THE STRUCTURE OF TWISTED SU(3) GROUPS

Albert Jeu-Liang Sheu

Abstract

In order to study how the C^{*}-algebra $C\left(S_{\mu} U(3)\right)$ of twisted $\mathrm{SU}(3)$ groups introduced by Woronowicz is related to the deformation quantization of the Lie-Poisson $\operatorname{SU}(3)$, we need to understand the algebraic structure of $C\left(S_{\mu} U(3)\right)$ better. In this paper, we shall use Bragiel's result about the irreducible representations of $C\left(S_{\mu} U(3)\right)$ and the theory of groupoid C^{*}-algebras to give an explicit description of the C^{*}-algebra structure of $C\left(S_{\mu} U(3)\right)$, which indicates that $C\left(S_{\mu} U(3)\right)$ is some kind of foliation C^{*}-algebra of the singular symplectic foliation of the Lie-Poisson group $\operatorname{SU}(3)$.

In recent years, there has been a rapid growth of interest in the theory of quantum groups [D]. In particular, S. L. Woronowicz has developed a C^{*}-algebraic theory of quantum groups, which has motivated a lot of research [B, Po, Ro, S, Va-So, Wo1, Wo2].

In [S], the explicit knowledge of the C^{*}-algebra structure of $C\left(S_{\mu} U(2)\right)$ [W01, \mathbf{S}] has helped us to find a deformation quantization [BFFLS, Ri1, Ri2, Ri3] of the Lie-Poisson SU(2) [D, Lu-We], which is in a sense compatible with the quantization of the group structure of $\operatorname{SU}(2)$ by the "twisted groups" $S_{\mu} U(2)$. On the other hand, although both $C\left(S_{\mu} U(2)\right)$ and $C\left(S_{\mu} U(3)\right)$ [Wo1, Wo2] are defined as universal C^{*}-algebras of certain generators and relations, the algebraic structure of the latter seems to be much more complicated than that of the former. In [B], Bragiel classified the irreducible representations of the C^{*}-algebra $C\left(S_{\mu} U(3)\right)$ of the twisted $\mathrm{SU}(3)$ groups (with $0<\mu<1)$ and showed that $C\left(S_{\mu} U(3)\right)$ is a type-I C^{*}-algebra [Pe]. In this paper, enlightened by the ideas in [M-Re, $\mathbf{C u}-\mathrm{M}$], we shall use Bragiel's result and the theory of groupoid C^{*}-algebras $[\mathbf{R e}]$ to give an explicit description of the C^{*}-algebra structure of $C\left(S_{\mu} U(3)\right)$, which indicates that $C\left(S_{\mu} U(3)\right)$ is some kind of foliation C^{*}-algebra of the singular symplectic foliation of the Lie-Poisson group $\mathrm{SU}(3)$ [Co, We, Lu-We].

We shall use freely the concepts and properties of the theory of groupoid C^{*}-algebras throughout this paper. A good reference for this is [Re]. First let us fix notations. Let \mathbb{T} be the unit circle in \mathbb{C} and \mathbb{T}^{2} be the two-torus embedded in \mathbb{C}^{2}. We shall denote by ϕ and
ψ the two canonical coordinate functions of \mathbb{T}^{2} with values in \mathbb{T}. For any groupoid \mathfrak{G}, we denote by $\mathfrak{G} \mid P$ the reduction of \mathfrak{G} by the subset P of the unit space of \mathfrak{G} [Re]. If a locally compact group G acts on a space X by an action τ, we shall denote by $X \times_{\tau} G$ the corresponding transformation group groupoid.

We define $\mathfrak{G}:=\overline{\mathbb{Z}}^{3} \times_{\alpha} \mathbb{Z}^{5} \mid \overline{\mathbb{Z}}{ }^{3}$, where $\overline{\mathbb{Z}}=\mathbb{Z} \cup\{+\infty\}$, the subscript \geq denotes the nonnegative part, and \mathbb{Z}^{5} acts on $\overline{\mathbb{Z}}^{3}$ by translation determined by the first three components, i.e. $\alpha(\mu)(\nu)=\nu-\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ for $\mu \in \mathbb{Z}^{5}$ and $\nu \in \mathbb{Z}^{3}$. Since the last two copies of \mathbb{Z} act trivially on $\overline{\mathbb{Z}}^{3}$, we have $C^{*}(\mathfrak{G}) \cong C^{*}\left(\mathfrak{G}_{0}\right) \otimes C^{*}\left(\mathbb{Z}^{2}\right) \cong C^{*}\left(\mathfrak{G}_{0}\right) \otimes C\left(\mathbb{T}^{2}\right)$, where $\mathfrak{C}_{0}:=\overline{\mathbb{Z}}^{3} \times_{\tau} \mathbb{Z}^{3} \mid \overline{\mathbb{Z}}_{\geq}{ }^{3}$ and τ is the action by translation. We assume that under the above isomorphism, the standard basis elements e_{4} and e_{5} of \mathbb{Z}^{5} correspond to the conjugates $\bar{\phi}$ and $\bar{\psi}$ of the canonical coordinate functions on \mathbb{T}^{2} (instead of ϕ and ψ in order to be more compatible with the notations used in [B] for the later discussion). Recall that the regular representation ρ_{3} of $C^{*}\left(\mathfrak{G}_{0}\right)$ on the open dense invariant subset $\mathbb{Z}_{\geq}{ }^{3}$ is faithful [M-Re], and hence $C^{*}(\mathfrak{G})$ can be faithfully represented on the Hilbert space $l^{2}\left(\mathbb{Z}_{\geq}{ }^{3}\right) \otimes L^{2}\left(\mathbb{T}^{2}\right)$ through $\tilde{\rho}_{3}:=\rho_{3} \otimes m$ where m is the representation of $C\left(\mathbb{T}^{2}\right)$ by multiplication operators on $L^{2}\left(\mathbb{T}^{2}\right)$.
In [B], the irreducible representations of $C\left(S_{\mu} U(3)\right)$ are classified into six 2 -parameter families (with parameters in \mathbb{T}^{2}) of irreducible representations $\pi_{3}, \pi_{21}, \pi_{22}, \pi_{11}, \pi_{12}$ and π_{0} (listed here in the same order as in [\mathbf{B}]) on Hilbert spaces $l^{2}\left(\mathbb{Z}_{\geq}{ }^{3}\right), l^{2}\left(\mathbb{Z}_{\geq}{ }^{2}\right)$, $l^{2}\left(\mathbb{Z}^{2}\right), l^{2}\left(\mathbb{Z}_{\geq}{ }^{1}\right), l^{2}\left(\mathbb{Z}_{\geq}{ }^{1}\right)$, and $l^{2}\left(\mathbb{Z}_{\geq}{ }^{0}\right)=\mathbb{C}$, respectively. The 2parameter family of irreducible representations π (on a Hilbert space $\left.\mathscr{H}_{\pi}\right)$ in the above list determine a representation $\tilde{\pi}$ of $C\left(S_{\mu} U(3)\right)$ on $\mathscr{H}_{\pi} \otimes L^{2}\left(\mathbb{T}^{2}\right)$. Since $\pi_{3}\left(u_{i j}\right)$'s and $\pi_{3}\left(u_{i j}{ }^{*}\right)$'s are (finite) linear combinations of weighted (multivariable) shifts on $l^{2}\left(\mathbb{Z}_{\geq}{ }^{3}\right)$ with weight functions extendable to $\overline{\mathbb{Z}}_{\geq}{ }^{3}$ continuously, and since the weight functions involved in each $\pi_{3}\left(u_{i j}\right)$ or $\pi_{3}\left(u_{i j}{ }^{*}\right)$ are products of the canonical functions $\phi, \psi, \bar{\phi}$ and $\bar{\psi}$ on \mathbb{T}^{2} and functions on $\overline{\mathbb{Z}}_{\geq}{ }^{3}$ independent of the parameters in \mathbb{T}^{2}, it is easy to identify the 2 -parameter family $\tilde{\pi}_{3}\left(u_{i j}\right)$ or $\tilde{\pi}_{3}\left(u_{i j}{ }^{*}\right)$ with an element in $C_{c}(\mathfrak{G}) \subseteq C^{*}(\mathfrak{G})$ (which is faithfully represented on $l^{2}\left(\mathbb{Z}_{\geq}{ }^{3}\right) \otimes L^{2}\left(\mathbb{T}^{2}\right)$) for each $u_{i j}$. For example, with $C_{c}\left(\overline{\mathbb{Z}}_{\geq}{ }^{3}\right)$ and \mathbb{Z}^{5} canonically embedded in $C_{c}(\mathcal{G})$, we have

