
PACIFIC JOURNAL OF MATHEMATICS
Vol. 153, No. 1, 1992

EXCEPTIONAL SETS FOR POISSON INTEGRALS OF
POTENTIALS ON THE UNIT SPHERE IN Cn , p < \

PATRICK AHERN AND CARMEN CASCANTE

In this article we show that the exceptional sets for Poisson-Szegδ
integrals of potentials of Hp functions in the unit ball in C" have a
certain Hausdorff measure zero, and that this result is sharp.

Let Bn denote the unit ball in Cn with boundary S, σ will denote
the normalized Lebesgue measure on S. We let R denote the (holo-
morphic) radial derivative R = Σ " = i Zjd/dzj . A holomorphic func-
tion / belongs to &P if sup 0 < r < 1 Js \f(rζ)\pdσ(ζ) < oo. In [2] and
[5] it was shown that if Rkf e ^ p where 0 < p < 1 and n - kp > 0
then the function / has an admissible limit on S\E where E has
non-isotropic Hausdorff measure zero in dimension m = n-kp, and
this result is sharp. For p > 1, the proper measure for the exceptional
sets is a certain capacity; see [4]. In [1] D. Adams proved an analogous
result for harmonic functions, see also [2]. For harmonic functions the
result is the following: if u is a fractional integral of order β (i.e.
Bessel potential) of an Hp(Rn) distribution, 0 < p < 1, then the
Poisson integral of u has non-tangential limits on Rn\E where E
has Hausdorff measure zero in dimension m = n - βp. Again, for
p > 1, the proper measure of the exceptional sets is capacity.

In this paper we prove an analogous result for certain non-isotropic
potentials on S. If k is a positive integer, k < n, we let

7 ^ , 0 = 1 1 - ^ , 0 1 * - " , z,ζeS.

For a function υ on S let

(Ikv)(z)= flk(z9ζ)v(ζ)dσ(ζ).
Js

The kernels 7̂  will play the role of the Bessel kernels in Rn . Indeed,
I\ is the fundamental solution for a certain sublaplacian on S, see
[9]. In contrast to the cases mentioned above we can handle only the
case where k is an integer. If
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is the Poisson-Szegό kernel we are interested in exceptional sets of
functions

PVkV](z)= fp(z9ζ){Ikυ)(ζ)dσ(ζ)
Js

where v is a distribution in the atomic Hardy space HP(S), 0 < p <
1, of Garnett and Latter [7]. We will show that the set where such a
function fails to have an admissible limit has non-isotropic Hausdorff
measure zero in dimension m = n - kp. The method of [2] shows
the following: if u is a continuous function in Bn whose admissible
maximal function Mu e LP(dσ), 0 < p < 1, and if

k-\

u(tz)dt

where n - kp > 0 then the admissible maximal function MF e
Lp{dv) for any measure v on S that satisfies v(B(ζ, δ)) < δn~kp

for all B(ζ9 δ) = {y e S: \l-(ζ9 n)\ < δ}. If we knew this to be
true for all F = P[IkV], υ e Hp , then it would follow in a standard
way that all such P[IkV] have admissible limits on the complement
of a set whose non-isotropic Hausdorff measure is zero in dimension
n - kp, see [2] and [5], Assuming this, our problem reduces to the
following: Given υ e Hp, 0 < p < 1, show that there is a u with
MueLP{dσ) so that

(0.1) ί 1 ( )

Now it is an elementary exercise in integration by parts to show that
(0.1) holds if

u(z) = [r^ + Id) P[Ikv](rz) = (R + R + Id)kP[Ikv]{z),

where R = ΣjUi ~Zjd/d~Zj. In other words we want to show that if
.F = P[Ikυ], υ e Hp, 0 < /> < 1, then (i? + R + 7^f)^F has its
admissible maximal function in LP{dσ). This is the content of this
paper.

