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ON THE HEAT EQUATION FOR HARMONIC MAPS
FROM NON-COMPACT MANIFOLDS

GUOJUN G. LIAO AND LUEN-FAI TAM

Harmonic maps are critical points of the energy functional for
maps between Riemannian manifolds. In this paper we study the
heat equation for harmonic maps from a non-compact manifold M
into N. We show that if the target manifold N is compact and has
non-positive sectional curvature, and if the initial map has finite to-
tal energy, then there exists a solution u(x, t): M x [0, oo) —• N
and a sequence t} —• oo, such that u( , tj) converges on compact
subsets of M to a harmonic from M into N. We also obtain some
basic properties of the solution u(x, t). In particular, we prove a
uniqueness theorem for the solution and a monotonicity theorem for
the energy functional.

Eells and Sampson proved that if (M, g) and (N, g') are com-
pact Riemannian manifolds, (N, g') has non-positive sectional cur-
vature, then any smooth map h : M —• N is homotopic to a smooth
harmonic map. They established the existence of a solution u(x, t) :
M x [0, oo) -+ N, of (1.1) in §1, and showed that there exists
tj —» oo, such that w( , tj) converges to a smooth harmonic map
from M into N. Schoen and Yau showed that if M is complete non-
compact and if h : M —> N has finite energy, then h is homotopic
on any compact subsets of M to a harmonic map. Their method is
based on Hamilton's results on harmonic maps from a manifold with
boundary. By studying the heat equation directly, we recovered the
result of Schoen and Yau. We believe the basic properties of solu-
tions of the heat equation established in this paper will be useful in
the study of harmonic maps on non-compact manifolds.

1. Existence. Let (Mm, g) and (Nn, g') be complete Riemann-
ian manifolds. M is non-compact. We want to study the initial value
problem for the heat flow for harmonic maps. More precisely, we
want to study the following system for a map u : M x [0, oo) —• N,
in local coordinates x = (xι, . . . , xm), and u — {uι, . . . , un) on
M and N respectively:

i n M x (0, o o ) , α = 1, . . . , n;

9

where AM is the Laplace-Beltrami operator on M9 T'β are the
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Christoffel symbols on N, (gV) = (gij)'1 and h e C°°(M9N).
We use the convention that Latin letters range from 1 to ra, and
Greek letters range from 1 to n. In this section, we want to prove the
following:

THEOREM 1.1. Let M be a complete non-compact Riemannian man-
ifold. Suppose N is compact without boundary with non-positive cur-
vature. Then (1.1) has a solution for all h{x) with finite total energy.

Recall that for a map h: (M, g) —• (N, g'), the energy density of
h is given by

(1.2) ' ( A ) = *

where xi, and ua, 1 < / < m, 1 < a < n, are local coordinates of
M and N respectively. The total energy is defined as

(1.3) E(h)= I e{h)dVM.

JM

Let {Ωk}^=ι be a compact exhaustion of M satisfying:

(i) Ω * c c Ω * + 1 , Λ= 1,2, 3, . . .
(ϋ) UkLι^k = M;

(iii) 9Ω^ is smooth, fc=l,2,3,...
(iv) diam(Ωfc) < dist(Ωfc, dΩk+x).
Hence for X J G Ω ^ , any minimal geodesic joining x any y must

lie inside Ω^+1. In order to apply some results of heat kernels in
[C-L-Y], for each k we construct a complete manifold (M^, gk) so
that

(i) Ωfc c A m a n d i n Ω^, gk = g;
(ii) the complement of a compact neighborhood of Ω^ in Mk is

isometric to dΩ^ x [0, oo).

This can be done by considering the exponential map on the nor-
mal bundle of dΩk. Note that the curvature tensor of Mk and its
covariant derivatives are uniformly bounded, and the injectivity ra-
dius of Mk is also bounded away from 0. The following result is from
[C-L-Y]:

LEMMA 1.2. For any T > 0, there exists a constant C\ > 0 depend-
ing on Mk and T and another constant Cι > 0 depending only on
m, such that if Hk(x, y, t) is the heat kernel of Mk and if \DιHk\
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denotes the norm of the Ith covariant derivatives of Hk(x, y , t ) , then

\D,Ht\(X, y, ,) < C.rWJβp ( -

Aua = —glJ

in Ωk x (0, oo), a = 1, ... , n

u{x, 0) = h[x) in Ω^ and

u(x, t) = h(x) on dQk x [0, oo).

for all x, y € Mk, and 0< t <T, where rk is the distance function
ofMk.