$$
\begin{array}{ll}
\tilde{\pi}_{3}\left(u_{11}{ }^{*}\right)=e_{1} f_{11}, & \tilde{\pi}_{3}\left(u_{12}{ }^{*}\right)=e_{2} f_{12}, \\
\tilde{\pi}_{3}\left(u_{13^{*}}\right)=e_{5} f_{13}, & \tilde{\pi}_{3}\left(u_{21}{ }^{*}\right)=e_{3} f_{21}, \\
\tilde{\pi}_{3}\left(u_{31}{ }^{*}\right)=e_{4} f_{31}, &
\end{array}
$$

where, for $(N, M, L) \in \overline{\mathbb{Z}}_{\geq}{ }^{3}$,

$$
\begin{aligned}
& f_{11}(N, M, L)=\left(1-\mu^{2(N+1)}\right)^{1 / 2} \\
& f_{12}(N, M, L)=\mu^{N+1}\left(1-\mu^{2(M+1)}\right)^{1 / 2} \\
& f_{13}(N, M, L)=\mu^{2+N+M} \\
& f_{21}(N, M, L)=\mu^{N}\left(1-\mu^{2(L+1)}\right)^{1 / 2} \\
& f_{31}(N, M, L)=\mu^{N+L}
\end{aligned}
$$

Note that for $0<\mu<1$, the above expressions have canonical meaning even when N, M or L is ∞. Thus we can factor the homomorphism $\tilde{\pi}_{3}$ through $C^{*}(\mathfrak{G})$, i.e. there exists a homomorphism

$$
\eta: C\left(S_{\mu} U(3)\right) \rightarrow C^{*}(\mathfrak{G})
$$

such that $\tilde{\pi}_{3}=\tilde{\rho}_{3} \circ \eta$. We shall see later that η is in fact injective since all the representations $\tilde{\pi}$ of $C\left(S_{\mu} U(3)\right)$ mentioned above can be factored through η.

Let us consider the following invariant subsets of the unit space of \mathfrak{G},

$$
\begin{aligned}
X_{3} & =\left\{(N, M, L) \mid N, M, L \in \mathbb{Z}_{\geq}\right\}=\mathbb{Z}_{\geq}^{3} \\
X_{21} & =\left\{(N, M, L) \mid N, M \in \mathbb{Z}_{\geq} \text {and } L=\infty\right\} \cong \mathbb{Z}_{\geq}^{2} \\
X_{22} & =\left\{(N, M, L) \mid N, L \in \mathbb{Z}_{\geq} \text {and } M=\infty\right\} \cong \mathbb{Z}_{\geq}^{2}, \\
X_{11} & =\left\{(N, M, L) \mid N \in \mathbb{Z}_{\geq} \text {and } M=L=\infty\right\} \cong \mathbb{Z}_{\geq}, \\
X_{12} & =\left\{(N, M, L) \mid M \in \mathbb{Z}_{\geq} \text {and } N=L=\infty\right\} \cong \mathbb{Z}_{\geq}
\end{aligned}
$$

