# THE STRUCTURE OF TWISTED SU(3) GROUPS

# Albert Jeu-Liang Sheu

In order to study how the  $C^*$ -algebra  $C(S_{\mu}U(3))$  of twisted SU(3) groups introduced by Woronowicz is related to the deformation quantization of the Lie-Poisson SU(3), we need to understand the algebraic structure of  $C(S_{\mu}U(3))$  better. In this paper, we shall use Bragiel's result about the irreducible representations of  $C(S_{\mu}U(3))$  and the theory of groupoid  $C^*$ -algebras to give an explicit description of the  $C^*$ -algebra structure of  $C(S_{\mu}U(3))$ , which indicates that  $C(S_{\mu}U(3))$  is some kind of foliation  $C^*$ -algebra of the singular symplectic foliation of the Lie-Poisson group SU(3).

In recent years, there has been a rapid growth of interest in the theory of quantum groups [D]. In particular, S. L. Woronowicz has developed a  $C^*$ -algebraic theory of quantum groups, which has motivated a lot of research [B, Po, Ro, S, Va-So, Wo1, Wo2].

In [S], the explicit knowledge of the  $C^*$ -algebra structure of  $C(S_{\mu}U(2))$  [Wo1, S] has helped us to find a deformation quantization [BFFLS, Ri1, Ri2, Ri3] of the Lie-Poisson SU(2) [D, Lu-We], which is in a sense compatible with the quantization of the group structure of SU(2) by the "twisted groups"  $S_{\mu}U(2)$ . On the other hand, although both  $C(S_{\mu}U(2))$  and  $C(S_{\mu}U(3))$  [Wo1, Wo2] are defined as universal  $C^*$ -algebras of certain generators and relations, the algebraic structure of the latter seems to be much more complicated than that of the former. In [B], Bragiel classified the irreducible representations of the C<sup>\*</sup>-algebra  $C(S_{\mu}U(3))$  of the twisted SU(3) groups (with  $0 < \mu < 1$ ) and showed that  $C(S_{\mu}U(3))$  is a type-I C<sup>\*</sup>-algebra [Pe]. In this paper, enlightened by the ideas in [M-Re, Cu-M], we shall use Bragiel's result and the theory of groupoid  $C^*$ -algebras [**Re**] to give an explicit description of the C<sup>\*</sup>-algebra structure of  $C(S_{\mu}U(3))$ , which indicates that  $C(S_{\mu}U(3))$  is some kind of foliation C\*-algebra of the singular symplectic foliation of the Lie-Poisson group SU(3) [Co, We, Lu-We].

We shall use freely the concepts and properties of the theory of groupoid  $C^*$ -algebras throughout this paper. A good reference for this is [**Re**]. First let us fix notations. Let  $\mathbb{T}$  be the unit circle in  $\mathbb{C}$  and  $\mathbb{T}^2$  be the two-torus embedded in  $\mathbb{C}^2$ . We shall denote by  $\phi$  and

 $\psi$  the two canonical coordinate functions of  $\mathbb{T}^2$  with values in  $\mathbb{T}$ . For any groupoid  $\mathfrak{G}$ , we denote by  $\mathfrak{G}|P$  the reduction of  $\mathfrak{G}$  by the subset P of the unit space of  $\mathfrak{G}$  [**Re**]. If a locally compact group G acts on a space X by an action  $\tau$ , we shall denote by  $X \times_{\tau} G$  the corresponding transformation group groupoid.

We define  $\mathfrak{G} := \overline{\mathbb{Z}}^3 \times_{\alpha} \mathbb{Z}^5 | \overline{\mathbb{Z}}_{\geq^3}$ , where  $\overline{\mathbb{Z}} = \mathbb{Z} \cup \{+\infty\}$ , the subscript  $\geq$  denotes the nonnegative part, and  $\mathbb{Z}^5$  acts on  $\overline{\mathbb{Z}}^3$  by translation determined by the first three components, i.e.  $\alpha(\mu)(\nu) = \nu - (\mu_1, \mu_2, \mu_3)$  for  $\mu \in \mathbb{Z}^5$  and  $\nu \in \mathbb{Z}^3$ . Since the last two copies of  $\mathbb{Z}$  act trivially on  $\overline{\mathbb{Z}}^3$ , we have  $C^*(\mathfrak{G}) \cong C^*(\mathfrak{G}_0) \otimes C^*(\mathbb{Z}^2) \cong C^*(\mathfrak{G}_0) \otimes C(\mathbb{T}^2)$ , where  $\mathfrak{G}_0 := \overline{\mathbb{Z}}^3 \times_{\tau} \mathbb{Z}^3 | \overline{\mathbb{Z}}_{\geq^3}$  and  $\tau$  is the action by translation. We assume that under the above isomorphism, the standard basis elements  $e_4$  and  $e_5$  of  $\mathbb{Z}^5$  correspond to the conjugates  $\overline{\phi}$  and  $\overline{\psi}$  of the canonical coordinate functions on  $\mathbb{T}^2$  (instead of  $\phi$  and  $\psi$  in order to be more compatible with the notations used in [**B**] for the later discussion). Recall that the regular representation  $\rho_3$  of  $C^*(\mathfrak{G}_0)$  on the open dense invariant subset  $\mathbb{Z}_{\geq^3}$  is faithful [**M-Re**], and hence  $C^*(\mathfrak{G})$  can be faithfully represented on the Hilbert space  $l^2(\mathbb{Z}_{\geq^3}) \otimes L^2(\mathbb{T}^2)$  through  $\tilde{\rho}_3 := \rho_3 \otimes m$  where m is the representation of  $C(\mathbb{T}^2)$  by multiplication operators on  $L^2(\mathbb{T}^2)$ .

