THE BOUNDARY OF A SIMPLY CONNECTED DOMAIN AT AN INNER TANGENT POINT

John Marafino

Let T^{*} be the set of accessible boundary points at which the inner tangent to ∂D exists. That is, if $a \in T^{*}$ and $w(a)$ represents its complex coordinate, then there exists a unique $\nu(a), 0 \leq \nu(a)<2 \pi$, such that for each $\varepsilon>0 \quad\left(\varepsilon<\frac{\pi}{2}\right)$ there exists a $\delta>0$ such that

$$
\begin{aligned}
& \Delta=\left\{w(a)+\rho e^{i \nu}: 0<\rho<\delta,|\nu-\nu(a)|<\frac{\pi}{2}-\varepsilon\right\} \subset D \\
& \text { and } w \rightarrow a \text { as } w
\end{aligned} \rightarrow w(a), \quad w \in \Delta .
$$

Let $\gamma(a, r)$ represent the unique component of $D \cap\{|w-w(a)|=r\}$ that intersects the inner normal $\left\{w(a)+\rho e^{i \nu(a)}: \rho>0\right\}, L(a, r)$ denote the length of $\gamma(a, r)$ and set $A(a, r)=\int_{0}^{r} L\left(a, r^{\prime}\right) d r^{\prime}$. Finally let $A D^{*}$ be those points of T^{*} at which a non-zero angular derivative exists.

Our main result is a purely geometrical proof of a theorem that describes the boundary of D near $a \in T^{*}$. As a consequence we have
(1) a geometric description of the boundary of D near almost every $a \in A D^{*}$ that is a generalization of the geometric behavior of a smooth curve,
(2) an answer on T^{*} and hence on $A D^{*}$ of the two open questions and conjectures made by McMillan in [3, p. 739] concerning the length and area ratios

$$
\frac{L(a, r)}{2 \pi r} \quad \text { and } \quad \frac{A(a, r)}{\pi r^{2}} \quad \text { as } r \rightarrow 0
$$

1. Introduction.

1.1. Many of the definitions introduced in $\S \S 1.1$ to 1.3 can be found in McMillan's papers.

Let D be a simply connected plane domain, not the whole plane, and define on D the relative metric d_{D}, the relative distance between two points of D being defined as the infimum of the Euclidean diameters of curves that lie in D and join these two points. Let ($D^{*}, d_{D^{*}}$) be the completion of the metric space $\left(D, d_{D}\right)$. Now $D^{*}=D \cup A^{*}$ where D is an isometric copy of D in D^{*} and A^{*} is the set of accessible boundary points of D. Any limits involving accessible boundary points are taken in $d_{D^{*}}$.

Let T^{*} be the set of accessible boundary points of D at which the inner tangent to ∂D exists. That is, if $a \in T^{*}$ and $w(a)$ represents its complex coordinate, then there exists a unique $\nu(a), 0 \leq \nu(a)<2 \pi$, such that for each $\varepsilon>0(\varepsilon<\pi / 2)$ there exists a $\delta>0$ such that

$$
\begin{aligned}
& \Delta=\left\{w(a)+\rho e^{i \nu}: 0<\rho<\delta,|\nu-\nu(a)|<\pi / 2-\varepsilon\right\} \subset D \\
& \text { and } \quad w \rightarrow a \text { as } w \rightarrow w(a), \quad w \in \Delta .
\end{aligned}
$$

With $\arg (w-w(a))$ defined and continuous in D, we let R^{*} be the set of accessible boundary points of D such that

$$
\liminf _{\substack{w \rightarrow a \\ w \in D}} \arg (w-w(a))=-\infty \quad \text { and }
$$

$$
\limsup _{\substack{w \rightarrow a \\ w \in D}} \arg (w-w(a))=+\infty
$$

Points of R^{*} are often called twist points. Using a one-to-one conformal mapping f of the unit disk onto D, one can establish using a result of Koebe a one-to-one correspondence between A^{*} and a dense subset of measure 2π of the unit circle. We shall say that a set $B^{*} \subset A^{*}$ is a D-conformal null set provided that it corresponds to a set of measure zero on $\{|z|=1\}$ under this correspondence. This definition is independent of the map f. Let $z=g(w)$ be the inverse of f that maps D one-to-one and conformally onto the unit disk. Then for each $a \in A^{*}$, the limit