The main problem we face is that even though F is a Poisson-Szegό
integral its derivatives may not be. However, the results of D. Geller
give us a way around this difficulty. In [8], Geller introduces a family
of differential operators

^
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and a family of kernels

(1
Paβ(z, C) = C β , , ( 1 _ { Z j c

Here a, β eC and Cα^ is an appropriate constant. Note that ΔOo
is the invariant Laplacian of [11], and P = Poo is the Poisson-Szegό
kernel above. It is a straightforward calculation that AaβPaβ = 0 (the
differentiations being with respect to z) and that Paβ is an approxi-
mate identity as long as Re(n + a + β) > 0, and hence for such values
of a and β

U(z) = ί Paβ(z, CMC) dσ(ζ) = Paβ[u](z)
Js

solves the Dirichlet problem AaβU = 0,U = uonS. The relevance
of all this is that if AQQU = 0 then certain derivatives DU satisfy
AaβDU = 0 for appropriate a and β. Returning to our original
problem we have F = P[IkV], veHp,0<p<l. We show that
(R + R + Id)kF can be written in the form Y,Saβ(R, R)F, where
α, β are non-positive integers, |α| + \β\ < k, Saβ(R, ~R) has degree
\β\ in R and \a\ in Λ and AaβSaβ(R, R)F = 0. That is we write
(R+R+Id)kF as a sum of solutions to the equations Aaβ U = 0. After
establishing a unicity theorem for the Dirichlet problem for certain
values of a, β (a unicity theorem that is already implicit in the work
of C. R. Graham [10] in the case of the Heisenberg group) we see that
for each a, β we have

Sa,β{R9 R)F(z) = Paβ[Saβ(R, R)F](z).

Now we want to get into a position to apply standard techniques
from harmonic analysis; singular integrals and approximate identi-
ties. For our range of a and β, Paβ is a smooth approximate
identity and hence if Saβ(R, R)F were in Hp it would follow that
Paβ[Saβ(R, R)F] would have its admissible maximal function in ΊJ,
which is what we want. So what we want to show is that if F =
Plhv], v e HP, then if j + I < k RJRlF\s lies in H?. What
we mean, of course, is that the map v —> i?JJR Pll^υ]^, originally
defined for smooth functions, can be realized as a standard singular
integral on S and hence maps Hp to Hp . We do this by exploiting
an idea of R. Graham [10] who showed that certain radial derivatives
of U = P[u], when restricted to the boundary, are actually tangen-
tial. What we show is this: if u is sufficiently restricted then for each
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α, β, |α| + |j8| < fc, there is a polynomial Qaβ in two variables, of
total degree at most |α| + \β\ such that

Saβ(R,R)P[u]\s = Qaf

on S. Here L, L are certain tangential derivatives on S. Then it
remains only to show that the map v —> Qaβ{L, L)Ikv can be realized
as a standard singular integral and hence maps Hp to Hp .

We end the introduction with a few more definitions: for / < j ,

^ _ d _ d

and
T

 d d

Then we define

and
τ=Σ ^7.7

and

In [8], Geller gives the following "radial-tangential" form for Aaβ :

Aaβ = (1 - | ^ ( ^

+ aR + βR-aβ\.

For the definition of admissible limit we need the admissible approach
region

Da(ζ) = | z G B*ι |1 - <z, 0 |

/ has an admissible limit at ζ if

lim f(z)

exists for all a > 0 and the admissible maximal function Maf(ζ) is
defined as

sup |/(z) | .

For the definition of non-isotropic Hausdorff measure, see [4].



EXCEPTIONAL SETS FOR POISSON INTEGRALS

LEMMA 1.1. IfAaβf = 0 then

(i) Aa9β-l(Rf-βf)=09

(ii) ΔQ_

Proof. That something like this should hold is suggested by (1.3) of
[8]. In fact a proof can be based on formulas (1.3) and (1.12) of [8].
If this line of reasoning is followed we see that, for example,

and then we need to check directly that

It seems just as easy to check the lemma directly. This is a straight-
forward calculation.

COROLLARY. Suppose AQQII = 0 in Bn and j , / are non-negative
integers. Then there are polynomials Fa9β(x9y), with degree -a in
x and -β in y such that

RJRlU=

and

AaβFaβ(R,R)U = 0

in Bn.