and $X_{0}=\{(\infty, \infty, \infty)\}$. We define $X_{i}=X_{i 1} \cup X_{i 2}$ for $i=1,2$, and $\sigma_{i}\left(\right.$ resp. $\left.\sigma_{i n}\right)$ to be the quotient map from $C^{*}\left(\mathfrak{G} \mid \bar{X}_{i+1}\right)$ to $C^{*}\left(\mathfrak{G} \mid \bar{X}_{i}\right)$ (resp. $\left.\quad C^{*}\left(\mathfrak{G} \mid \bar{X}_{\text {in }}\right)\right)$ for $i=0,1,2$, (resp. $i=1,2$ and $n=1,2$) where \bar{X}_{i} is the closure of X_{i} in the unit space of \mathfrak{G}. Since $\tilde{\pi}_{3}\left(u_{i j}\right) \tilde{\pi}_{3}\left(u_{i j}{ }^{*}\right)=f_{i j}{ }^{2}$ for the $u_{i j}$'s listed above and they separate points in $\mathbb{Z}_{\geq} \times \overline{\mathbb{Z}}_{\geq}^{2}$, i.e. points (N, M, L) with $N<\infty$, it is easy to check that $C_{c}\left(X_{3}\right)=C_{c}\left(\mathbb{Z}_{\geq^{3}}\right) \subseteq \operatorname{Im}(\eta)$ (by considering the level sets of these $f_{i j}$'s). Now since those weights $f_{i j}$ are nonvanishing on \mathbb{Z}_{\geq}^{3} and $C_{c}\left(\mathbb{Z}_{\geq}{ }^{3}\right) \subseteq \operatorname{Im}(\eta)$, the convolution algebra $C_{c}\left(\mathbb{Z}_{\geq}{ }^{3} \times_{\alpha} \mathbb{Z}^{5}\right)$ and hence $C^{*}\left(\mathbb{Z}_{\geq}{ }^{3} \times_{\alpha} \mathbb{Z}^{5}\right) \cong C\left(\mathbb{T}^{2}\right) \otimes \mathscr{K}$ are contained in the C^{*}-algebra generated by (the weighted shifts) $\eta\left(u_{i j}{ }^{*}\right)$ of the $u_{i j}{ }^{*}$'s listed above and hence in $\operatorname{Im}(\eta)$ where \mathscr{K} is the algebra of compact operators (on $l^{2}\left(\mathbb{Z}_{\geq}{ }^{3}\right)$ here).

Now we consider the diagonal homomorphism $\left(\sigma_{21}, \sigma_{22}\right)$ from $C^{*}(\mathfrak{G})$ to $C^{*}\left(\mathfrak{G} \mid \bar{X}_{21}\right) \oplus C^{*}\left(\mathfrak{G} \mid \bar{X}_{22}\right)$. It is easy to see that $\mathfrak{G} \mid \bar{X}_{2 n} \cong$ $\overline{\mathbb{Z}}^{2} \times_{\alpha(2, n)} \mathbb{Z}^{5} \mid \overline{\mathbb{Z}}_{\geq}{ }^{2}$ where \mathbb{Z}^{5} acts on $\overline{\mathbb{Z}}^{2}$ through the action $\alpha(2, n)$ in the way that 2 components (depending on n) of \mathbb{Z}^{5} act on $\overline{\mathbb{Z}}^{2}$ by
translation while the other 3 components act trivially. More precisely, $\alpha(2,1)(\mu) \cdot \nu=\nu-\left(\mu_{1}, \mu_{2}\right)$ and $\alpha(2,2)(\mu) \cdot \nu=\nu-\left(\mu_{1}, \mu_{3}\right)$ for $\mu \in \mathbb{Z}^{5}$ and $\nu \in \mathbb{Z}^{2}$. Thus

$$
C^{*}\left(\mathfrak{G} \mid \bar{X}_{2 n}\right) \cong C^{*}\left(\overline{\mathbb{Z}}^{2} \times_{\tau} \mathbb{Z}^{2} \mid \overline{\mathbb{Z}}_{\geq}^{2}\right) \otimes C^{*}\left(\mathbb{Z}^{3}\right) \cong C^{*}\left(\overline{\mathbb{Z}}^{2} \times_{\tau} \mathbb{Z}^{2} \mid \overline{\mathbb{Z}}^{2}\right) \otimes C\left(\mathbb{T}^{3}\right),
$$

where the canonical generators of \mathbb{Z}^{3} are e_{3}, e_{4}, e_{5} when $n=1$, and e_{2}, e_{4}, e_{5} when $n=2$. It is straightforward to check that $\left(\sigma_{21} \circ \eta\right)\left(u_{i j}\right)$'s $(1 \leq i, j \leq 3)$ are supported in $\overline{\mathbb{Z}}^{2} \times_{\alpha(2,1)} \mathbb{Z}^{4} \mid \overline{\mathbb{Z}}^{2}$ where \mathbb{Z}^{4} is generated by e_{1}, e_{2}, e_{3} and e_{5} in \mathbb{Z}^{5}, while $\left(\sigma_{22} \circ \eta\right)\left(u_{i j}\right)$'s are supported in $\overline{\mathbb{Z}}^{2} \times_{\alpha(2,2)} \mathbb{Z}^{4} \mid \overline{\mathbb{Z}}_{\geq}^{2}$ with \mathbb{Z}^{4} generated by e_{1}, e_{2}, e_{3} and e_{4} in \mathbb{Z}^{5}. Furthermore, from the weight functions $f_{i j}$ listed above, it is easy to check that $C_{c}\left(X_{2}\right) \subseteq \operatorname{Im}\left(\sigma_{2} \circ \eta\right)$ and hence

$$
C^{*}\left(\mathbb{Z}^{2} \times_{\alpha(2,1)} \mathbb{Z}^{4} \mid \mathbb{Z}^{2}\right) \oplus C^{*}\left(\mathbb{Z}^{2} \times_{\alpha(2,2)} \mathbb{Z}^{4} \mid \mathbb{Z}^{2}\right) \cong 2 \mathscr{K} \otimes C\left(\mathbb{T}^{2}\right)
$$

is contained in the C^{*}-algebra generated by $\left(\sigma_{21}, \sigma_{22}\right)\left(\eta\left(u_{i j}{ }^{*}\right)\right)$ and hence in $\operatorname{Im}\left(\left(\sigma_{21}, \sigma_{22}\right) \circ \eta\right)$. Let ρ_{2} be the faithful regular representation of $\overline{\mathbb{Z}}^{2} x_{\tau} \mathbb{Z}^{2} \mid \overline{\mathbb{Z}}_{\geq}{ }^{2}$ on $l^{2}\left(\mathbb{Z}_{\geq}^{2}\right)$ and $\tilde{\rho}_{2 n}=\rho_{2} \otimes m$ be the corresponding faithful representation of

