3) = - 1 we see from (6.2)
that each of the three classes above maps to the non-zero element
in H0(Z/2; K0(Z{ζ3)Z/2 x Z/2)) in the first Ranicki-Rothenberg se-
quence in (2.1).

' Z 4

(Z/2)3

z 4

0

k = 0

k= 1

k = 2

k = 3
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Similarly, the generators for Z^(Z(£3)Z/2 x Z/2) are obtained us-
ing formations (H®H*, K) which satisfy the property that projecting
the second kernel K to H* by factoring out H, gives a quotient of
the form H*/(pH(K)) = Z / 3 ε ? τ . Here β,τ are each ±1 and repre-
sent the action of Z(Z/2 x Z/2) on Z/3 via one of the 3 non-trivial
irreducible representations. (7.2) follows.

We now calculate Ko(Z(ζ^)D2,, ~ ) .

LEMMA 7.6. K0(Z(ζ3)D%) = (Z/2)2 w/ίλ generators

{1, 1, 1, 1+2C 3 , 1}, {1, 1, 1, 1, l + 2 £ 3 } ,

where the first four places are the corresponding representations for the
quotient group π a b = Z/2 x Z/2 and the last place corresponds to the
representation

0 1\ (\ 0
M : x ι - l o

(The proof is not much different from the proof of 7.4. Again from
[W4]

Kι(Z2(ζ3)Ds) = Z / 6 x ( Z / 2 x Z / 2 ) x ( Z + ) 1 0 .

Hence, besides the generators listed for Kι(Z2{ζi>)Z/2 x Z/2) we re-

quire 2 more to give ^i(Z2(C3)£>8), and these are

The first of these has image {1, 1, 1, 1, 1 + 4£3} while the second
has image {1, 1, 1, 1,(1 + 2£3)

2} . {Note that the square appears in
the last term because the reduced norm here is really just the ordinary
determinant}.)

COROLLARY 7.7. Z^(Z(C3)Z)8) = ( Z / 2 ) 2 θ Z 5 , with one of the

Z/Ts surjecting onto the Z/2 in Z^(Z(C3)Z/2 x Z/2).

There are two non-conjugate embeddings

ie: Z/lxZ/2—>Dt9 e = 1,2,

where i\(a) = x2, i\(b) = y, and iiia) = x2, ii{b) = xy. They give
induction maps

(7.8) 4 : Lh

k(Z(ζ3)Z/2 x Z/2)—>Lh

k(Z(ζ3)Ds)
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and we have

LEMMA 7.9. When k — 2 the induction maps i\ are both non-
trivial on the torsion class, mapping it onto the kernel of projection to
Df = Z/2xZ/2.

Proof. It is direct to see that the two maps i\ and i2 are conjugate
via an outer automorphism of D% Thus it suffices to verify the result
for i\. For this inclusion we have

*i((—)) = M ( a s described in 7.6).

Thus, the unit { 1 , 1 , 1 , 1 + 2ζ3} has image {1, 1, 1, 1, v} where v
is the determinant of the matrix N = i\(l - (C3/2)(l - a - b + ab)),
but calculating explicitly

1 0

and from this the result follows.

More generally, for the dihedral group Dγ+ι the two inclusions

iε: Z/2xZ/2—+D2l+i, iε(a) = x2"\ h(b) = y, i2(b) = xy

satisfy

4((—)) = Mi where

and Mi is the unique irreducible faithful representation of D2l+ι. In
particular we have

THEOREM 7.10. L^(Z(ζ3)Dτ+ι) = ZM θ (Z/2)z, and the map

Pi: £>2<+i-*Dγ (pi(x) = x, pi(y) = y)

induces a surjection

p\: Lh

2(Z(ζ3)D2i+ή-+Lh

2(Z(ζ3)D2l).

Moreover the torsion kernel of p\ is in the image of the induction maps

i[ : Lh

2(Z(ζ3)Z/2 x Z/2)—+Lh

2(Z(ζ3)Dτ+ή.

(The proof is direct and modeled on the proof of 7.9.)
Finally we consider the map

Ω4k+2(Bz/2xZ/2)-^Lh

2(Z(ζ3)Z/2 x Z/2).

We do not attempt to calculate the entire map, but just enough for
our purposes. Indeed the following result is sufficient.
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THEOREM 7.11. Let f: Sι xSι—>BZ/2xz/2 send e®e to e
where e\ is the non-zero element in H\ [BZj2 Z) = Z/2, then

{Sl X Sl , /} G Ω2(2?z/2xZ/2)

maps onto the non-trivial torsion class in Z^(Z(£3)Z/2 x Z/2).

Proof. In [M-R] it is shown that the surgery problem

Sι x Sι x KAM J^l^l^ ^ x ^ x

is non-trivial when Sι xSι is regarded as having fundamental group
surjecting onto Z/4 x Z/2. But / factors as the composite

S X S • #z/4xZ/2 > ̂ Z/2xZ/2

where g is induced from the surjection of fundamental groups, as
is h.

Z^(Z(£3)Z/4 x Z/2) = Z 6 Θ Z/2,

and by default, the class of {Sι x Sι, g} in L\(Z(C3)Z/4 x Z/2) is
the non-trivial torsion element. But the map

Lh

2(Z(ζ3)Z/4 x Z/2) Λ Lh

2(Z(ζ3)Z/2 x Z/2)

is clearly surjective as well as injective on torsion. 7.11 follows.