$$
\lim _{\substack{w \rightarrow a \\ w \in D}} g(w)=g(a)
$$

exists. We say that $g(w)$ has a finite non-zero angular derivative at $a \in A^{*}$ provided there exists a finite non-zero complex number $g^{\prime}(a)$ such that for each Stolz angle \check{A} at a contained in D,

$$
\lim _{\substack{w \rightarrow a \\ w \in A}} g^{\prime}(w)=g^{\prime}(a) .
$$

Let $A D^{*}$ be those points in A^{*} at which g has a finite non-zero angular derivative. For each $a \in A D^{*}$, it follows that g^{\prime} has a finite non-zero asymptotic value along some curve ending at a. Since f^{\prime} is normal [2, p. 50] we have by [7, p. 267] that f^{\prime} has a finite nonzero asymptotic value along some path ending at $g(a)$ which in turn
implies that f is conformal at $g(a)$. Consequently, $a \in T^{*}$ and $A D^{*} \subset T^{*}$. The first part of McMillan's twist point theorem [2, p. 44] nicely ties together all the concepts introduced in this section. It states that $A^{*}=T^{*} \cup R^{*} \cup N^{*}$, where N^{*} is a D-conformal null set and that $T^{*} \backslash A D^{*}$ is a D conformal null set.
1.2. Let B be a subset of the plane and ε be an arbitrary positive number. Define

$$
\lambda(\varepsilon)=\inf \sum_{k} d_{k}
$$

where the infimum is taken over all countable coverings of B by disks Δ_{k} of diameter $d_{k}<\varepsilon$. Clearly, $0 \leq \lambda(\varepsilon) \leq+\infty$ and $\lambda(\varepsilon)$ increases as ε decreases so that

$$
\Lambda^{*}(B)=\lim _{\varepsilon \rightarrow 0} \lambda(\varepsilon) \quad\left(0 \leq \Lambda^{*}(B) \leq+\infty\right)
$$

exists. Λ^{*} is a metric outer measure whose σ-field of measurable sets include the Borel sets [9, p. 64]. Moreover, Λ^{*} is outer regular relative to the class of G_{δ} sets. The restriction of Λ^{*} to this σ-field is denoted by Λ and is called either the linear measure or the one dimensional Hausdorff measure. The second part of McMillan's twist point theorem [2, p. 44] states that a subset of T^{*} is D-conformal null if and only if the set of complex coordinates of its points has linear measure zero. Since $T^{*} \backslash A D^{*}$ is a D conformal null set we have by this result that

$$
\begin{equation*}
\Lambda\left(T^{*} \backslash A D^{*}\right)=0 \tag{1}
\end{equation*}
$$

In the remainder of this paper we will restrict our attention to T^{*}. A proposition $P(a)$ will be said to hold for almost every $a \in T^{*}$ if $\left\{w(a): a \in T^{*}\right.$ and $P(a)$ is false $\}$ has linear measure zero. By (1) any proposition holding for almost every $a \in T^{*}$ will also hold for almost every $a \in A D^{*}$. Consequently, Theorem 1 , Corollaries 1 and 2, and Theorem 2 in $\S 1.3$ can be restated using $A D^{*}$ in place of T^{*}.
1.3. The main result of this paper is a geometric proof of a theorem describing the behavior of ∂D in a neighborhood of almost every $a \in T^{*}$. For each $a \in T^{*}$ and $r>0$, let $\alpha(a, r)$ be the measure of the largest angle such that the sector

$$
\left\{w(a)+\rho e^{i \nu}: 0<\rho<r,|\nu-\nu(a)|<\alpha(a, r)\right\} \subset D
$$