In [B], the irreducible representations of  $C(S_{\mu}U(3))$  are classified into six 2-parameter families (with parameters in  $\mathbb{T}^2$ ) of irreducible representations  $\pi_3$ ,  $\pi_{21}$ ,  $\pi_{22}$ ,  $\pi_{11}$ ,  $\pi_{12}$  and  $\pi_0$  (listed here in the same order as in [B]) on Hilbert spaces  $l^2(\mathbb{Z}_{\geq}^3)$ ,  $l^2(\mathbb{Z}_{\geq}^2)$ ,  $l^2(\mathbb{Z}_{\geq}^2)$ ,  $l^2(\mathbb{Z}_{\geq}^1)$ ,  $l^2(\mathbb{Z}_{\geq}^1)$ , and  $l^2(\mathbb{Z}_{\geq}^0) = \mathbb{C}$ , respectively. The 2parameter family of irreducible representations  $\pi$  (on a Hilbert space  $\mathscr{H}_{\pi}$ ) in the above list determine a representation  $\tilde{\pi}$  of  $C(S_{\mu}U(3))$  on  $\mathscr{H}_{\pi} \otimes L^2(\mathbb{T}^2)$ . Since  $\pi_3(u_{ij})$ 's and  $\pi_3(u_{ij}^*)$ 's are (finite) linear combinations of weighted (multivariable) shifts on  $l^2(\mathbb{Z}_{>}^3)$  with weight functions extendable to  $\overline{\mathbb{Z}}_{>3}$  continuously, and since the weight functions involved in each  $\pi_3(u_{ij})$  or  $\pi_3(u_{ij}^*)$  are products of the canonical functions  $\phi$ ,  $\psi$ ,  $\overline{\phi}$  and  $\overline{\psi}$  on  $\mathbb{T}^2$  and functions on  $\overline{\mathbb{Z}}_{\geq}^3$  independent of the parameters in  $\mathbb{T}^2$ , it is easy to identify the 2-parameter family  $\tilde{\pi}_3(u_{ij})$  or  $\tilde{\pi}_3(u_{ij}^*)$  with an element in  $C_c(\mathfrak{G}) \subseteq C^*(\mathfrak{G})$  (which is faithfully represented on  $l^2(\mathbb{Z}_{\geq}^3) \otimes L^2(\mathbb{T}^2)$  for each  $u_{ij}$ . For example, with  $C_c(\overline{\mathbb{Z}}_{\geq}^3)$  and  $\mathbb{Z}^5$  canonically embedded in  $C_c(\mathfrak{G})$ , we have

$$\begin{aligned} \tilde{\pi}_3(u_{11}^*) &= e_1 f_{11}, \quad \tilde{\pi}_3(u_{12}^*) = e_2 f_{12}, \\ \tilde{\pi}_3(u_{13}^*) &= e_5 f_{13}, \quad \tilde{\pi}_3(u_{21}^*) = e_3 f_{21}, \\ \tilde{\pi}_3(u_{31}^*) &= e_4 f_{31}, \end{aligned}$$

where, for  $(N, M, L) \in \overline{\mathbb{Z}}_{\geq}^3$ ,

$$\begin{split} f_{11}(N, M, L) &= (1 - \mu^{2(N+1)})^{1/2}, \\ f_{12}(N, M, L) &= \mu^{N+1}(1 - \mu^{2(M+1)})^{1/2}, \\ f_{13}(N, M, L) &= \mu^{2+N+M}, \\ f_{21}(N, M, L) &= \mu^{N}(1 - \mu^{2(L+1)})^{1/2}, \\ f_{31}(N, M, L) &= \mu^{N+L}. \end{split}$$

Note that for  $0 < \mu < 1$ , the above expressions have canonical meaning even when N, M or L is  $\infty$ . Thus we can factor the homomorphism  $\tilde{\pi}_3$  through  $C^*(\mathfrak{G})$ , i.e. there exists a homomorphism

 $\eta: C(S_{\mu}U(3)) \to C^*(\mathfrak{G})$ 

such that  $\tilde{\pi}_3 = \tilde{\rho}_3 \circ \eta$ . We shall see later that  $\eta$  is in fact injective since all the representations  $\tilde{\pi}$  of  $C(S_{\mu}U(3))$  mentioned above can be factored through  $\eta$ .

Let us consider the following invariant subsets of the unit space of  $\mathfrak{G}$ ,

$$X_{3} = \{(N, M, L)|N, M, L \in \mathbb{Z}_{\geq}\} = \mathbb{Z}_{\geq}^{3}, X_{21} = \{(N, M, L)|N, M \in \mathbb{Z}_{\geq} \text{ and } L = \infty\} \cong \mathbb{Z}_{\geq}^{2}, X_{22} = \{(N, M, L)|N, L \in \mathbb{Z}_{\geq} \text{ and } M = \infty\} \cong \mathbb{Z}_{\geq}^{2}, X_{11} = \{(N, M, L)|N \in \mathbb{Z}_{\geq} \text{ and } M = L = \infty\} \cong \mathbb{Z}_{\geq}, X_{12} = \{(N, M, L)|M \in \mathbb{Z}_{\geq} \text{ and } N = L = \infty\} \cong \mathbb{Z}_{\geq}$$