Let r{x, y) be the distance function of M, then by the choices of
Ωfc and the construction of Mk, we have r(x, y) — rk{x, y) for all
x,y €Ω f c_!.

Let h G C°°(M, N). By [H], for each k, there exists a unique
solution yjt of

(1.4)

LEMMA 1.3. For any T > 0, and for any compact set K c c Ω c
M, there exists a constant C > 0 and an integer fc0 > 0 ^ < ^ *Λaί
if k > k0, then e(fk)(x, t) < C(E(h) + supΩe{h)) for all (x, t)
eKx[0, T] and e(fk)(x, t) <CE(h) for all xeK,2T>t>T.

Proof. Obviously, it is sufficient to consider K which is of the form
Bx{^) such that R is less than the injectivity radius of x, where
Bx(r) is the geodesic ball of radius r with center at x. Choose k®
large enough so that BX(R) c Ω^ for all k > ko - 1. By the computa-
tion in [E-S], using the fact that N has non-positive curvature, there
exists a constant C\ independent of k such that for k > k0

^Me(fk) - JU(Λ) > -Cxe{fk)

on BX(R) x [ 0 , oo).

Let gk = e(fk)exp(-Cιή. Then gk satisfies for k > k$\

(1.5) Δ ^ - ^ > 0 on (̂i?)x[0,oo).

Since R < injectivity radius of x, so we can find a smooth function
η : M -> [0, 1] such that η = 1 on Bx ( f ) , η = 0 outside BX(R).
Hence η(y)gk(y, t) is smooth on M x [0, oo).
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Furthermore, the support of η(-)gk(-> t) is contained in BX{R)
for all t. Hence η(y)gk(y> t) can be considered as a function on
Mk x [0, oo). By the uniqueness theorem of Cauchy problem in
[K-L], noting that the volume of Mk^ grows linearly, we have for

(1.6)

f( Hψ,z,t-τ)
°/o

f

Hκ{y, z, t)η(z)gk(z,0)dVMko(z),

where Δ^ is the Laplace-Beltrami operator of Mk . Since the support
of η(y)gk(y, t) is contained in BX(R) C Ωfc _ ( , it is easy to see by
(1.5) that

ί Ako --Q-) (η(z)gk(z, τ)) = ί AM - τ - 1 (η(z)gk(z, τ))

ΔM - -r^\ gk(z, τ) + {AMη(z))gk{z, τ)

+ 2(Vη(z),Vgk(z,τ))

> (AMη(z))gk(z, τ) + 2(Vη(z),Vgk(z, τ)).

Hence

(1.7) gk(y,t)<-fdτί Hk(y,z,t-τ)

x (ΔΛrί/(2))^(z, τ)dVM(z)

-2 fdτ ί Hk(y,z,t-τ)
Jo JBX{R) °

,Vgk(z,τ))dVM(z)

+ f Hk(y, z, t)η(z)gk(z, 0)dVM(z)
Jβ (R)>Bχ(R)

= I + II + III

where we have used the fact that in Ω^ , the matrices of M and
Mk are the same. Using the same fact, Lemma 1.2 and the fact that
AMη = 0 on Bx (f) , for any T > 0, there exist C2, C3 and C4 > 0
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such that if k > ko and 0 < t < T, then

I<C2 fdτ I U-τ)-Uxp(-^-r)gk(z,τ)dVM(z)
Jo JBX(R)-BX(&) \ 4(ί-τ)/

< C4 sup / gk(z, τ)dVM{z).
0<τ<TJBχ(R)-Bχ(ξ)

By [H, p. 135], the definition of gk, we have

(1.8) I < C 4 sup / e(fk)(z,τ)dVM(z)
0<τ<TJBχ(R)-Bχ(j)

<C4 sup / e(fk)(z,τ)dVM(z)

e(h)(z)dVM(z)
ειk

< C4E(h).

Similarly, integrating by parts in II and use the estimate for the gra-
dient of Hk(y,z, t) in Lemma 1.2, for any T > 0, we can find
C$ such that for k>ko,

(1.9) II <C5E(h).

