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A REMARK ON THE SYMMETRY OF SOLUTIONS
TO NONLINEAR ELLIPTIC EQUATIONS

J1 MIN

This note gives a necessary and sufficient condition for solutions
of second order elliptic equations to be radially symmetric.

1. Introduction.

1.1. In an elegant paper [GNN], Gidas-Ni-Nirenberg proved that
the positive solutions of

Au= f(u) inB,
(1) u=20 on 0B,
ue C*B),

must be radially symmetric. Here fis C! and B is the n-dimensional
ball: {x € R"; |x|] < 1}. Obviously a symmetric solution of (1) is
not necessary to be positive. In this note, we give a necessary and
sufficient condition for symmetric solutions of (1). The main result is
the following

THEOREM 1. Suppose n > 2. A .g)lution u of (1) is radially symmet-
ric if and only if its nodal set {x € B; u(x) = 0} is radially symmetric.

REMARK. It is interesting to note that Theorem 1 need not hold in
case n = 1. For, u = sinx solves

u' =—-u in[-=m, n]
with the symmetric nodal set {0} U {—=, n}, but u is not radially
symmetric since sin(—x) = —sinx.

It is clear that the result of [GNN] is a special case of Theorem 1
since the nodal set of a positive solution to (1) is the sphere 9B.

In order to prove Theorem 1, we need the following two preliminary
results.

THEOREM 2. Let u € C*(B) satisfy
) Au=f(u) inB.
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If the nodal set of u consists of spheres with the center 0, then these
spheres must be isolated unless u=0.

THEOREM 3. Let n > 2 and u € C*(B) satisfy

Au= f(u) in B,
(3) u>0 in B\{0},
u=20 ondB.

Then u>0 in B.

REMARK. In case n = 1, Theorem 3 need not hold. For example,
let u(x) =sin(x - %)+ 1 for x € [-2n, 2n], we have
W=1-u in (-2m, 27),
u>0 in (—2z, 2m)\{0},
u=0 atx =0, -2xn, 2=m.

1.2. The proof of Theorem 3 is based on Lemma 12.1 in [GNN],
we rewrite it in the form.

LEMMA A. Let p = (p!, p?, ..., p") € OB with p! > 0. Assume
for some ¢ > 0 that u isa C? function satisfying equation (2) in Q.
where Q. = BN{x;|x—p|<e}, u>0 in Q\d0BN{x;|x—p| <&}
and u=0 on 0BN{x;|x —p| < &}. Then there exists 6 > 0 such
that in BN {x; |x —p| < 6}, g—)’c‘l <0.

2. Proofs.

2.1. Proof of Theorem 2. We may assume that the nodal set of u is
Usea S(4) where A C [0, 1] and S(A) = {x € R"; |x| = A}. It needs
to be proved that the set A contains only isolated points unless # = 0.
Suppose that there is a sequence {4;} C A with 1; — 1. Using the
polar coordinates x = ré where ¢ € "1 and r? = x?+x2+---+x2,

we obtain that u = g—‘; = g—zr‘,‘ =0 for r = 2, which implies that
ou 0%u
“(0)’67,-(0)”5712(0)—0 (l=1,2,...,n
when 4 =0, and that u = Dgu = D}u = 0 on S(1) when 2 > 0.

Thus, in both cases, # = Au = 0 on S(A), and, from (2) we conclude
that f(0) =0. Set

1
c(x):/0 f(tu(x))dt.
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In case 1 > 0, we have
{ Au—c(x)u=0 1in {x;|x| <24},
ou -
U=o-= 0 on S(4),
and obtain ¥ =0 in B by uniqueness of solutions to Cauchy’s prob-
lem of linear elliptic equations. Now it remains to consider the case

A=0. Set
w(x) =cosNx;-cosNxy - --- -cos Nx,,

where N is taken to be large enough so that

(4) c(x)+ N?>0.
Put u=w-v for |x| < f. It is easy to see that
Aw = —N*w

i in {X;|x|<ZLN}
w >

and S(4;) C {x; |x| < &} for i large enough since 4; — 0 as i — oo.
On account of (2), it follows
{ Av + IEVY — (c(x) + N)v =0 in {x; |x| <A},
v=0 on S(4;).
Because of (4), a well-known maximum principle for second order
linear elliptic equations can be applied, and that v = 0 is obtained,

so u =0 for |x] < 4;, and in turn ¥ = 0 in B. The proof is
completed.