and  $X_0 = \{(\infty, \infty, \infty)\}$ . We define  $X_i = X_{i1} \cup X_{i2}$  for i = 1, 2, and  $\sigma_i$  (resp.  $\sigma_{in}$ ) to be the quotient map from  $C^*(\mathfrak{G}|\overline{X}_{i+1})$  to  $C^*(\mathfrak{G}|\overline{X}_i)$  (resp.  $C^*(\mathfrak{G}|\overline{X}_{in})$ ) for i = 0, 1, 2, (resp. i = 1, 2 and n = 1, 2) where  $\overline{X}_i$  is the closure of  $X_i$  in the unit space of  $\mathfrak{G}$ . Since  $\tilde{\pi}_3(u_{ij})\tilde{\pi}_3(u_{ij}^*) = f_{ij}^2$  for the  $u_{ij}$ 's listed above and they separate points in  $\mathbb{Z}_{\geq} \times \overline{\mathbb{Z}}_{\geq}^2$ , i.e. points (N, M, L) with  $N < \infty$ , it is easy to check that  $C_c(X_3) = C_c(\mathbb{Z}_{\geq}^3) \subseteq \operatorname{Im}(\eta)$  (by considering the level sets of these  $f_{ij}$ 's). Now since those weights  $f_{ij}$  are nonvanishing on  $\mathbb{Z}_{\geq}^3$  and  $C_c(\mathbb{Z}_{\geq}^3 \times_\alpha \mathbb{Z}^5) \cong C(\mathbb{T}^2) \otimes \mathscr{K}$  are contained in the C\*-algebra generated by (the weighted shifts)  $\eta(u_{ij}^*)$  of the  $u_{ij}^*$ 's listed above and hence in  $\operatorname{Im}(\eta)$  where  $\mathscr{K}$  is the algebra of compact operators (on  $l^2(\mathbb{Z}_{\geq}^3)$  here).

Now we consider the diagonal homomorphism  $(\sigma_{21}, \sigma_{22})$  from  $C^*(\mathfrak{G})$  to  $C^*(\mathfrak{G}|\overline{X}_{21}) \oplus C^*(\mathfrak{G}|\overline{X}_{22})$ . It is easy to see that  $\mathfrak{G}|\overline{X}_{2n} \cong \overline{\mathbb{Z}}^2 \times_{\alpha(2,n)} \mathbb{Z}^5 |\overline{\mathbb{Z}}_{\geq^2}$  where  $\mathbb{Z}^5$  acts on  $\overline{\mathbb{Z}}^2$  through the action  $\alpha(2, n)$  in the way that 2 components (depending on n) of  $\mathbb{Z}^5$  act on  $\overline{\mathbb{Z}}^2$  by

translation while the other 3 components act trivially. More precisely,  $\alpha(2, 1)(\mu) \cdot \nu = \nu - (\mu_1, \mu_2)$  and  $\alpha(2, 2)(\mu) \cdot \nu = \nu - (\mu_1, \mu_3)$  for  $\mu \in \mathbb{Z}^5$  and  $\nu \in \mathbb{Z}^2$ . Thus

$$C^*(\mathfrak{G}|\overline{X}_{2n}) \cong C^*(\overline{\mathbb{Z}}^2 \times_{\tau} \mathbb{Z}^2 | \overline{\mathbb{Z}}_{\geq}^2) \otimes C^*(\mathbb{Z}^3) \cong C^*(\overline{\mathbb{Z}}^2 \times_{\tau} \mathbb{Z}^2 | \overline{\mathbb{Z}}_{\geq}^2) \otimes C(\mathbb{T}^3),$$

where the canonical generators of  $\mathbb{Z}^3$  are  $e_3$ ,  $e_4$ ,  $e_5$  when n = 1, and  $e_2$ ,  $e_4$ ,  $e_5$  when n = 2. It is straightforward to check that  $(\sigma_{21} \circ \eta)(u_{ij})$ 's  $(1 \le i, j \le 3)$  are supported in  $\overline{\mathbb{Z}}^2 \times_{\alpha(2,1)} \mathbb{Z}^4 | \overline{\mathbb{Z}}_{\ge}^2$  where  $\mathbb{Z}^4$  is generated by  $e_1$ ,  $e_2$ ,  $e_3$  and  $e_5$  in  $\mathbb{Z}^5$ , while  $(\sigma_{22} \circ \eta)(u_{ij})$ 's are supported in  $\overline{\mathbb{Z}}^2 \times_{\alpha(2,2)} \mathbb{Z}^4 | \overline{\mathbb{Z}}_{\ge}^2$  with  $\mathbb{Z}^4$  generated by  $e_1$ ,  $e_2$ ,  $e_3$  and  $e_4$  in  $\mathbb{Z}^5$ . Furthermore, from the weight functions  $f_{ij}$  listed above, it is easy to check that  $C_c(X_2) \subseteq \text{Im}(\sigma_2 \circ \eta)$  and hence

$$C^*(\mathbb{Z}^2 \times_{\alpha(2,1)} \mathbb{Z}^4 | \mathbb{Z}_{\geq}^2) \oplus C^*(\mathbb{Z}^2 \times_{\alpha(2,2)} \mathbb{Z}^4 | \mathbb{Z}_{\geq}^2) \cong 2\mathscr{H} \otimes C(\mathbb{T}^2)$$

is contained in the C<sup>\*</sup>-algebra generated by  $(\sigma_{21}, \sigma_{22})(\eta(u_{ij}^*))$  and hence in  $\operatorname{Im}((\sigma_{21}, \sigma_{22}) \circ \eta)$ . Let  $\rho_2$  be the faithful regular representation of  $\overline{\mathbb{Z}}^2 \times_{\tau} \mathbb{Z}^2 | \overline{\mathbb{Z}}_{\geq}^2$  on  $l^2(\mathbb{Z}_{\geq}^2)$  and  $\tilde{\rho}_{2n} = \rho_2 \otimes m$  be the corresponding faithful representation of

$$C^*(\overline{\mathbb{Z}}^2 \times_{\alpha(2,n)} \mathbb{Z}^4 | \overline{\mathbb{Z}}_{\geq}^2) \cong C^*(\overline{\mathbb{Z}}^2 \times_{\tau} \mathbb{Z}^2 | \overline{\mathbb{Z}}_{\geq}^2) \otimes C(\mathbb{T}^2)$$

on  $l^2(\mathbb{Z}_{\geq}^2) \otimes L^2(\mathbb{T}^2)$ , where the isomorphism identifies  $e_3$ ,  $e_5$  with  $\overline{\phi}$ ,  $\overline{\psi}$  if n = 1, and identifies  $e_4$ ,  $e_2$  with  $\overline{\phi}$ ,  $\overline{\psi}$  if n = 2. Then it can be easily checked that

$$\tilde{\rho}_{2n}(\sigma_{2n}(\eta(u_{ij}))) = \tilde{\pi}_{2n}(u_{ij})$$

(note that in the above identification, the symbols N and M used in **[B]** need be interchanged when n = 2) and hence  $\tilde{\pi}_{2n}$  factors through  $\eta$ . Let  $\eta_{2n} := \sigma_{2n} \circ \eta$ .