Proof. The proof follows by induction on j + /, using the lemma.

In [8], Geller introduces the kernels Paβ which solve the Dirichlet
problem for the operator Aaβ. We will need to know that, at least
for certain values of a, β, this solution is unique. This uniqueness
is implicit in the work of Graham [10]. However, since there is no
proof in print we will provide one here. To that end we need the
following lemma which gives the relation between the operators Δα ^
and certain automorphisms of the ball. The automorphisms are the
φa given on page 25 of [11]. φa(0) = a, φa[p) = 0, ψ^x = φa, among
other properties. Given aeB and a, β define
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LEMMA 1.2.

Aa,β[hZ'β(U o φa)] = h^β[(Aaβu) o φa].

{Just to be very clear, on neither side of the equation is h%'β composed
with φa.)

Proof, First we need the following: fix 0 < r < 1 and let

where s = \/l - r2. Let h(z) = (1 - r~zx)
a{\ - rzxγ. We need to

know that

(1.1) Aaβ(h .Uoφ) = h- (Aaβu) o φ.

This can be done by appealing to formula (1.12) of [8] and using the
dilation invariance of analogous operators Δ ^ defined in the Siegel
upper half space. Or it can be proved by a rather lengthy direct cal-
culation which we omit. We will now assume (1.1) holds. Let U be
defined by U(z) = - z , and apply (1.1) to uoU and we have the con-
clusion of the lemma for a = (r, 0, . . . , 0), if we take into account
the fact that Δα β commutes with any unitary matrix. Now if we use
the formula Uφa = φuaU, which is easily verified for any unitary U,
we have the result of the lemma.

In [8], it is shown that if Aaβf = 0 in Bn then for every 0 < r < 1,
we have

(1.2) F{-a,-β n;ri)f(0)= ί f(rζ)dσ(ζ).
Js

Here F(a, b; c\ x) denotes the usual hypergeometric function. Now

supposing that Aaβu = 0, and w e Bn we may apply (1.2) to u =

h%f(u oφw) to obtain

(1.3) gaβ{r)u[w) = ( h%β{rζ)u{φw{rζ))dσ{ζ),
Js

where we let gaβ(r) = F(-a, -β n r2). We will use (1.3) to draw
some conclusions about boundary behaviour and uniqueness of solu-
tions of Aaβu = 0.

LEMMA 1.3. Fix α, jβ G C .

(i) There is a bounded u, u ψ 0 such that Aaβu = 0 if and only

if Saβ is bounded.



EXCEPTIONAL SETS FOR POISSON INTEGRALS 7

(ii) There is a function u continuous on Bn, u φ 0, such that
AaβU = 0 in Bn, if and only if limr_+i gaβ(r) exists.

(iii) There is a function u continuous on Bn, u = 0 on dBn,
u^O, and AaβU = 0 in Bn if and only if limr_>i gaβ(r) exists and is
zero.

Proof. The proof follows immediately from (1.3) and the fact that
if we define G(z) = g(\z\) then AaβG = 0 in Bn, a fact which is
clear from the discussion on page 369 of [8]. Part (iii) tells us that
if lim,._>i ga,β(r) exists and is not zero then we have uniqueness for
the Dirichlet problem for Aaβ , i.e. if U\, u-i € C(Bn) and AaβU\ =
AaβU2 = 0 in Bn and U\ = uι on dBn then U\ = U2 in Bn. Note
that this is the case when a, β are real and n + a + β > 0.

Now assuming that a, β are non-positive integers and n + a +
β > 0, then the Dirichlet problem Aaβu = 0, u = / on <9i?w

has a unique solution w, for any continuous / , given by u(z) =
/P a ,β(z , ζ)f(ζ)dσ(ζ). We want to see what this solution looks like
when / G #(/?, #), the space of harmonic homogeneous polynomi-
als of bidegree (p, q). As in [6], we look for a solution of the form
u{rζ) = h(r2)f(rζ). We conclude that the function h is a solution of
the hypergeometric equation

t{\ - t)hn{t) + [(p + q + n)-(p-a + q-β

The only solutions of this equation which are smooth at 0 are multiples
of the hypergeometric function F(p-a, q-β p+q+n\ t). It follows
that

From known properties of the hypergeometric series we have that

(1.4) h(r) = Mr) + /2(r)(l - r)n^^ log(l - r)

where f\, fι are analytic at r = 1.