$$
C^{*}\left(\overline{\mathbb{Z}}^{2} \times_{\alpha(2, n)} \mathbb{Z}^{4} \mid \overline{\mathbb{Z}}_{\geq}^{2}\right) \cong C^{*}\left(\overline{\mathbb{Z}}^{2} \times_{\tau} \mathbb{Z}^{2} \mid \overline{\mathbb{Z}}_{\geq}^{2}\right) \otimes C\left(\mathbb{T}^{2}\right)
$$

on $l^{2}\left(\mathbb{Z}_{\geq}^{2}\right) \otimes L^{2}\left(\mathbb{T}^{2}\right)$, where the isomorphism identifies e_{3}, e_{5} with $\bar{\phi}, \bar{\psi}$ if $n=1$, and identifies e_{4}, e_{2} with $\bar{\phi}, \bar{\psi}$ if $n=2$. Then it can be easily checked that

$$
\tilde{\rho}_{2 n}\left(\sigma_{2 n}\left(\eta\left(u_{i j}\right)\right)\right)=\tilde{\pi}_{2 n}\left(u_{i j}\right)
$$

(note that in the above identification, the symbols N and M used in [B] need be interchanged when $n=2$) and hence $\tilde{\pi}_{2 n}$ factors through η. Let $\eta_{2 n}:=\sigma_{2 n} \circ \eta$.

Now we consider $\sigma_{12} \circ \sigma_{2}$ and $\sigma_{11} \circ \sigma_{2}$. Since clearly $\sigma_{12} \circ \sigma_{2}$ factors through σ_{21} and $\sigma_{11} \circ \sigma_{2}$ factors through σ_{21} and σ_{22}, we may talk about $\sigma_{12} \circ \sigma_{21}\left(=\sigma_{12} \circ \sigma_{2}\right)$ and $\sigma_{11} \circ \sigma_{21}=\sigma_{11} \circ \sigma_{22}\left(=\sigma_{11} \circ \sigma_{2}\right)$ by abuse of language. Note that

$$
C^{*}\left(\mathbb{Z}^{2} \times_{\alpha(2,1)} \mathbb{Z}^{4} \mid \mathbb{Z}_{\geq}^{2}\right) \oplus C^{*}\left(\mathbb{Z}^{2} \times_{\alpha(2,2)} \mathbb{Z}^{4} \mid \mathbb{Z}_{\geq}^{2}\right) \subseteq C^{*}\left(\mathfrak{G} \mid X_{2}\right) \subseteq \operatorname{ker}\left(\sigma_{1 n}\right)
$$

because $\left(\mathbb{Z}^{2} \times_{\alpha(2,1)} \mathbb{Z}^{4} \mid \mathbb{Z}^{2}\right) \cup\left(\mathbb{Z}^{2} \times_{\alpha(2,2)} \mathbb{Z}^{4} \mid \mathbb{Z}^{2}\right) \subseteq X_{2}$. It is again easy to see that $\mathfrak{G}\left|\bar{X}_{1 n} \cong \overline{\mathbb{Z}} \times_{\alpha(1, n)} \mathbb{Z}^{5}\right| \overline{\mathbb{Z}}_{\geq}$where \mathbb{Z}^{5} acts on $\overline{\mathbb{Z}}$ through the action $\alpha(1, n)$ in the way that one component (depending on n) of \mathbb{Z}^{5} act on $\overline{\mathbb{Z}}$ by translation while the other 4 components act trivially.

More precisely, $\alpha(1,1)(\mu) \cdot \nu=\nu-\mu_{1}$ and $\alpha(1,2)(\mu) \cdot \nu=\nu-\mu_{2}$ for $\mu \in \mathbb{Z}^{5}$ and $\nu \in \mathbb{Z}$. Thus

$$
C^{*}\left(\mathfrak{G} \mid \bar{X}_{1 n}\right) \cong C^{*}\left(\overline{\mathbb{Z}} \times_{\tau} \mathbb{Z} \mid \overline{\mathbb{Z}}_{\geq}\right) \otimes C^{*}\left(\mathbb{Z}^{4}\right) \cong C^{*}\left(\overline{\mathbb{Z}} \times_{\tau} \mathbb{Z} \mid \overline{\mathbb{Z}}_{\geq}\right) \otimes C\left(\mathbb{T}^{4}\right)
$$

where the canonical generators of \mathbb{Z}^{4} are $e_{2}, e_{3}, e_{4}, e_{5}$ when $n=1$, and $e_{1}, e_{3}, e_{4}, e_{5}$ when $n=2$. It is straightforward to check that $\left(\sigma_{11} \circ \sigma_{2} \circ \eta\right)\left(u_{i j}\right)$'s $(1 \leq i, j \leq 3)$ are supported in $\overline{\mathbb{Z}} \times_{\alpha(1,1)} \mathbb{Z}^{3} \mid \overline{\mathbb{Z}}_{\geq}$ where \mathbb{Z}^{3} is generated by e_{1}, e_{2} and e_{3} in \mathbb{Z}^{5}, while the $\left(\sigma_{12} \circ \sigma_{2} \circ \eta\right)\left(u_{i j}\right)$'s are supported in $\overline{\mathbb{Z}} \times_{\alpha(1,2)} \mathbb{Z}^{4} \mid \overline{\mathbb{Z}}_{\geq}$with \mathbb{Z}^{4} generated by e_{1}, e_{2}, e_{3} and e_{5} in \mathbb{Z}^{5}. Let ρ_{1} be the faithful regular representation of $\overline{\mathbb{Z}} \times_{\tau} \mathbb{Z} \mid \overline{\mathbb{Z}}_{\geq}$on $l^{2}\left(\mathbb{Z}_{\geq}\right)$and $\tilde{\rho}_{11}=\rho_{1} \otimes m$ be the corresponding faithful representation of

$$
C^{*}\left(\overline{\mathbb{Z}} \times_{\alpha(1,1)} \mathbb{Z}^{3} \mid \overline{\mathbb{Z}}_{\geq}\right) \cong C^{*}\left(\overline{\mathbb{Z}} \times_{\tau} \mathbb{Z} \mid \overline{\mathbb{Z}}_{\geq}\right) \otimes C\left(\mathbb{T}^{2}\right)
$$