Now we consider  $\sigma_{12} \circ \sigma_2$  and  $\sigma_{11} \circ \sigma_2$ . Since clearly  $\sigma_{12} \circ \sigma_2$  factors through  $\sigma_{21}$  and  $\sigma_{11} \circ \sigma_2$  factors through  $\sigma_{21}$  and  $\sigma_{22}$ , we may talk about  $\sigma_{12} \circ \sigma_{21}$  (=  $\sigma_{12} \circ \sigma_2$ ) and  $\sigma_{11} \circ \sigma_{21} = \sigma_{11} \circ \sigma_{22}$  (=  $\sigma_{11} \circ \sigma_2$ ) by abuse of language. Note that

$$C^*(\mathbb{Z}^2 \times_{\alpha(2,1)} \mathbb{Z}^4 | \mathbb{Z}_{\geq}^2) \oplus C^*(\mathbb{Z}^2 \times_{\alpha(2,2)} \mathbb{Z}^4 | \mathbb{Z}_{\geq}^2) \subseteq C^*(\mathfrak{G}|X_2) \subseteq \ker(\sigma_{1n})$$

because  $(\mathbb{Z}^2 \times_{\alpha(2,1)} \mathbb{Z}^4 | \mathbb{Z}_{\geq}^2) \cup (\mathbb{Z}^2 \times_{\alpha(2,2)} \mathbb{Z}^4 | \mathbb{Z}_{\geq}^2) \subseteq X_2$ . It is again easy to see that  $\mathfrak{G}|\overline{X}_{1n} \cong \overline{\mathbb{Z}} \times_{\alpha(1,n)} \mathbb{Z}^5 | \overline{\mathbb{Z}}_{\geq}$  where  $\mathbb{Z}^5$  acts on  $\overline{\mathbb{Z}}$  through the action  $\alpha(1, n)$  in the way that one component (depending on n) of  $\mathbb{Z}^5$  act on  $\overline{\mathbb{Z}}$  by translation while the other 4 components act trivially.

More precisely,  $\alpha(1, 1)(\mu) \cdot \nu = \nu - \mu_1$  and  $\alpha(1, 2)(\mu) \cdot \nu = \nu - \mu_2$ for  $\mu \in \mathbb{Z}^5$  and  $\nu \in \mathbb{Z}$ . Thus

$$C^*(\mathfrak{G}|\overline{X}_{1n}) \cong C^*(\overline{\mathbb{Z}} \times_{\tau} \mathbb{Z}|\overline{\mathbb{Z}}_{\geq}) \otimes C^*(\mathbb{Z}^4) \cong C^*(\overline{\mathbb{Z}} \times_{\tau} \mathbb{Z}|\overline{\mathbb{Z}}_{\geq}) \otimes C(\mathbb{T}^4),$$

where the canonical generators of  $\mathbb{Z}^4$  are  $e_2$ ,  $e_3$ ,  $e_4$ ,  $e_5$  when n = 1, and  $e_1$ ,  $e_3$ ,  $e_4$ ,  $e_5$  when n = 2. It is straightforward to check that  $(\sigma_{11} \circ \sigma_2 \circ \eta)(u_{ij})$ 's  $(1 \le i, j \le 3)$  are supported in  $\overline{\mathbb{Z}} \times_{\alpha(1,1)} \mathbb{Z}^3 | \overline{\mathbb{Z}}_{\ge}$ where  $\mathbb{Z}^3$  is generated by  $e_1$ ,  $e_2$  and  $e_3$  in  $\mathbb{Z}^5$ , while the  $(\sigma_{12} \circ \sigma_2 \circ \eta)(u_{ij})$ 's are supported in  $\overline{\mathbb{Z}} \times_{\alpha(1,2)} \mathbb{Z}^4 | \overline{\mathbb{Z}}_{\ge}$  with  $\mathbb{Z}^4$  generated by  $e_1$ ,  $e_2$ ,  $e_3$  and  $e_5$  in  $\mathbb{Z}^5$ . Let  $\rho_1$  be the faithful regular representation of  $\overline{\mathbb{Z}} \times_{\tau} \mathbb{Z} | \overline{\mathbb{Z}}_{\ge}$  on  $l^2(\mathbb{Z}_{\ge})$  and  $\tilde{\rho}_{11} = \rho_1 \otimes m$  be the corresponding faithful representation of

$$C^*(\overline{\mathbb{Z}} \times_{\alpha(1,1)} \mathbb{Z}^3 | \overline{\mathbb{Z}}_{\geq}) \cong C^*(\overline{\mathbb{Z}} \times_{\tau} \mathbb{Z} | \overline{\mathbb{Z}}_{\geq}) \otimes C(\mathbb{T}^2)$$

on  $l^2(\mathbb{Z}_{\geq}^2) \otimes L^2(\mathbb{T}^2)$ , where the isomorphism identifies  $e_3$  and  $e_2$  with  $\overline{\phi}$  and  $\overline{\psi}$  respectively. Then it can be easily checked that