Our next result shows if AaβU = 0 then, with appropriate restric-
tions on a and β, certain radial derivatives of u are actually tan-
gential. This type of phenomenon was first studied by R. Graham,
[10].
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LEMMA 1.4. Suppose α, β < 0 and n + a + β > 2. Take u e
H(p, q) for some p, q and let U = Paβ[u], then we have

+ "-l)L -aβ)u
n-\ ) J

a + β + n- l\n-l

= qaβ(L9L)u,

= ^ 7< 7L - — )L - aβ >u
a + β + n-l\n-l \ n-\ ) H)

= qaβ(L,L)u.

Proof. Using the "radial tangential" form for Aaβ we see that

βRU-aβU = O.

Since rc + a + / ? > 2 , i t follows from (1.4) that RRU = O(log y L ) ,

as r -• 1, and hence that (1 - \z\2)RRU -• 0 as \z\ -• 1. Letting

|z | —• 1 we have, since ^ = — ̂ ( ^ + ^ ) ,

y -aβU =

on 5 , or?

on *S. But we also have that

R-R = —1— (L-L)
n - 1v J

as differential operators. If we solve these two equations for RU and
RU on S we get the lemma.

COROLLARY. Suppose u e H(p, #) ybr some p, ^ αnrf j + 1 < n.

Then there is a polynomial Q in 2 variables of total degree < j + 1 so

that ifU = Pm[u] then RJRlU\s = Q(L 9L)u.

Proof. We do induction on j +1. From the corollary to Lemma 1.1
we have

RJ~ιRlU=
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where AaβFaβ(R, R)U = 0. Hence RJR?U = ΣRFaβ(R,R)U. By
Lemma 1.4

R(Fafi(R9R)U)\s = l(L9 L)(Faβ{R, R)U)\S

where / is first degree. By induction Faβ(R, ~R)U\S is a polynomial
in L, I of degree at most j +I - 1 acting on u.

If we now combine the corollaries to Lemmas 1.1, 1.4 we get the
following.

THEOREM 1. Suppose j +I < n. Then there are polynomials Qaβ,
\<x\ + \β\<j + l such that if ue H(p, q) and U = Poo[u] we have

PaβlQaβ{L,T)ύ\.
\"\+\β\<J+l

Proof. From the corollary to Lemma 1.1 we have

\*\+\β\<j+ι

w h e r e AaβFaβ(R, R)U = 0 . Since j + l<n9 Faβ(R,R)U e Cι(Bn)
and hence by uniqueness for the Dirichlet problem we have

Now on S, Faβ(R, R)U = Qaβ(L, L)u by the corollary to Lemma
1.4.

We have proved the theorem for u e H(p, q) 9 we will need to
extend it to the case u = I^v where υ e L2, provided j + 1 <k. We
need to know how lk acts on H(p 9 q).

LEMMA 1.5. For v e H(p, q),

" •

Proof. It is easy to check that I^υ o U) = (I^v) o U for any unitary
U. Since H(p, q) is minimal under the action of the unitary group,
it is enough to prove the lemma in case v(ζ) = ζ^ζ^- We write

- (z, ζ)\k~n = (1 - (z, 0 ) - ( " ^ ( l - (C,
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If we expand each factor in a binomial series and integrate term by
term we arrive at

1 («^

Recognizing the series as essentially

n — k n — k
+

we arrive at the desired formula.
On the other hand if u e H(p, q) then Lu = —p(q + n — \)u

and Lu = -q(p + n - l)w, see [3]. Hence if υ e H(p, q) and
degQ a β (L,L)<j + l = k then

Qaβ(L,L)Ikυ =

where

independent of p, <?.
Hence the mapping

extends to be a bounded map from L2 to L2. Moreover, when v eL2

then the differential operator Qaβ(L, Z) applied to 7 v̂ in the sense
of distributions is the same as the operator just described above. From
this it follows that if Ikv is C°° on some open set Ωc S then the
Qaβ(L, L)Ikv just described and the function obtained by applying
the differential operator Qaβ(L,T) to Ikv agree on Ω. This will be
used later.