on $l^{2}\left(\mathbb{Z}^{2}\right) \otimes L^{2}\left(\mathbb{T}^{2}\right)$, where the isomorphism identifies e_{3} and e_{2} with $\bar{\phi}$ and $\bar{\psi}$ respectively. Then it can be easily checked that

$$
\tilde{\rho}_{11}\left(\left(\sigma_{11} \circ \sigma_{2} \circ \eta\right)\left(u_{i j}\right)\right)=\tilde{\pi}_{11}\left(u_{i j}\right)
$$

and hence $\tilde{\pi}_{11}$ factors through η and $\eta_{11}:=\sigma_{11} \circ \sigma_{2} \circ \eta=\sigma_{11} \circ \eta_{21}=$ $\sigma_{11} \circ \eta_{22}$. On the other hand, we have

$$
C^{*}\left(\overline{\mathbb{Z}} \times_{\alpha(1,2)} \mathbb{Z}^{4} \mid \overline{\mathbb{Z}}_{\geq}\right) \cong C^{*}\left(\overline{\mathbb{Z}} \times_{\tau} \mathbb{Z} \mid \overline{\mathbb{Z}}_{\geq}\right) \otimes C\left(\mathbb{T}^{3}\right)
$$

where the conjugates of the three canonical coordinate functions of \mathbb{T}^{3} correspond to the generators e_{1}, e_{3} and e_{5} in \mathbb{Z}^{5}. Composing the above identification with id $\otimes \kappa_{12}$, we get a homomorphism λ_{12} from $C^{*}\left(\overline{\mathbb{Z}} \times_{\alpha(1,2)} \mathbb{Z}^{4} \mid \overline{\mathbb{Z}}_{\geq}\right)$to $C^{*}\left(\overline{\mathbb{Z}} \times_{\tau} \mathbb{Z} \mid \overline{\mathbb{Z}}_{\geq}\right) \otimes C\left(\mathbb{T}^{2}\right)$, where κ_{12} is the homomorphism from $C\left(\mathbb{T}^{3}\right)$ to $C\left(\mathbb{T}^{2}\right)$ induced by the map from \mathbb{T}^{2} to \mathbb{T}^{3} sending $z \in \mathbb{T}^{2}$ to $\left(z_{1},-z_{1}, z_{2}\right)$. Let $\tilde{\rho}_{12}=\rho_{1} \otimes m$ be the faithful representation of $C^{*}\left(\overline{\mathbb{Z}} \times_{\tau} \mathbb{Z} \mid \overline{\mathbb{Z}}_{\geq}\right) \otimes C\left(\mathbb{T}^{2}\right) \supseteq \operatorname{Im}\left(\eta_{12}\right)$, where $\eta_{12}=\lambda_{12} \circ\left(\sigma_{12} \circ \sigma_{2} \circ \eta\right)=\lambda_{12} \circ\left(\sigma_{12} \circ \sigma_{21} \circ \eta\right)$. (Here we use the convention that $f \circ g$ is meaningful whenever $\operatorname{Im}(g) \subseteq \operatorname{Dom}(f)$.) Then $\tilde{\rho}_{12} \circ \lambda_{12}$ defines a representation of $\operatorname{Im}\left(\sigma_{12} \circ \sigma_{2} \circ \eta\right)$ on $l^{2}\left(\mathbb{Z}_{\geq}\right) \otimes L^{2}\left(\mathbb{T}^{2}\right)$. It is straightforward to check that

$$
\left(\tilde{\rho}_{12} \circ \lambda_{12}\right)\left(\left(\sigma_{12} \circ \sigma_{2} \circ \eta\right)\left(u_{i j}\right)\right)=\tilde{\pi}_{12}\left(u_{i j}\right)
$$

(note that in [B], M is replaced by N) for all i, j. From the weight functions $f_{i j}$ listed above, it is easy to check that $C_{c}\left(X_{1}\right) \subseteq$ $\operatorname{Im}\left(\sigma_{1} \circ \sigma_{2} \circ \eta\right)$. So by the formulas for $\pi_{1 n}\left(u_{i j}\right)$ in [B], it is not hard to see that

$$
\begin{aligned}
C^{*}\left(\mathbb{Z} \times_{\alpha(1,1)}\right. & \left.\mathbb{Z}^{3} \mid \mathbb{Z}_{\geq}\right) \oplus \lambda_{12}\left(C^{*}\left(\mathbb{Z} \times_{\alpha(1,2)} \mathbb{Z}^{4} \mid \mathbb{Z}_{\geq}\right)\right) \\
& \cong 2 C^{*}\left(\mathbb{Z} \times_{\tau} \mathbb{Z} \mid \mathbb{Z}_{\geq}\right) \otimes C\left(\mathbb{T}^{2}\right) \cong 2 \mathscr{K} \otimes C\left(\mathbb{T}^{2}\right)
\end{aligned}
$$

is contained in the C^{*}-algebra generated by $\left(\eta_{11}, \eta_{12}\right)\left(u_{i j}{ }^{*}\right)$ and hence in $\operatorname{Im}\left(\left(\eta_{11}, \eta_{12}\right)\right)$. Notice that

$$
C^{*}\left(\mathbb{Z} \times_{\alpha(1,1)} \mathbb{Z}^{3} \mid \mathbb{Z}_{\geq}\right) \oplus C^{*}\left(\mathbb{Z} \times_{\alpha(1,2)} \mathbb{Z}^{4} \mid \mathbb{Z}_{\geq}\right) \subseteq C^{*}\left(\mathfrak{G} \mid X_{1}\right)
$$