If no such angle exists, set $\alpha(a, r)=0$. Note that for each $a \in T^{*}$ there exists an r_{a} such that $\alpha(a, r)>0$ for $r<r_{a}$. For each $a \in T^{*}$ and $r<r_{a}$, let $\gamma(a, r)$ be the unique component of $D \cap\{|w-w(a)|=$ $r\}$ that intersects the inner normal $\left\{w(a)+\rho e^{i \nu(a)}: \rho>0\right\}$. We denote the length of $\gamma(a, r)$ by $L(a, r)$ and set $A(a, r)=\int_{0}^{r} L\left(a, r^{\prime}\right) d r^{\prime}$. Measurability of the integrand is shown in [3, p. 730].

For each $r<r_{a}$, we parameterize $\gamma(a, r)$ by $w_{r}(t)=w(a)+r e^{i t}$, $t_{0}(r)<t<t_{1}(r)$. For $S \subset\left(0, r_{a}\right)$, let $E_{L}^{*}(S)=\left\{\zeta \in A^{*}: w(\zeta)=\right.$ $w(a)+r e^{i t_{0}(r)}, r \in S$, and $w(a)+r e^{i t} \rightarrow \zeta$ as $\left.t \rightarrow t_{0}(r)^{+}\right\}$. That is, $E_{L}^{*}(S)$ is the set of accessible boundary points determined by $w_{r}(t)$ as $t \rightarrow t_{0}(r)^{+}, r \in S$. Similarly, $E_{R}^{*}(S)$ is the set of accessible boundary points determined by $w_{r}(t)$ as $t \rightarrow t_{1}(r)^{-}, r \in S$. Finally, set $E^{*}(S)=E_{L}^{*}(S) \cup E_{R}^{*}(S)$. In what follows $h(t)$ is a positive real valued function defined on $(0,+\infty)$ with the property that $\lim _{t \rightarrow 0} h(t)=0$. An interesting case is when $h(t)=k t$ for large positive k.

Theorem 1. For almost every $a_{0} \in T^{*}$, there exists a set $S \subset$ $\left(0, r_{a_{0}}\right)$, closed relative to $\left(0, r_{a_{0}}\right)$, such that
(i) $E^{*}(S) \subset T^{*}$ and

$$
\lim _{r \rightarrow 0} \frac{m(S \cap(0, r))}{r}=1
$$

where m denotes Lebesgue measure.
(ii)

$$
\lim _{\substack{a \rightarrow a_{0} \\ a \in E_{R}^{*}(S)}} \arg \left(w(a)-w\left(a_{0}\right)\right)=\nu\left(a_{0}\right)+\pi / 2
$$

and

$$
\lim _{\substack{a \rightarrow a_{0} \\ a \in E_{L}^{*}(S)}} \arg \left(w(a)-w\left(a_{0}\right)\right)=\nu\left(a_{0}\right)-\pi / 2
$$

(iii)

$$
\lim _{\substack{a \rightarrow a_{0} \\ a \in E^{*}(S)}} \nu(a)=\nu\left(a_{0}\right) \quad \text { if } \nu\left(a_{0}\right) \neq 0
$$

and

$$
\lim _{\substack{a \rightarrow a_{0} \\ a \in E^{*}(S)}} \nu(a)=0 \quad(\bmod 2 \pi) \quad \text { if } \nu\left(a_{0}\right)=0
$$

(iv)

$$
\lim _{\substack{a \rightarrow a_{0} \\ a \in E^{*}(S)}} \alpha\left(a, h\left(\left|w(a)-w\left(a_{0}\right)\right|\right)\right)=\pi / 2
$$

If the boundary of D is a smooth Jordan curve, all boundary points of D are accessible since, by a theorem of Carathéodory, any conformal mapping from $\{|z|<1\}$ to D extends to a homeomorphism of $\{|z| \leq 1\}$ to \bar{D}. We need make no distinction between accessible boundary points of D and the boundary of D. Recall that a curve is said to be smooth if its parameterization $z(t)$ has a continuous non-zero derivative everywhere. Thus at each point of ∂D there is an inner tangent. So T^{*} coincides with the boundary of D. Since the boundary of D is a smooth curve, this implies that
(a) the curve has everywhere a continuously turning tangent (and normal)
(b) the oscillation of $z(t)$ near $z(a)$ must diminish as $t \rightarrow a$.