We now summarize our results so far.

THEOREM 2. Fix k <n, then there are polynomials Qaβ in 2 vari-
ables of total degree at most k so that for v e L2 we have

Paβ[Qaβ(L,L)Ikv].
\<*\+\β\<k

Proof We just note that (R+7Ϊ+I)k is a sum of terms of the form

RjlR with j + 1 <k. We just add and group like terms.

Next we want to show that the operators Qaβ{L, L)lk , which ex-
tend to be bounded in I? actually extend to be bounded in Hp,
0<p < 1.



EXCEPTIONAL SETS FOR POISSON INTEGRALS 11

T H E O R E M 3. Suppose r + s < k and let K be the operator defined
by Kv = ULsIkv, then K is bounded in Hp, 0<p<l.

Proof. We consider the smooth approximations Kr where /^(z, ζ)
is replaced by |1 - r(z, ζ)\h~n . Kr is a multiplier on each H(p, #)
and in fact if Ku = C(p, q)u for u G if (/? , #) , then

and so it follows that \\Kru - Ku\\Li -> 0 as r -> 1. If we can show
that for every (p, oo) atom α we have H^αH^p < C where C is
independent of r and α, then the theorem will follow in a standard
way. To establish this we note the following: we calculate that for
a, b > 0 we have that

is a sum of two terms, one of the form

\ζiWj - Wjζi\2(l - r(ζ, ^ ) ) - ^ 1 ( l - r(w , Q ) " ^ 1

and the other of the form

(ζiWi + ζjWj)(l - r(ζ, w))-a-ι(i - r(w, ζ))~b.

If we add on / < j and use the fact that Σi<j\£iwj ~~ ζjwi\2 =

1 - \(ζ9 w)\2 we see that Lζ(l -r(ζ9 w))~a(l - r{w, ζ))~b is a sum
of terms of the form

(1 - |(C, ̂ )|2)(1 -r(ζ, w))-a-\\-r(w,ζ))-b-1

and
(C, w){\ -r(ζ, w)ya-ι(l-r(w,ζ))-b.

There is a similar expression for Lζ. So if we apply Lf - Lζ to

( l - r ( C ? ^ ) ) ^ ( l - r ( ^ ? O ) ^

we get a sum of terms of the form

{l-\(ζ9w)\2)ι(l-r(ζ,w))-*(l-r(w,Q)b

where a + b — / < fl-fc + r + s. Now if we let Z)^ denote any w
derivative which has k T\j 's and (R - ϊί) /-times we see that we have

From this estimate it follows in a standard way that Kr is uniformly
bounded on (/?, oo) atoms (see [4]).
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Finally we point out that in our case, (ayβ<0,n + a + β>0) Paβ

is a smooth approximate identity and hence we have

THEOREM. For 0 < p < 1 we have

\\MPaβf\\L> < C\\f\\H>.

Putting all these results together, as indicated in the introduction we
have our main theorem.

THEOREM 4. Suppose 0 < k < n, k is a positive integer and 0 <
p < 1, and n- kp > 0. Then there is a constant C such that if v is
a measure on S that satisfies v(B{ζ, δ)) < δn~kp, then

IMaP[Ikvfdv<C\\v\\p

HP

for all veHP,all a>0.

COROLLARY. For each v e Hp, 0 < p < 1, there is a set E c S
with non-isotropic Hausdorjf measure zero in dimension n - kp such
that F = P[IjcV] has admissible limits on S\E.

Proof. The corollary follows from the theorem and results of W.
Cohn [5].
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