Also

(1.10) III < sup e{h) ί Hkίy, z, t)dVM (z) = sup e{h),

Bχ(R) JM^ ° *» Bχ(R)

and

(1.11) III < C6T-^E(h) if t>T.

Combining (1.7)-(1.11), the lemma is proved. •

Let us imbed N isometrically in R9 for some q. This can be done
because TV is compact. For Ω c M , a map M : Ω X [ 0 , T) -> N c RQ

satisfies (1.1) in Ω x [0, T) if and only if

A duA _ σij-o (du du

--9f-g J*u(xt) \J?J{
i n Ω x ( 0 , T ) , A = 1 , . . . , q ; a n d

u(x,0) = h(x) inΩ,
where u = (uι,... , uq) and B is the second fundamental form of
N in R«.

Before we state the next lemma, let us introduce the following nota-
tions. Let Ω be a domain in Rm and Γ2 > T\ > 0, u — u(x ,t) is a
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function defined on QT τ2

 = Ω x (T\, T2). For any positive number
/, define

where [/] = integral part of /, and

UΛU) _ y ^ \DrDsu\{0)

*^T« T \ ^™"™ *^7Ί - 7 Λ

2r+j=[/]

<<2

Cr,,= Σ wtTί1 2
1 2 0</-2r-$<2

sup ^

" " * • . ' > - 5 * • ' ' > ' , 0 < α < l .

LEMMA 1.4. Let the sequence of maps fa: Ω^ —• N c R^ tfs /Λ

Lemma 1.3. Write ^ = (Λ1 > ••• > ^?) Give/i a ^ compact subdo-

main Kofa coordinate neighborhood of some point with coordinates
(JC1 , . . . , xm), given T2 > T\ > 0 and g/ven any positive integer I,
there exist constants C > 0 , l > a > 0 and positive integer ko, such
that if k>ko then

for A = 1, . . . 9q.

Proof. This follows from Lemma 1.3, the fact that fjf are uni-
formly bounded, the results of Holder estimates of the gradients
and Schauder estimates of the solutions of parabolic equations. See,
for example [L-S-U, p. 210, Theorem 11.1 and p. 352, Theorem
10.1]. D

Proof of Theorem 1.1. Let fa be the sequence of maps as in Lemma
1.3. By Lemmas 1.3 and 1.4, we can find a subsequence of fa, which
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we also denote by fa, such that fa together with their first and sec-
ond derivatives with respect to the space variable, first derivative with
respect to the time variable, converge uniformly on compact subsets
of M x (0, oo) to some / and its derivatives. Obviously / is a solu-
tion of the heat flow in (1.1) on ¥ x ( 0 , o o ) . In order to prove that
l i m ^ o / ( * > 0 = h(x), note that for any x e M , and T > 0, by
[L-S-U, p. 204] and Lemma 1.3, there exists 1 > a > 0, C > 0 and
a positive integer ko such that for k>ko, 0 < t < T,

\fj*(x,t)-fέ(x,O)\<Ct"9 , 4 = 1 , . . . ,tf,

where as before N is embedded in R^. Since fj?(x, 0) = hA(x) is
the initial data, therefore if we let k —• oo we have

\fA(x9 t)-hΛ{x)\ <Ct\ A=l,...,q,0<t<T.

Hence / is in fact a solution of (1.1). The proof of Theorem 1.1 is
then completed.

2. Properties of solutions of (1.1). Let us first prove a uniqueness
theorem for the solutions of (1.1). We need a maximum principle
which is a variant of a theorem in [K-L].

LEMMA 2.1. Let M be a complete noncompact Riemannian man-
ifold such that there exists a point p e M and a constant k > 0
satisfying

Vol(Bp(r)) < exp(k(l + r2))

for all r > 0. Let f be a function on M x [0, T), T > 0. f is smooth
on M x (0, T) and continuous on M x [0, T). Suppose f satisfies
the following conditions:

(a) (Δ-&)/>0 on ¥x(0J);
(b) f{x, 0 ) < 0 for all xeM; and

(c) JoUM™V(-ar2(P>y))\Vf\2(y)dVM(y))dt < oo, for some
α > 0 .