$$\tilde{\rho}_{11}((\sigma_{11}\circ\sigma_2\circ\eta)(u_{ij}))=\tilde{\pi}_{11}(u_{ij})$$

and hence  $\tilde{\pi}_{11}$  factors through  $\eta$  and  $\eta_{11} := \sigma_{11} \circ \sigma_2 \circ \eta = \sigma_{11} \circ \eta_{21} = \sigma_{11} \circ \eta_{22}$ . On the other hand, we have

$$C^*(\overline{\mathbb{Z}} \times_{\alpha(1,2)} \mathbb{Z}^4 | \overline{\mathbb{Z}}_{\geq}) \cong C^*(\overline{\mathbb{Z}} \times_{\tau} \mathbb{Z} | \overline{\mathbb{Z}}_{\geq}) \otimes C(\mathbb{T}^3),$$

where the conjugates of the three canonical coordinate functions of  $\mathbb{T}^3$  correspond to the generators  $e_1$ ,  $e_3$  and  $e_5$  in  $\mathbb{Z}^5$ . Composing the above identification with  $\mathrm{id} \otimes \kappa_{12}$ , we get a homomorphism  $\lambda_{12}$  from  $C^*(\overline{\mathbb{Z}} \times_{\alpha(1,2)} \mathbb{Z}^4 | \overline{\mathbb{Z}}_{\geq})$  to  $C^*(\overline{\mathbb{Z}} \times_{\tau} \mathbb{Z} | \overline{\mathbb{Z}}_{\geq}) \otimes C(\mathbb{T}^2)$ , where  $\kappa_{12}$  is the homomorphism from  $C(\mathbb{T}^3)$  to  $C(\mathbb{T}^2)$  induced by the map from  $\mathbb{T}^2$  to  $\mathbb{T}^3$  sending  $z \in \mathbb{T}^2$  to  $(z_1, -z_1, z_2)$ . Let  $\tilde{\rho}_{12} = \rho_1 \otimes m$  be the faithful representation of  $C^*(\overline{\mathbb{Z}} \times_{\tau} \mathbb{Z} | \overline{\mathbb{Z}}_{\geq}) \otimes C(\mathbb{T}^2) \supseteq \mathrm{Im}(\eta_{12})$ , where  $\eta_{12} = \lambda_{12} \circ (\sigma_{12} \circ \sigma_2 \circ \eta) = \lambda_{12} \circ (\sigma_{12} \circ \sigma_{21} \circ \eta)$ . (Here we use the convention that  $f \circ g$  is meaningful whenever  $\mathrm{Im}(g) \subseteq \mathrm{Dom}(f)$ .) Then  $\tilde{\rho}_{12} \circ \lambda_{12}$  defines a representation of  $\mathrm{Im}(\sigma_{12} \circ \sigma_2 \circ \eta)$  on  $l^2(\mathbb{Z}_{\geq}) \otimes L^2(\mathbb{T}^2)$ . It is straightforward to check that

$$(\tilde{\rho}_{12} \circ \lambda_{12})((\sigma_{12} \circ \sigma_2 \circ \eta)(u_{ij})) = \tilde{\pi}_{12}(u_{ij})$$

(note that in [**B**], M is replaced by N) for all i, j. From the weight functions  $f_{ij}$  listed above, it is easy to check that  $C_c(X_1) \subseteq \text{Im}(\sigma_1 \circ \sigma_2 \circ \eta)$ . So by the formulas for  $\pi_{1n}(u_{ij})$  in [**B**], it is not hard to see that

$$C^*(\mathbb{Z} \times_{\alpha(1,1)} \mathbb{Z}^3 | \mathbb{Z}_{\geq}) \oplus \lambda_{12}(C^*(\mathbb{Z} \times_{\alpha(1,2)} \mathbb{Z}^4 | \mathbb{Z}_{\geq}))$$
$$\cong 2C^*(\mathbb{Z} \times_{\tau} \mathbb{Z} | \mathbb{Z}_{\geq}) \otimes C(\mathbb{T}^2) \cong 2\mathscr{H} \otimes C(\mathbb{T}^2)$$

is contained in the C<sup>\*</sup>-algebra generated by  $(\eta_{11}, \eta_{12})(u_{ij}^*)$  and hence in Im $((\eta_{11}, \eta_{12}))$ . Notice that

$$C^*(\mathbb{Z} \times_{\alpha(1,1)} \mathbb{Z}^3 | \mathbb{Z}_{\geq}) \oplus C^*(\mathbb{Z} \times_{\alpha(1,2)} \mathbb{Z}^4 | \mathbb{Z}_{\geq}) \subseteq C^*(\mathfrak{G} | X_1)$$

is contained in the kernel of  $\sigma_0$ .