is contained in the kernel of σ_{0}.
Now we consider $\sigma_{0} \circ \sigma_{1} \circ \sigma_{2}$. Since $\sigma_{0} \circ \sigma_{1} \circ \sigma_{2}$ clearly factors through $\sigma_{11} \circ \sigma_{2}$ and $\sigma_{12} \circ \sigma_{2}$, we may talk about $\sigma_{0} \circ \sigma_{11} \circ \sigma_{2}=$ $\sigma_{0} \circ \sigma_{12} \circ \sigma_{2}=\sigma_{0} \circ \sigma_{1} \circ \sigma_{2}$ by abuse of language. Note that $C^{*}\left(\mathfrak{G} \mid X_{0}\right)=$ $C^{*}\left(\mathbb{Z}^{5}\right) \cong C\left(\mathbb{T}^{5}\right)$ and that ($\left.\sigma_{0} \circ \sigma_{1} \circ \sigma_{2} \circ \eta\right)\left(u_{i j}\right)$'s ($1 \leq i, j \leq 3$) are supported in \mathbb{Z}^{3} generated by e_{1}, e_{2} and e_{3} in \mathbb{Z}^{5}. Composing the identification $C^{*}\left(\mathbb{Z}^{3}\right) \cong C\left(\mathbb{T}^{3}\right)$ with κ_{0} (where the generators e_{1}, e_{2}, e_{3} are identified with the conjugates of the corresponding coordinate functions of \mathbb{T}^{3}, we get a homomorphism λ_{0} from $C^{*}\left(\mathbb{Z}^{3}\right)$ to $C\left(\mathbb{T}^{2}\right)$, where κ_{0} is the homomorphism from $C\left(\mathbb{T}^{3}\right)$ to $C\left(\mathbb{T}^{2}\right)$ induced by the map from \mathbb{T}^{2} to \mathbb{T}^{3} sending $z \in \mathbb{T}^{2}$ to $\left(z_{1}, z_{2},-z_{1}\right)$. Let $\tilde{\rho}_{0}:=$ m. Then $\tilde{\rho} \circ \lambda_{0}$ is a representation of $C^{*}\left(\mathbb{Z}^{3}\right)$ on $L^{2}\left(\mathbb{T}^{2}\right)$. It is straightforward to check that

$$
\left(\tilde{\rho}_{0} \circ \eta_{0}\right)\left(u_{i j}\right)=\tilde{\pi}_{0}\left(u_{i j}\right)
$$

for all i, j, where $\eta_{0}=\lambda_{0} \circ \sigma_{0} \circ \sigma_{1} \circ \sigma_{2} \circ \eta$ is a homomorphism from $C\left(S_{\mu} U(3)\right)$ to $C^{*}\left(\mathbb{Z}^{2}\right) \cong C\left(\mathbb{T}^{2}\right)$. Comparing the definitions of κ_{12} and κ_{0} and relating the generators of their domains $C^{*}\left(\mathbb{Z}^{3}\right)$ to those of \mathbb{Z}^{5} as we specified above, it is easy to check that η_{0} factors through η_{11} and η_{12}, say $\eta_{0}=\tilde{\omega}_{0} \circ\left(\eta_{11}, \eta_{12}\right)$ for some $\tilde{\omega}_{0}$ defined on $\operatorname{Im}\left(\eta_{11}, \eta_{12}\right)$. Note that $\operatorname{ker}\left(\tilde{\omega}_{0}\right)$ contains the subalgebra

$$
C^{*}\left(\mathbb{Z} \times_{\alpha(1,1)} \mathbb{Z}^{3} \mid \mathbb{Z}_{\geq}\right) \oplus \lambda_{12}\left(C^{*}\left(\mathbb{Z} \times_{\alpha(1,2)} \mathbb{Z}^{4} \mid \mathbb{Z}_{\geq}\right)\right) \cong 2 \mathscr{K} \otimes C\left(\mathbb{T}^{2}\right) .
$$

Now we summarize what we have so far. There are homomorphisms $\eta_{3}=\eta, \eta_{21}, \eta_{22}, \eta_{11}, \eta_{12}$ and η_{0} from $C\left(S_{\mu} U(3)\right)$ to

$$
\begin{gathered}
C^{*}(\mathfrak{G})=C^{*}\left(\overline{\mathbb{Z}}^{3} \times_{\alpha} \mathbb{Z}^{5} \mid \overline{\mathbb{Z}}_{\geq}^{3}\right)=C\left(\overline{\mathbb{Z}}^{3} \times_{\tau} \mathbb{Z}^{3} \mid \overline{\mathbb{Z}}_{\geq}^{3}\right) \otimes C\left(\mathbb{T}^{2}\right), \\
C^{*}\left(\overline{\mathbb{Z}}^{2} \times_{\tau} \mathbb{Z}^{2} \mid \overline{\mathbb{Z}}_{\geq}^{2}\right) \otimes C\left(\mathbb{T}^{2}\right), \quad C^{*}\left(\overline{\mathbb{Z}}^{2} \times_{\tau} \mathbb{Z}^{2} \mid \overline{\mathbb{Z}}_{\geq}^{2}\right) \otimes C\left(\mathbb{T}^{2}\right), \\
C^{*}\left(\overline{\mathbb{Z}} \times_{\tau} \mathbb{Z} \mid \overline{\mathbb{Z}}_{\geq}\right) \otimes C\left(\mathbb{T}^{2}\right), \quad C^{*}\left(\overline{\mathbb{Z}} \times_{\tau} \mathbb{Z} \mid \overline{\mathbb{Z}}_{\geq}\right) \otimes C\left(\mathbb{T}^{2}\right) \quad \text { and } \quad C\left(\mathbb{T}^{2}\right),
\end{gathered}
$$