It is these two properties that (iii) and (iv) of Theorem 1 are characterizing. Clearly, at each point $a \in \partial D$ with $S=\left(0, r_{a}\right)$, properties (i)-(iv) of Theorem 1 hold. (A consideration of the smooth boundary of the unit disk illustrates the need for $h(t)$ in (iv) to tend to zero as t tends to zero.) Hence, Theorem 1 offers a geometric description of the boundary of D near almost every $a \in T^{*}$ that closely resembles the geometric behavior of a smooth curve. In $\S 1.4$ we will display an example that demonstrates how the smoothness property in (iv) restricts certain boundary behavior.

From the proof of this theorem the following results will be immediate:

Corollary 1. For almost every $a \in T^{*}$,

$$
\liminf _{r \rightarrow 0} \frac{L(a, r)}{2 \pi r}=\frac{1}{2}
$$

Corollary 2. For almost every $a \in T^{*}$ and for every $\varepsilon>0$,

$$
\left\{r \in\left(0, r_{a}\right): \frac{L(a, r)}{2 \pi r} \geq \frac{1}{2}+\varepsilon\right\}
$$

has density zero at 0 ; that is, 0 is a point of dispersion of this set $[5, p$. 184].

Using Corollary 2 we will then be able to show a secondary result concerning the area of D near $a \in T^{*}$.

Theorem 2. For almost every $a \in T^{*}$,

$$
\lim _{r \rightarrow 0} \frac{A(a, r)}{\pi r^{2}}=\frac{1}{2}
$$

1.4. We make a few comments and display some examples that highlight the properties of Theorems 1 and 2 and that lead to certain conclusions.

We first compare (i) and (ii) of Theorem 1 to Ostrowski's condition: We say that Ostrowski's condition holds at $a \in T^{*}$ if there exist sequences $\left\{a_{n}^{\prime}\right\}$ and $\left\{a_{n}^{\prime \prime}\right\}$ of accessible boundary points of D tending to $a \in T^{*}$ for which the corresponding sequences of complex coordinates $\left\{w\left(a_{n}^{\prime}\right)\right\},\left\{w\left(a_{n}^{\prime \prime}\right)\right\}$ tending to $w(a)$ satisfy
$\left(\mathrm{i}^{\prime}\right) \arg \left(w\left(a_{n}^{\prime}\right)-w(a)\right) \rightarrow \nu(a)+\pi / 2, \arg \left(w\left(a_{n}^{\prime \prime}\right)-w(a)\right) \rightarrow \nu(a)-$ $\pi / 2$,

$$
\begin{equation*}
\frac{\left|w\left(a_{n+1}^{\prime}\right)-w(a)\right|}{\left|w\left(a_{n}^{\prime}\right)-w(a)\right|} \rightarrow 1, \quad \frac{\left|w\left(a_{n+1}^{\prime \prime}\right)-w(a)\right|}{\left|w\left(a_{n}^{\prime \prime}\right)-w(a)\right|} \rightarrow 1 . \tag{ii'}
\end{equation*}
$$

Let $g(w)$ be a one-to-one conformal map of D onto the open unit disk. Ostrowski's condition is necessary and sufficient for $g(w)$ to be isogonal (or conformal) at a given point [6].

McMillan observes in [4, pp. 68, 73] that at each $a \in A D^{*}, g(w)$ is isogonal and as a consequence Ostrowski's condition holds. This observation is reflected in Theorem 1, parts (i) and (ii). It states that at almost every $a \in A D^{*}$ a condition slightly stronger than Ostrowski's holds. In the following two examples we illustrate how this condition restricts certain boundary behavior.