Now we consider  $\sigma_0 \circ \sigma_1 \circ \sigma_2$ . Since  $\sigma_0 \circ \sigma_1 \circ \sigma_2$  clearly factors through  $\sigma_{11} \circ \sigma_2$  and  $\sigma_{12} \circ \sigma_2$ , we may talk about  $\sigma_0 \circ \sigma_{11} \circ \sigma_2 =$  $\sigma_0 \circ \sigma_{12} \circ \sigma_2 = \sigma_0 \circ \sigma_1 \circ \sigma_2$  by abuse of language. Note that  $C^*(\mathfrak{G}|X_0) =$  $C^*(\mathbb{Z}^5) \cong C(\mathbb{T}^5)$  and that  $(\sigma_0 \circ \sigma_1 \circ \sigma_2 \circ \eta)(u_{ij})$ 's  $(1 \le i, j \le 3)$  are supported in  $\mathbb{Z}^3$  generated by  $e_1$ ,  $e_2$  and  $e_3$  in  $\mathbb{Z}^5$ . Composing the identification  $C^*(\mathbb{Z}^3) \cong C(\mathbb{T}^3)$  with  $\kappa_0$  (where the generators  $e_1$ ,  $e_2$ ,  $e_3$  are identified with the conjugates of the corresponding coordinate functions of  $\mathbb{T}^3$ ), we get a homomorphism  $\lambda_0$  from  $C^*(\mathbb{Z}^3)$  to  $C(\mathbb{T}^2)$ , where  $\kappa_0$  is the homomorphism from  $C(\mathbb{T}^3)$  to  $C(\mathbb{T}^2)$  induced by the map from  $\mathbb{T}^2$  to  $\mathbb{T}^3$  sending  $z \in \mathbb{T}^2$  to  $(z_1, z_2, -z_1)$ . Let  $\tilde{\rho}_0 :=$ m. Then  $\tilde{\rho} \circ \lambda_0$  is a representation of  $C^*(\mathbb{Z}^3)$  on  $L^2(\mathbb{T}^2)$ . It is straightforward to check that

$$(\tilde{\rho}_0 \circ \eta_0)(u_{ij}) = \tilde{\pi}_0(u_{ij})$$

for all i, j, where  $\eta_0 = \lambda_0 \circ \sigma_0 \circ \sigma_1 \circ \sigma_2 \circ \eta$  is a homomorphism from  $C(S_{\mu}U(3))$  to  $C^*(\mathbb{Z}^2) \cong C(\mathbb{T}^2)$ . Comparing the definitions of  $\kappa_{12}$  and  $\kappa_0$  and relating the generators of their domains  $C^*(\mathbb{Z}^3)$  to those of  $\mathbb{Z}^5$  as we specified above, it is easy to check that  $\eta_0$  factors through  $\eta_{11}$  and  $\eta_{12}$ , say  $\eta_0 = \tilde{\omega}_0 \circ (\eta_{11}, \eta_{12})$  for some  $\tilde{\omega}_0$  defined on  $\operatorname{Im}(\eta_{11}, \eta_{12})$ . Note that  $\ker(\tilde{\omega}_0)$  contains the subalgebra

$$C^*(\mathbb{Z} \times_{\alpha(1,1)} \mathbb{Z}^3 | \mathbb{Z}_{\geq}) \oplus \lambda_{12}(C^*(\mathbb{Z} \times_{\alpha(1,2)} \mathbb{Z}^4 | \mathbb{Z}_{\geq})) \cong 2\mathscr{K} \otimes C(\mathbb{T}^2).$$

Now we summarize what we have so far. There are homomorphisms  $\eta_3 = \eta$ ,  $\eta_{21}$ ,  $\eta_{22}$ ,  $\eta_{11}$ ,  $\eta_{12}$  and  $\eta_0$  from  $C(S_{\mu}U(3))$  to

$$C^{*}(\mathfrak{G}) = C^{*}(\overline{\mathbb{Z}}^{3} \times_{\alpha} \mathbb{Z}^{5} | \overline{\mathbb{Z}}_{\geq}^{3}) = C(\overline{\mathbb{Z}}^{3} \times_{\tau} \mathbb{Z}^{3} | \overline{\mathbb{Z}}_{\geq}^{3}) \otimes C(\mathbb{T}^{2}),$$
  

$$C^{*}(\overline{\mathbb{Z}}^{2} \times_{\tau} \mathbb{Z}^{2} | \overline{\mathbb{Z}}_{\geq}^{2}) \otimes C(\mathbb{T}^{2}), \quad C^{*}(\overline{\mathbb{Z}}^{2} \times_{\tau} \mathbb{Z}^{2} | \overline{\mathbb{Z}}_{\geq}^{2}) \otimes C(\mathbb{T}^{2}),$$
  

$$C^{*}(\overline{\mathbb{Z}} \times_{\tau} \mathbb{Z} | \overline{\mathbb{Z}}_{\geq}) \otimes C(\mathbb{T}^{2}), \quad C^{*}(\overline{\mathbb{Z}} \times_{\tau} \mathbb{Z} | \overline{\mathbb{Z}}_{\geq}) \otimes C(\mathbb{T}^{2}) \text{ and } C(\mathbb{T}^{2}),$$

respectively, such that

(1) each  $\eta_i$  or  $\eta_{in}$  factors through  $\eta_j$  with j > i, where  $\eta_i := (\eta_{i1}, \eta_{i2})$  if i = 1, 2. In fact,  $\eta_{21} = \omega_{21} \circ \eta$ ,  $\eta_{22} = \omega_{22} \circ \eta$ ,  $\eta_{11} = \omega_{11} \circ \eta_{21}$ ,  $\eta_{11} = \omega'_{11} \circ \eta_{22}$ ,  $\eta_{12} = \omega_{12} \circ \eta_{21}$ ,  $\eta_0 = \omega_0 \circ \eta_{11}$  and  $\eta_0 = \omega'_0 \circ \eta_{12}$  for some  $\omega$ 's defined on the range of the corresponding  $\eta$ 's.

## TWISTED SU(3)

(2) Let  $\eta_i = \tilde{\omega}_i \circ \eta_{i+1}$  for a suitable homomorphism  $\tilde{\omega}_i$  defined on  $\operatorname{Im}(\eta_{i+1})$ . Then  $\operatorname{ker}(\tilde{\omega}_i)$  contains a copy of  $C(\mathbb{T}^2) \otimes \mathscr{K}$  if i = 2, and contains two copies of  $C(\mathbb{T}^2) \otimes \mathscr{K}$  if i = 0 or 1. Furthermore,  $\operatorname{Im}(\eta_0) \cong C(\mathbb{T}^2)$ . Note that  $\operatorname{Ker}(\eta_i) = \eta_{i+1}^{-1}(\operatorname{Ker}(\tilde{\omega}_i))$ .