Then f<0onMx[0, T).

Proof. Let 0 < η < min(Γ, ^ , -^) be a fixed constant. Define

S) 4 ( 2 ι / - j ) '

where r(p, y) is the distance between p and y, and 0 <s < η. It is
easy to check

(2.1) |Vg|2 + | i = 0 onMx(0,η).
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For K > 0, let fκ = max{min(/, K), 0}. Hence

(K, if f(x,ή>K,

(2.2) fκ(x,t)=\ f(x,t), ifO<f(x,t)<K,

(o, iff(x,ή<0.

fx is uniformly Lipschitz on any compact subset of M x (0, T). For
0<t < T, let

Mt = {xeM\f(x,t)>0}.

For any smooth function φ on M with compact support, by assump-
tion (a), for 0 < ε < η,

where we have used the fact that /K > 0. Hence

(2.3) °--£(JM92e*<yfκ' V ̂ d V M ) ds

~ Is iLφ2egfκ{V8' Vf)dVM) ds

= I + II + III + IV.

(2.4) 1 = ~I" ( l ψVlVΛI2 dVl

(2.5) II < i jί" ̂  φV|V/|

ds

(2.6) III ^\f(jM <P2eg\Vf\2 dVM

+2 Γ
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To estimate IV, note that

137

From (2.2), we see that

9fκ
ds (fκ-f) =

whenever -£f exists.
By (2.1) and (2.2) we also have

Hence (2.7) gives

(2.8) -*•/,§£
ds

whenever -^f exists.
Since fx is uniformly Lipschitz on compact subsets of M x (0, T),

therefore

( 2 9 )

2 JM
Ψ2egfldVM

+ I / φ2eSfldVM

s=ε

+ I φ2egfκ(fκ~f)dVM
JM

- ί φ2egfκ(fκ-f)dVM

JM

S=η

s=φ

Combining (2.1), (2.3), (2.4), (2.5), (2.6) and (2.9), and letting
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ε —• 0, we have

0< - / I / φ2eg\Vfκ\
2dvΛ ds

φ2eg\Vf\2dVM) ds

ί" ( f egf£\Vφ\2dVM) ds-i f φ2e*fldVM
Jo \JM )

/ ( /
Jo \JMS

Γ(ί
Jo \JMS

+ 2
M

where we have used the fact that fκ(fκ — /) < 0 and that fa = 0 at

Hence

(2.10) dVfM
s=η

+ 2

/ φ2eg(\Vf\2-\Vfκ\
2)dVM) ds

\ J M S /

Γ(f e*f2\Vφ\2dVM)ds.
Jo \JM /

For R > 0, let φ be such that 0 < φ < 1 φ = 1 on BP{R) ;φ =
outside BP(R+ 1) and \Vφ\ < 2, we have

(2.11) if e*fldVM
1 JBP{R)

s=η

8ί
eg{\Vf\2-\Vfκ\

2)dVM\ ds

egfldVM) ds./
o \JBP(R+\)-BP(R) J

, ^ ) , so g(y 9s) < -2kr2(p,y) and g(y ,s)Since 0 < η < ^ ^
< -ar2(p, y) for all 0 < s < η. Also f£ < K2. By the assumption
on the volume growth of M, it is easy to see that the second term
on the right side of (2.11) tends to zero as R —• oo. Since 0 <

\^f\2 - I^AI 2 < |V/|2, by assumption (c) if we let R -• oo in
(2.11)? we obtain

(2.12) i / eSf2dVM(y)
2
 JM s=η

>M.
eg(\Vf\2-\Vfκ\

2)dVM(y)\ ds.
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Since f£ approaches (/+) 2 as K —• oo, where /+ = max(/, 0),
and for all s, \Vfκ\

2 -> |V/|2 on Ms, by (c) again, if we let K -> oo
in (2.12), we have

1

Hence / + = 0 at t = η. Since ^ is any number satisfying 0 < η <
min(Γ, ^ , jζ£), it is easy to conclude inductively that /+ = 0 on
M x (0, Γ). Hence / < 0 on M x [0, T). D

REMARK 2.2. M will satisfy the volume growth condition in the
lemma, if there exists a constant C > 0 such that the Ricci curvature
at every point x e M satisfies Ric(x) > -C(l + r2(p, x)), see [K-L].