respectively, such that
(1) each η_{i} or $\eta_{i n}$ factors through η_{j} with $j>i$, where $\eta_{i}:=$ $\left(\eta_{i 1}, \eta_{i 2}\right)$ if $i=1,2$. In fact, $\eta_{21}=\omega_{21} \circ \eta, \eta_{22}=\omega_{22} \circ \eta, \eta_{11}=$ $\omega_{11} \circ \eta_{21}, \eta_{11}=\omega_{11}^{\prime} \circ \eta_{22}, \eta_{12}=\omega_{12} \circ \eta_{21}, \eta_{0}=\omega_{0} \circ \eta_{11}$ and $\eta_{0}=\omega_{0}^{\prime} \circ \eta_{12}$ for some ω 's defined on the range of the corresponding η 's.
(2) Let $\eta_{i}=\tilde{\omega}_{i} \circ \eta_{i+1}$ for a suitable homomorphism $\tilde{\omega}_{i}$ defined on $\operatorname{Im}\left(\eta_{i+1}\right)$. Then $\operatorname{ker}\left(\tilde{\omega}_{i}\right)$ contains a copy of $C\left(\mathbb{T}^{2}\right) \otimes \mathscr{K}$ if $i=2$, and contains two copies of $C\left(\mathbb{T}^{2}\right) \otimes \mathscr{K}$ if $i=0$ or 1 . Furthermore, $\operatorname{Im}\left(\eta_{0}\right) \cong C\left(\mathbb{T}^{2}\right)$. Note that $\operatorname{Ker}\left(\eta_{i}\right)=\eta_{i+1}^{-1}\left(\operatorname{Ker}\left(\tilde{\omega}_{i}\right)\right)$.
(3) $\tilde{\pi}_{i}=\tilde{\rho}_{i} \circ \eta_{i}(i=0,3)$ and $\tilde{\pi}_{i n}=\tilde{\rho}_{\text {in }} \circ \eta_{\text {in }}(i=1,2)$ for some faithful representations $\tilde{\rho}_{i}$ and $\tilde{\rho}_{\text {in }}$ on $\operatorname{Im}\left(\eta_{i}\right)$ and $\operatorname{Im}\left(\eta_{i n}\right)$ respectively. Since the irreducible representations of $C\left(S_{\mu} U(3)\right)$ are classified by those 2 -parameter families of $\pi_{0}, \pi_{11}, \pi_{12}, \pi_{21}, \pi_{22}$, and π_{3}, the spectrum of $C\left(S_{\mu} U(3)\right)$ is a disjoint union of 6 copies of \mathbb{T}^{2} as a set. On the other hand, by (1)-(3), all these representations π_{i} 's (or $\pi_{i n}$'s) factor through η_{j} (or $\eta_{j n}$) with $j>i$ and hence $\eta=\eta_{3}$ is faithful. Thus, the type I C^{*}-algebra $C\left(S_{\mu} U(3)\right)$ has a composition sequence

$$
0 \subseteq \mathscr{I}_{3}=\operatorname{Ker}\left(\eta_{2}\right) \subseteq \mathscr{I}_{2}=\operatorname{Ker}\left(\eta_{1}\right) \subseteq \mathscr{I}_{1}=\operatorname{Ker}\left(\eta_{0}\right) \subseteq \mathscr{J}_{0}=C\left(S_{\mu} U(3)\right)
$$

such that $\mathscr{J}_{3}=\operatorname{Ker}\left(\tilde{\omega}_{2}\right), \mathscr{I}_{2} / \mathscr{I}_{3} \cong \operatorname{Ker}\left(\tilde{\omega}_{1}\right), \mathscr{J}_{1} / \mathscr{I}_{2} \cong \operatorname{Ker}\left(\tilde{\omega}_{0}\right)$ and $\mathscr{I}_{0} / \mathscr{I}_{1} \cong \operatorname{Im}\left(\eta_{0}\right) \cong C\left(\mathbb{T}^{2}\right)$. Note that $C\left(Y_{i+1}\right) \otimes \mathscr{K}(\mathscr{H}) \subseteq \operatorname{Ker}\left(\tilde{\omega}_{i}\right) \subseteq$ $\operatorname{Im}\left(\eta_{i+1}\right) \subseteq C\left(Y_{i+1}\right) \otimes \mathscr{B}(\mathscr{H})$ (for some L^{2}-space \mathscr{H}), where Y_{k} is homeomorphic to \mathbb{T}^{2} if $k=3$ or 0 , and to the disjoint union of 2 copies of \mathbb{T}^{2} if $k=2$ or 1 . If $C\left(Y_{i+1}\right) \otimes \mathscr{K}(\mathscr{H}) \neq \operatorname{Ker}\left(\tilde{\omega}_{i}\right)$, then we have non-trivial irreducible representations of $\operatorname{Ker}\left(\tilde{\omega}_{i}\right) / C\left(Y_{i+1}\right) \otimes$ $\mathscr{K}(\mathscr{H})$ which will induce irreducible representations of $C\left(S_{\mu} U(3)\right)$ not unitarily equivalent to any of the π 's found in [B]. So we have $C\left(Y_{i+1}\right) \otimes \mathscr{K}(\mathscr{H})=\operatorname{Ker}\left(\tilde{\omega}_{i}\right)$.

We summarize what we obtained about the structure of the C^{*} algebra $C\left(S_{\mu} U(3)\right)$ in the following theorem.

Theorem. The C^{*}-algebra $C\left(S_{\mu} U(3)\right)$ of the twisted $\mathrm{SU}(3)$ group has the composition sequence

$$
\mathscr{I}_{3} \subseteq \mathscr{I}_{2} \subseteq \mathscr{I}_{1} \subseteq \mathscr{J}_{0}=C\left(S_{\mu} U(3)\right)
$$

such that

$$
\mathscr{I}_{0} / \mathscr{I}_{1} \cong C\left(\mathbb{T}^{2}\right), \quad \mathscr{J}_{1} / \mathscr{I}_{2} \cong \mathscr{I}_{2} / \mathscr{I}_{3} \cong 2 C\left(\mathbb{T}^{2}\right) \otimes \mathscr{K}
$$

and $\mathscr{J}_{3} \cong C\left(\mathbb{T}^{2}\right) \otimes \mathscr{K}$.
We remark that the above decomposition of $C\left(S_{\mu} U(3)\right)$ is compatible with the singular foliation of the Lie-Poisson $\mathrm{SU}(3)$ [Lu-We] by the symplectic leaves [We]. More precisely, there are six 2-parameter families (with parameters in \mathbb{T}^{2}) of symplectic leaves diffeomorphic to $\mathbb{C}^{0}, \mathbb{C}^{1}, \mathbb{C}^{1}, \mathbb{C}^{2}, \mathbb{C}^{2}$ and \mathbb{C}^{3}, respectively as pointed out by
A. Weinstein in a private communication. With each leaf of positive dimension quantized by the Weyl quantization [$\mathbf{H 0}$, Vo], it is likely that we can find a deformation quantization (in the sense of [Ri1]) of the Poisson $\operatorname{SU}(3)$ as we did for the case of Poisson $\operatorname{SU}(2)$ in [S]. In a sense as explained in $[\mathbf{S}], C\left(S_{\mu} U(3)\right)$ can be regarded as a foliation C^{*}-algebra of the (singular) symplectic foliation on $\mathrm{SU}(3)$.