(3)  $\tilde{\pi}_i = \tilde{\rho}_i \circ \eta_i$  (i = 0, 3) and  $\tilde{\pi}_{in} = \tilde{\rho}_{in} \circ \eta_{in}$  (i = 1, 2) for some faithful representations  $\tilde{\rho}_i$  and  $\tilde{\rho}_{in}$  on  $\text{Im}(\eta_i)$  and  $\text{Im}(\eta_{in})$ respectively. Since the irreducible representations of  $C(S_{\mu}U(3))$  are classified by those 2-parameter families of  $\pi_0$ ,  $\pi_{11}$ ,  $\pi_{12}$ ,  $\pi_{21}$ ,  $\pi_{22}$ , and  $\pi_3$ , the spectrum of  $C(S_{\mu}U(3))$  is a disjoint union of 6 copies of  $\mathbb{T}^2$  as a set. On the other hand, by (1)-(3), all these representations  $\pi_i$ 's (or  $\pi_{in}$ 's) factor through  $\eta_j$  (or  $\eta_{jn}$ ) with j > i and hence  $\eta = \eta_3$  is faithful. Thus, the type I C\*-algebra  $C(S_{\mu}U(3))$  has a composition sequence

$$0 \subseteq \mathscr{I}_3 = \operatorname{Ker}(\eta_2) \subseteq \mathscr{I}_2 = \operatorname{Ker}(\eta_1) \subseteq \mathscr{I}_1 = \operatorname{Ker}(\eta_0) \subseteq \mathscr{I}_0 = C(S_{\mu}U(3))$$

such that  $\mathscr{F}_3 = \operatorname{Ker}(\tilde{\omega}_2)$ ,  $\mathscr{F}_2/\mathscr{F}_3 \cong \operatorname{Ker}(\tilde{\omega}_1)$ ,  $\mathscr{F}_1/\mathscr{F}_2 \cong \operatorname{Ker}(\tilde{\omega}_0)$  and  $\mathscr{F}_0/\mathscr{F}_1 \cong \operatorname{Im}(\eta_0) \cong C(\mathbb{T}^2)$ . Note that  $C(Y_{i+1}) \otimes \mathscr{K}(\mathscr{H}) \subseteq \operatorname{Ker}(\tilde{\omega}_i) \subseteq$  $\operatorname{Im}(\eta_{i+1}) \subseteq C(Y_{i+1}) \otimes \mathscr{R}(\mathscr{H})$  (for some  $L^2$ -space  $\mathscr{H}$ ), where  $Y_k$  is homeomorphic to  $\mathbb{T}^2$  if k = 3 or 0, and to the disjoint union of 2 copies of  $\mathbb{T}^2$  if k = 2 or 1. If  $C(Y_{i+1}) \otimes \mathscr{K}(\mathscr{H}) \neq \operatorname{Ker}(\tilde{\omega}_i)$ , then we have non-trivial irreducible representations of  $\operatorname{Ker}(\tilde{\omega}_i)/C(Y_{i+1}) \otimes$  $\mathscr{K}(\mathscr{H})$  which will induce irreducible representations of  $C(S_{\mu}U(3))$ not unitarily equivalent to any of the  $\pi$ 's found in [**B**]. So we have  $C(Y_{i+1}) \otimes \mathscr{K}(\mathscr{H}) = \operatorname{Ker}(\tilde{\omega}_i)$ .

We summarize what we obtained about the structure of the  $C^*$ -algebra  $C(S_{\mu}U(3))$  in the following theorem.

THEOREM. The C<sup>\*</sup>-algebra  $C(S_{\mu}U(3))$  of the twisted SU(3) group has the composition sequence

$$\mathscr{I}_3 \subseteq \mathscr{I}_2 \subseteq \mathscr{I}_1 \subseteq \mathscr{I}_0 = C(S_{\mu}U(3))$$

such that

 $\mathscr{I}_0/\mathscr{I}_1 \cong C(\mathbb{T}^2)\,,\quad \mathscr{I}_1/\mathscr{I}_2 \cong \mathscr{I}_2/\mathscr{I}_3 \cong 2C(\mathbb{T}^2) \otimes \mathscr{K}$ 

and  $\mathscr{I}_3 \cong C(\mathbb{T}^2) \otimes \mathscr{T}$ .

We remark that the above decomposition of  $C(S_{\mu}U(3))$  is compatible with the singular foliation of the Lie-Poisson SU(3) [Lu-We] by the symplectic leaves [We]. More precisely, there are six 2-parameter families (with parameters in  $\mathbb{T}^2$ ) of symplectic leaves diffeomorphic to  $\mathbb{C}^0$ ,  $\mathbb{C}^1$ ,  $\mathbb{C}^1$ ,  $\mathbb{C}^2$ ,  $\mathbb{C}^2$  and  $\mathbb{C}^3$ , respectively as pointed out by A. Weinstein in a private communication. With each leaf of positive dimension quantized by the Weyl quantization [Hö, Vo], it is likely that we can find a deformation quantization (in the sense of [**Ri1**]) of the Poisson SU(3) as we did for the case of Poisson SU(2) in [S]. In a sense as explained in [S],  $C(S_{\mu}U(3))$  can be regarded as a foliation  $C^*$ -algebra of the (singular) symplectic foliation on SU(3).