THEOREM 2.3. Let M be a complete non-compact Riemannian man-
ifold satisfying the volume growth condition in Lemma 2.1. Let N be
a complete Riemannian manifold with non-positive curvature. Suppose
U\ and u2 are two maps from Mx[0, T) to N satisfying (1.1) with
the same initial condition. Suppose there exists a point p e M and
a > 0 such that

1(1 exp(-ar2)e(Ui)dVM) ds < oo
Jo \JM J

for i = 1, 2, where r = r(p, y). Then U\=u2 on ¥ x [ 0 , T).

Proof. For any 0 < t < T and any x e M, let γ be the geodesic
joining Uχ(x, t) and u2(x, t) which is homotopic to / : [0, 2t] —• N,
where

j l f i 2 ( * , τ - / ) > t<τ<2t.
Since N is non-positively curved, y is unique. Let p(x, ί) be the

length of γ, then /?2 is smooth o n ¥ x ( 0 J ) . We should remark
tht the function p may not be bounded even if N is compact.

Let ψ = (p2 + I)1/2 - 1 > 0, then by [S-Y2, p. 369],

Hence

( f exv(-ar2)\Vψ\2dVM) dt
\JM /

/ ( f v ( ) \ ψ \ M ) <oo
o J

by the assumption on U\ and u2. Since U\ and u2 satisfy (1.1), as
in [S-Y2, pp. 368-369], one can obtain

> 0 o n M x ( 0 , Γ ) .
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Note that ψ(x ,0) = 0 o n ¥ . Hence by Lemma 2.1, we have ψ = 0
on M x [ 0 , T). That is, p = 0, and ux = u2 on Mx [0, T). π

Next we study the monotonicty of total energy. Let Mm and
Nn be complete Riemannian mainifolds, M is non-compact. Let
u: M x (0, T) —> N be a smooth map satisfying the heat equa-
tion (1.1) for harmonic maps. Let p e M be a fixed point. For
0 < t < T and R > 0, let E(t,R) = JB{R)e(u(-9 t))dVM, and

£(*, Λ) = s u p o < τ < , £ ( τ , R). Also £(ί) = JM^(w(. ? t))dVM.

THEOREM 2.4. Suppose there exists a constant k > 0 swc/z
, JR) < exp(A:(l+Λ)) for all R>0. Then E(t) is a non-increasing

function in t. More precisely, for 0 < t\ < t2 < T, if E{t\) < oo,
then

E(t2) + 2 f2 dt I \ut\
2dM<E{tx)<oc.

Jtι JM

REMARK 2.5. The condition of the theorem will be satisfied if (1)
s uPo<*<r^(O < oo or (2) M has at most exponential volume growth
and supo<t<τ.xeB (R)e(u(x, t)) is less than or equal to exp(C(l+i?))
for some C > 0. Note tht if the Ricci curvature of M is bounded
below by -K, then M has at most exponential volume growth.

Proof of Theorem 2.4. It is more convienent to use moving frame.
Let / : M —• N be a smooth map, and let θ\, . . . , θm be an or-
thonormal coframe in a neighborhood of some point q e M. Let
co\, . . . , ωn be an orthonormal coframe in a neighborhood of f(q).
We have the structure equations for M and N

and

Define ft

dθi

dωa

andyg

—- 7 Ό i i Λ u ί ,
X J ιJ J 7

j

= Σ ω*β Λ ωβ >
β

, l<i,j<m,

1

1 <

<

1

a

ί

<

<

<

a

n

m

<

?

?

n.

by

a)+Σ frθji = Σ m-
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In our case u(x9 t) is a map from M x (0, T) to N. Let dt be the
unit covector in the t direction, then uf is defined by

u*(ωa) = Σ uΐθi + u<tdt> 1 < α < Λ.
i

Then

( 2 . 1 3 ) e ( u ( ' , t ) ) = J 2 ( u f ) 2 ( , t ) , \ < i < m , \ < a < n .