With some more effort to analyse the data obtained, we are able to describe the topology of the spectrum Y of $C\left(S_{\mu} U(3)\right)$. In order to do so, we shall say that a copy of \mathbb{T}^{2} approximates another copy of \mathbb{T}^{2} in a topological space in type \ldots if any sequence in the first \mathbb{T}^{2} converges to any element in the second \mathbb{T}^{2}, and in type
\qquad , -, $>$ or $=$, if a sequence $z(n)$ in the first \mathbb{T}^{2} converges to w in the second \mathbb{T}^{2} if and only if $z(n)_{2} \rightarrow w_{2}, z(n)_{1} \rightarrow w_{1}$, $z(n)_{1} z(n)_{2} \rightarrow \bar{w}_{2}$ or $z(n)_{1} z(n)_{2} \rightarrow w_{1} w_{2}$ respectively. Now clearly Y is a union of the above Y_{k} 's, and by a more detailed analysis of the factorizability among η 's than the one specified in (1), we can conclude that Y is a disjoint union of $Y_{0}, Y_{11}, Y_{12}, Y_{21}, Y_{22}$ and Y_{3} (each homeomorphic to \mathbb{T}^{2}) such that (i) Y_{3} is open dense in Y in the way that Y_{3} approximates $Y_{21}, Y_{22}, Y_{11}, Y_{12}$ and Y_{0} in type \qquad , - $, \ldots, \ldots$, and \ldots, respectively, (ii) Y_{21} and Y_{22} are disjoint open sets with dense union $Y_{2}=Y_{21} \cup Y_{22}$ in $Y \backslash Y_{3}$ such that Y_{21} approximates Y_{11}, Y_{12}, and Y_{0} in type,$-=$ and \ldots respectively, and Y_{22} approximates $Y_{11} Y_{12}$ and Y_{0} in type \qquad and \ldots respectively ($Y_{12} \cap \bar{Y}_{22}=\varnothing$), (iii) Y_{11} and Y_{12} are disjoint open sets with dense union $Y_{1}=Y_{11} \cup Y_{12}$ in $Y \backslash\left(Y_{3} \cup Y_{2}\right)$ such that Y_{11} and Y_{12} approximating Y_{0} in type $=$ and - respectively.

References

[BFFLS] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, Deformation theory and quantization, I, II, Ann. Physics, 110 (1978), 61110, 111-151.
[B] K. Bragiel, The twisted $\operatorname{SU}(3)$ group, Irreducible *-representations of the C^{*}-algebra $C\left(S_{\mu} U(3)\right)$, Letters in Math. Phys., 17 (1989), 37-44.
[Co] A. Connes, A survey of foliation and operator algebras, Proc. Symp. Pure Math., Vol. 38, Part I, Amer. Math. Soc., Providence, R.I. (1982), 521-628
$[\mathrm{Cu}-\mathrm{M}] \quad$ R. E. Curto and P. S. Muhly, C^{*}-algebras of multiplication operators on Bergman spaces, J. Funct. Anal., 64 (1985), 315-329.
[D] V. G. Drinfeld, Quantum groups, Proc. I.C.M. Berkeley 1986, Vol. 1, 789820, Amer. Math. Soc., Providence, R.I. 1987.
[Hö] L. Hörmander, The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math., 32 (1979), 359-443.
[Lu-We] J. H. Lu and A. Weinstein, Poisson Lie groups, dressing transformations and Bruhat decompositions, J. Differential Geom., 31 (1990), 501-526.
[M-Re] P. S. Muhly and J. N. Renault, C^{*}-algebra of multivariable Wiener-Hopf operators, Trans. Amer. Math. Soc., 274 (1982), 1-44.
[Pe] G. K. Pedersen, C^{*}-algebras and their Automorphism Groups, Academic Press, New York, 1979.
[Po] P. Podles, Quantum spheres, Letters in Math. Phys., 14 (1987), 193-202.
[Re] J. Renault, A Groupoid Approach to C^{*}-Algebras, Lecture Notes in Mathematics, Vol. 793, Springer-Verlag, New York, 1980.
[Ri1] M. A. Rieffel, Deformation quantization and operator algebras, preprint.
[Ri2] _, Deformation quantization of Heisenberg manifolds, Comm. Math. Phys., 122 (1989), 531-562.
[Ri3] _Lie group convolution algebras as deformation quantization of linear Poisson structures, Amer. J. Math., 112 (1990), 657-686.
[Ro] M. Rosso, Comparaison des groupes $\operatorname{SU}(2)$ quantiques de Drinfeld et de Woronowicz, C. R. Acad. Sci. Paris, 304 (1987), 323-326.
[S] A. J. L. Sheu, Quantization of the Poisson $\mathrm{SU}(2)$ and its Poisson homogeneous space-the 2-sphere, Comm. Math. Phys., 135 (1991), 217-232.
[Va-So] L. L. Vaksman and Ya. S. Soibelman, Function algebra on quantum group $\operatorname{SU}(2)$, Funktsional. Anal. i Prilozhen., 22 (1988), No. 2, 1-14 (in Russian).
[Vo] A. Voros, An algebra of pseudodifferential operators and the asymptotics of quantum mechanics, J. Funct. Anal., 29 (1978), 104-132.
[We] A. Weinstein, The local structure of Poisson manifolds, J. Differential Geom., 18 (1983), 523-557.
[Wo1] S. L. Woronowicz, Twisted $\operatorname{SU}(2)$ group: an example of a non-commutative differential calculus, Publ. RIMS, 23 (1987), 117-181.
[Wo2] , Compact matrix pseudogroups, Comm. Math. Phys., 111 (1987), 613-665.

Received July 10, 1990. Partially supported by NSF-Grant DMS-9002895. The result of this paper was presented at the AMS-IMS-SIAM Joint Summer Research Conference, June 18, 1990, at Amherst, Massachusetts, U.S.A.