With some more effort to analyse the data obtained, we are able to describe the topology of the spectrum Y of  $C(S_{\mu}U(3))$ . In order to do so, we shall say that a copy of  $\mathbb{T}^2$  approximates another copy of  $\mathbb{T}^2$  in a topological space in type ... if any sequence in the first  $\mathbb{T}^2$  converges to any element in the second  $\mathbb{T}^2$ , and in type \_\_\_\_, ---, > or =, if a sequence z(n) in the first  $\mathbb{T}^2$  converges to w in the second  $\mathbb{T}^2$  if and only if  $z(n)_2 \to w_2$ ,  $z(n)_1 \to w_1$ ,  $z(n)_1 z(n)_2 \to \overline{w}_2$  or  $z(n)_1 z(n)_2 \to w_1 w_2$  respectively. Now clearly Y is a union of the above  $Y_k$ 's, and by a more detailed analysis of the factorizability among  $\eta$ 's than the one specified in (1), we can conclude that Y is a disjoint union of  $Y_0$ ,  $Y_{11}$ ,  $Y_{12}$ ,  $Y_{21}$ ,  $Y_{22}$  and  $Y_3$  (each homeomorphic to  $\mathbb{T}^2$ ) such that (i)  $Y_3$  is open dense in Y in the way that  $Y_3$  approximates  $Y_{21}$ ,  $Y_{22}$ ,  $Y_{11}$ ,  $Y_{12}$  and  $Y_0$  in type \_\_\_\_, --\_, ..., and ..., respectively, (ii)  $Y_{21}$  and  $Y_{22}$  are disjoint open sets with dense union  $Y_2 = Y_{21} \cup Y_{22}$  in  $Y \setminus Y_3$  such that  $Y_{21}$  approximates  $Y_{11}$ ,  $Y_{12}$ , and  $Y_0$  in type —, = and ... respectively, and  $Y_{22}$  approximates  $Y_{11}Y_{12}$  and  $Y_0$  in type \_\_\_\_ > and ... respectively  $(Y_{12} \cap \overline{Y}_{22} = \emptyset)$ , (iii)  $Y_{11}$  and  $Y_{12}$  are disjoint open sets with dense union  $Y_1 = Y_{11} \cup Y_{12}$  in  $Y \setminus (Y_3 \cup Y_2)$  such that  $Y_{11}$  and  $Y_{12}$  approximating  $Y_0$  in type = and — respectively.

### References

- [BFFLS] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, Deformation theory and quantization, I, II, Ann. Physics, 110 (1978), 61– 110, 111–151.
- [B] K. Bragiel, The twisted SU(3) group, Irreducible \*-representations of the  $C^*$ -algebra  $C(S_{\mu}U(3))$ , Letters in Math. Phys., 17 (1989), 37–44.
- [Co] A. Connes, A survey of foliation and operator algebras, Proc. Symp. Pure Math., Vol. 38, Part I, Amer. Math. Soc., Providence, R.I. (1982), 521–6283
- [Cu-M] R. E. Curto and P. S. Muhly, C\*-algebras of multiplication operators on Bergman spaces, J. Funct. Anal., 64 (1985), 315-329.
- [D] V. G. Drinfeld, Quantum groups, Proc. I.C.M. Berkeley 1986, Vol. 1, 789– 820, Amer. Math. Soc., Providence, R.I. 1987.
- [Hö] L. Hörmander, The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math., 32 (1979), 359-443.

#### TWISTED SU(3)

- [Lu-We] J. H. Lu and A. Weinstein, *Poisson Lie groups, dressing transformations* and Bruhat decompositions, J. Differential Geom., **31** (1990), 501–526.
- [M-Re] P. S. Muhly and J. N. Renault, C<sup>\*</sup>-algebra of multivariable Wiener-Hopf operators, Trans. Amer. Math. Soc., 274 (1982), 1–44.
- [Pe] G. K. Pedersen, C<sup>\*</sup>-algebras and their Automorphism Groups, Academic Press, New York, 1979.
- [Po] P. Podles, *Quantum spheres*, Letters in Math. Phys., 14 (1987), 193-202.
- [Re] J. Renault, A Groupoid Approach to C\*-Algebras, Lecture Notes in Mathematics, Vol. 793, Springer-Verlag, New York, 1980.
- [Ri1] M. A. Rieffel, Deformation quantization and operator algebras, preprint.
- [Ri2] \_\_\_\_, Deformation quantization of Heisenberg manifolds, Comm. Math. Phys., 122 (1989), 531-562.
- [Ri3] \_\_\_\_, Lie group convolution algebras as deformation quantization of linear Poisson structures, Amer. J. Math., **112** (1990), 657–686.
- [Ro] M. Rosso, Comparaison des groupes SU(2) quantiques de Drinfeld et de Woronowicz, C. R. Acad. Sci. Paris, 304 (1987), 323–326.
- [S] A. J. L. Sheu, Quantization of the Poisson SU(2) and its Poisson homogeneous space—the 2-sphere, Comm. Math. Phys., 135 (1991), 217–232.
- [Va-So] L. L. Vaksman and Ya. S. Soibelman, Function algebra on quantum group SU(2), Funktsional. Anal. i Prilozhen., 22 (1988), No. 2, 1-14 (in Russian).
- [Vo] A. Voros, An algebra of pseudodifferential operators and the asymptotics of quantum mechanics, J. Funct. Anal., 29 (1978), 104–132.
- [We] A. Weinstein, *The local structure of Poisson manifolds*, J. Differential Geom., **18** (1983), 523–557.
- [Wo1] S. L. Woronowicz, Twisted SU(2) group: an example of a non-commutative differential calculus, Publ. RIMS, 23 (1987), 117–181.
- [Wo2] \_\_\_\_, Compact matrix pseudogroups, Comm. Math. Phys., 111 (1987), 613-665.

Received July 10, 1990. Partially supported by NSF-Grant DMS-9002895. The result of this paper was presented at the AMS-IMS-SIAM Joint Summer Research Conference, June 18, 1990, at Amherst, Massachusetts, U.S.A.

UNIVERSITY OF KANSAS LAWRENCE, KS 66045-2142