8. The map Ω4k(Bπ)-+Lfc(Z(ζ3)π). In this section, when discussing
bordism and homology we ignore odd torsion.

The classes in the torsion subgroup of L^(Z(ζτ)π) are all induced
from quaternion

subquotients as we have seen in §6 (see also §2 of Part II, [M4]). Con-
sequently, in order to show that the image of Ω*(2?π) in L$(Z(£3)π)
is just the Z generated by (1) it suffices to show that the same is true
for the quaternion groups ff2

ι . That is, we must show that

is just the single copy of Z coming from the simply connected case!
As in §7, we do this by an explicit analysis of individual elements
in Ω45|c(2?^;). However, here there is an important difference from
the situation in §7: we want a negative result, so, rather than look
at a single element, we must check all elements. But generators for
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^ = LUM=4* Hr{B@t Ωs(pή) are very hard to describe. Con-
sequently, we use a technique which has been very helpful before,
[M2], manifolds with Z/2-coefficients, and corresponding to them,
L-groups with Z/2-coefficients.

The groups L*(A\ Z/2) are defined in terms of quadratic complexes
& of dimension n with boundary d^ together with an equivalence
d& = δ&®δ&, where δ& is an n-\ dimensional Poincare duality
complex. These groups are easily calculated since there is an exact
sequence

v / " ' ' * k V / ^ k v / * k\ ' / / ^ k— 1V 7 ^ " " '

From (8.1) we have immediately

LEMMA 8.2.

ZJ/Z K = υ

0 k= 1

Z/2 k = 2

1 0 fc = 3 .

There is an analogous definition for ΩW(X; Z/2) in terms of Z/2-
manifolds (manifolds Mn with boundary ΘM = δM u <JM two iso-
morphic disjoint copies of a closed manifold δM called the (geo-
metric) Bochstein of M, and maps / : M—>X which agree when
restricted to the two pieces of dM). An equivalent way of think-
ing about Z/2-manifolds, is as possibly non-oriented manifolds with
a chosen integral lifting of the first Stiefel-Whitney class, W\(M).
The product of two Z/2-manifolds is again a Z/2-manifold, since
W\(M x N) is W\(M) ® 1 + 1 ® w\(N), and this has an obvious inte-
gral lifting.

LEMMA 8.3. Let M y N be Z/2-manifolds, then in the relevant Z/2-
bordism group we have that

δ(MxN) = {δM)xN + M

Proof. δ(M xN) = MxδN UdMxSN (δM) x N, [M2]. But

8MxδN = δMxδNuδMx δN.

In δ(M x N) each copy of δM x δN has a trivial normal bundle, so
a neighborhood looks like / x δM x δN. We can construct a Z/2-
bordism of δ(M x N) by simply attaching I2 x δM x δN via the top
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and bottom copies of / x δM x δN, and the result of the bordism is
the Z/2-manifold of 8.3.

It is easy to compute Z/2-bordism since we have an exact sequence

(8.4) Ωn(X) - ^ ΩΛ(*)—>Ωn(X Z/2) Λ Ωn ^

In particular

(8.5) Ω*(X; Z/2) = I]//,(X; Ωs(pί; Z/2))

and, using the product structure, generators are much easier to handle.
When A = Z(ζ^)π and X = Bπ the composite maps

«„(**; Z/2)—I*(Z(C3)π;Z/2)

fit together with the composite maps

nn(Bπ)-+Lh

n(Z(ζ3)π)

to give a map of exact sequences. Moreover, the pairings

Qn(pt; Z/2) ® Ω W (Z; Z / 2 ) — Ωn + m(X; Z/2)

and

L"(Z; Z/2)®Lh

m(Z(ζ3)π;Z/2)—+Lh

n+m(Z(ζ3)π;Z/2)

also fit together in the obvious way to give commutative diagrams.
Of course, our main interest here is in what happens with the quater-

nion groups under the map

Recall the well known result [Mu]

LEMMA 8.6.

ί (Z/2)2 j = 1

( z / 2 ) 2 i = 1

. Z/2 j = 0

moreover Sq1 : H4j+{—>H4J+2 is an isomorphism, while H^{Bgι Z)

", and H4(B^ ;Z) = 0.

From (8.5), 8.6 we have

, Z/2) = 2_] Ω,(pί Z/2) Θ Hs(Ba Z/2)
r+s=*
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and we can choose representatives V* representing the elements in

lt Z/2) so that δV4M = V4M, δVlM = V[M , while δV4i =

COROLLARY 8.7. e^ restricted to the torsion part of Q4i(B^ ) is
zero.

Proof. Consider an element of the form Wn x Vt\. If we factor
through the composite

-+Ln(Z(ζ3) Z/2) ® V(Za2i Z/2)—+Ln+i(Z(ζ3)<f2i Z/2)

we see from 8.2 that n must be even. Hence, since we are only
interested in dimensions of the form 4/, / must also be even. Since
the generator in dimension 0 is in the image of Li(Z(ζ$)) where it is
detected by the index, we can choose a basis for £l4i(pt) so that CP 2 z

is one of the generators and the others go to zero in L4i(Z(ζ3), ~ ) .
But M4n x V4i has Bochstein 2ί~ιM4n x V4i~ι if M is oriented, and
if M has infinite order in R4n(pt) the Bochstein is non-zero, which
implies there is no class in Ω4i{B@ι Z/2) which is in the image of

^4i(^,-) a n d g° e s non-trivially into L^(Z{ζi)Sτ\ Z/2). A similar
argument works for M x V^+i > M x V4i+2, but it is even easier,
since, by 8.3, the Bochstein is already detected and non-trivial in Z/2-
bordism. 8.7 follows.

Of course, 8.7 is the final step in the discussion of the map τx, and
the proofs of our main results are complete.
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