Also we have

(2.14)

Let φ be a smooth funciton on M with compact support. By
(2.13) and (2.14), for any ε > 0 ,

d
(2.15) L I e(u(-,t))φ2dVM

at JM

>2dV>

= -2 / [ X)u? u? ) φ2dVM-A ί

jM ( Σ
C I e(u(.,t))\Vφ\2dV

JM

M

M

+ C I e(u(.,t))\Vφ\2dVM
J

e(u( ,ί))\Vφ\2dVM
/

M

where C is a constant depending only on m and ε. Without loss of
generality, we may assume u is smooth on M x [0, T) and show that
E{t) + 2 Jj ύ?τ / ^ Σ α ( « ? ) 2 ^ < E(0) for all Γ > t > 0. Hence, let



142 GUOJUN G. LIAO AND LUEN-FAI TAM

us assume E(0) < oo. Integrate (2.15) from 0 to ί,

(2.16) / e(u(., t))φ2dVM- f e(u( , 0))φ2 dVM

JM JM

<C f dτ I e(u(.,τ))\Vφ\2dVM
Jo JM

+ (-2 + ε )Ild τ !?<«?) vrfni

For R > 0, and for any positive integer j , let φ be such that
0 < φ < 1, φ = 1 on Bp(jR), φ = 0 outside Bp((j + l)R) and
\Vφ\ < ^. By (2.16) we have

(2.17) E(t,jR) + (2-e) f dτ ί fe>?)2) dVM

Jθ JBP(JR) V α /

AC Cι

jpJ E(τ,(J+W)dτ

We claim that for any integer v > 0,

L 1
(2.18) E(t, R) <E(0, (u

4C\v

/ E(sVi(u
Jo

By (2.17), (2.18) is obviously true for v =\. Suppose (2.18) is true
for v. By (2.17)

E{sv, {v + l)R) < E(0, (i/ + 2)R)

E(sv+ί, (u + 2)R) dsu+ι.
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Hence

JL 1 /ACt\j~ι

Acy rι , &

W Jo*1 Jo

^ Γ" E(sv+ί, (y + 2)R) dsv+ι } dsv

v+l

' "E(su+ι,(u + 2)R)dsv+ι.

Hence (2.18) is true for all v. Replace R by 2R in (2.18) and let
7 = 1 in (2.17), we have

(2.19) E(t,R) + (2-ε) ί dτ ί ( J > ? ) 2

Jθ JBP(R) V a ,

E(t, 2(u+ί)R) (jpj J% dsi ~Jl"X dSv

+2(1/ + 1)Λ)) . ( ^ ) .

For 0 < ί < T and i? fixed, if we let v -> oo in (2.19), by the

Stirling's formula v\ ~ \/2πvv+!ie~v as ι̂  —»• oo, we conclude that

, R) + (2 - ε) f dτ ί (^{ua

τ)
2\ dVM < E(0). exp ( 2 ) .

JQ JBP(R) V α / ^ K '

Let i? —»• oo, and then let ε —* oo, the theorem is then proved. •

COROLLARY 2.6. With the same assumptions as in Theorem 1.1, let
u be the solution constructed in the theorem. Then E(u{-, t)) < E{h)
for all t>0, and E(u(-, ή) is non-increasing in t.
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Proof. By the construction of u and the result in [H, p. 135], we
have E(u(-9 t)) < E(h) < oo for all t > 0. By Theorem 2.4, we can
conclude that E(u(-, t)) is non-increasing in t. D

THEOREM 2.7. With the same assumptions as in Theorem 1.1 and
letting u be the solution 0/(1.1) obtained in Theorem 1.1. There
exists tj -+ oo with tj+χ > tj + 2 such that u( , tj): M -> N converge
together with their first and second derivatives in the space variable
uniformly on compact subsets of M to a harmonic map w^.

Proof, Using Corollary 2.6, as in Lemma 1.3 one can prove that for
any R > 0 there exists a constant C which is independent of t such
that e(u)(x, t) < C for all x e BP(R) and for all t. As in Lemma
1.4, one can show that there exists tj —> oo such that the sequence of
maps Vj(x, t) = u(x9 tj + t) from M x [ 0 , 1] to N converge together
with their first and second derivatives in the space variable and the
first derivative of the time variable uniformly on BP{R) x [0, 1] for
any R > 0. By Theorem 2.4 and the fact that u is a solution of
(1.1), the result follows. D

REMARK 2.8. UQQ in the above theorem is homotopic to h on com-
pact subsets.
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