2.2. Proof of Theorem 3. Suppose for contradiction that u(0) = 0.
Automatically Vu(0) = 0. For 0 < A < 1, denote X; = {x € B;
x1>A}; Ty ={x €B;x, =4}, and for x € X, , denote by x* the
reflexion of x with respect to T, denote by X the reflexion of X,
with respect to 7). Set

A={,1e(o, 1); u(x*) > u(x) in %, %<Oon n}
1

which is not empty by Lemma A and a similar argument to [GNN].
First of all we prove inf A € A. Indeed, there holds

{ u(x®) 2 u(x) inZ,,

ou
_
B, 2 0 on T,
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where a =infA. Letting w(x) = u(x®) for x € £, and

1
c(x)=/ f(u+t(w—u))dt,
0
we have
Alw—u)—c(x)(w—-u)=0,
(w—u)>0 inZX,,
(w—u)=0 onT7,.
Then for K >0,
Alw—-—u)— (K+cx) (w—u)=-K(w-u)<0 inZ,.

Taking K large enough, we may apply the Hopf maximum principle
to (w — u) and obtain that either

(5) (w-u)=0 inZ,

or

w(x)>u(x) inX,,
(6) {

(w0 = 4)(p) < O,

where p € 0%, such that (w—u)(p) =0 and 7 = %(p) is the outward
normal vector of 9%, at p. Then (5) cannot hold since n > 2 and
u=0on 0B; u>0 in B\{0}. Now (6) holds, then u(x®) > u(x)
in £,,andon T,,

ou 0
28x1 _6(_xl)(w—u)<0
since (w — u) = 0, which means o € A. Next it is easy to see that
a>1. Ifa=},let pp=(1,0,...,0) €0B, then p =0, and

(w —u)(po) = u(pg) — u(po) =0.
By (6) we have

0 . ou ou
_Bxl (w—u)(po) <0, Le. — "a—x—l(o) = ﬁ:(ﬂo) <0.
Then we get
ou ou
- - >
50> =5 (p0) 2 0,

a contradiction since Vu(0) = 0. Thus a > % . In this case we claim
that there exists oy < « such that ag € A, which will contradict the
assumption o = inf A and our proof would then be completed. To
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this end, we assume again for contradiction that there exists a sequence
{a;} with a; — a but a; ¢ A which means that either

(7) u(a;") < u(a;) for some a; € I,
or
ou
(8) —(b;) >0 for some b; € T, .
6)61 !

The latter cannot always remain true for any subsequence of {i} since,
otherwise, it implies that a@x“—l > 0 at some point on 7, when {b;} do
not approach 9B, contradicting a € A, and that there exists a point
in any neighborhood of b such that %’C‘I > 0 when b; — b € 0B,

contradicting Lemma A since b = (b!, ..., b") with b! = a > 0.
Now let a; — @ € X,. From (7) u(@®) < u(@), and @ € 9%, by
o € A. But because a > 1, for x € 9%,\T, C 0B, where T, is
the closure of T,, obviously #(x®) > 0 = u(x). Thus we further
have @ € T,. Let L; be the segment joining a:."' and a;, having
(1,0,...,0) as the tangent vector. From (7) it is seen that there
exists y; € L; such that g—)'c‘l(yi) > 0. Since a € T,, y; must also tend

to a@. And automatically a—axl(o_z) > 0, which leads to a contradiction
1

when g € T,. Then a € 8T, C 9B . But we have seen that £%(y;) >
0 and y; — @, which contradicts Lemma A. Thus we complete the
proof.

2.3. Proof of Theorem 1. Denote B(4) = {x € R"; |x| < A}. The
necessity is obvious. For sufficiency, by Theorem 2, the nodal set of
u must be Uif:l S(4;) where 0 <Ay <4 <--- <A, = 1. We further
prove 41 > 0.

Indeed suppose 4; = 0, i.e. u(0) = 0. We see that there are no
nodal points of u in B(4;)\{0}, which, together with the fact that
B(4,)\{0} is path-connected (since n > 2), implies that u is positive
(or negative) in B(4;)\{0}. Then from Theorem 3 we have u(0) > 0
(or u(0) < 0) also. It contradicts #(0) = 0, which shows 4; > 0.

Now in B(4;), u is positive (or negative). It allows us to apply the
result of [GNN] to conclude that u is radially symmetric in B(4;).
It is clear that

ou
9) 5 = const. on S(4;).

Let T: R® — R" be any rotation transform. Since equation (2) is
invariant under the transform 7', v = u(Tx) also solves (2). On
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S(A1), obviously v = u, and 4% = 9% by (9). Then (v —u) isa
solution to the Cauchy problem

1
Aw = (/ f’(tv+(l—t)u)dt)~w in B,
0

ow
w_gr——o on S(4;)
and constantly equals 0 by the uniqueness of the Cauchy problem, i.e.
u(x) = u(Tx) in B for any rotation transforms 7', which means u

is radially symmetric in B. We finish the proof of our main theorem.
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