Example 1. Let $B^{*} \subset T^{*}$ be such that the local behavior of ∂D near $a_{0} \in B^{*}$ is similar to that shown in Figure 1. Let $B=$ $\left\{w\left(a_{0}\right): a_{0} \in B^{*}\right\}$ and for each $a_{0} \in B^{*}$ define $E_{R}(S)=\{w(a): a \in$ $\left.E_{R}^{*}(S)\right\}$. We want to show $\Lambda(B)=0$. Note that Ostrowski's condition holds on B^{*}. In fact any sequence $\left\{a_{n}^{\prime}\right\}$ where a_{n}^{\prime} is on the boundary over the intervals $(1 / 2 k+1,1 / 2 k), k=1,2, \ldots$, satisfies the condition. Thus the mapping is isogonal at these points. In addition, using the results of Rodin and Warschawski [8, p. 5] there is a finite non-zero angular derivative at such points. If we use property (ii) of Theorem 1, then $E_{R}(S)$ is on the boundary near or over the intervals $(1 / 2 k+1,1 / 2 k), k=1,2, \ldots$, and it follows that S is contained in the intervals $(1 / 2 k+1,1 / 2 k), k=1,2, \ldots$, on the

Figure 1

Figure 2
inner normal. Such a restriction violates (i) of Theorem 1 and hence Theorem 1 fails on B^{*}. Thus $\Lambda(B)=0$.

Example 2. Let $B^{*} \subset T^{*}$ be such that the local behavior of ∂D near $a_{0} \in B^{*}$ is similar to that shown in Figure 2. The C_{n} closely approximate circles. Let B and $E_{R}(S)$ be as defined earlier. Again Ostrowski's condition holds and so the mapping is isogonal at these
points. Once again the results of Warchawski and Tsuji [9, p. 366] show that a finite non-zero angular derivative exists at these points. Using property (iv) of Theorem 1 with $h(t)=100 t$ we see that $E_{R}(S)$ must be contained in the $C_{2 k}, k=1,2, \ldots$. Again the density property for S is violated. Hence $\Lambda(B)=0$ by Theorem 1 .

Example 3. So far we have demonstrated in our examples how Theorem 1 restricts certained boundary behavior where a non-zero angular derivative exists. We now construct a nontrivial example of boundary behavior that Theorem 1 does not restrict to sets of linear measure zero. We shall be working on the segment from $(0,0)$ to $(1,0)$ of the x axis which we denote by $[0,1]$. Our domain D will be the half plane $\operatorname{Im} z<0$ and anything we join to it from the construction. On the first step of the construction we remove the middle third of the segment $[0,1]$ and join there a rectangle R_{1} of height $l_{1}=1 / 3$. We set $D_{1}=$ interior $\left(\{\operatorname{Im} z<0\} \cup R_{1}\right)$. At the beginning of the m th stage of the construction we are left with 2^{m-1} segments of $[0,1]$. From the middle of each of these we remove a segment of length $d_{m}=2^{-m+1} 3^{-m}$ and join there a rectangle of height $l_{m}=\left(1+3^{m}\right) 3^{-m} 2^{-m-1}$. Let $R_{m, k}, k=1,2, \ldots, 2^{m-1}$, denote these rectangles and set $D_{m}=$ interior $\left(D_{m-1} \cup\left(\bigcup R_{m, k}\right)\right)$. We let $D=\bigcup D_{m}$ and we make no distinction between the accessible boundary points of D and ∂D. Figure 3 displays stages of the construction near 0 . Note that $\partial D \cap[0,1]$ is a perfect set P such that $P \subset T^{*}$ and the Lebesgue measure of P is $1 / 2$. Let $B \subset P$ be such that each $p \in B$ is a point of density of P. By the Density Theorem [5, p. 187] the Lebesgue measure of B is $1 / 2$ and it follows that $\Lambda(B)=1 / 2$. Using the results of McMillan's twist point theorem, we know a finite non-zero angular derivative exists at each point of B, with the possible exception of a set of linear measure zero. By removing such a set and relabeling B we can assume that the angular derivative exists at each point of B. At each point $p \in B$ the intersection of the circular projections of $B \cap[p, 1]$ and $B \cap[0, p]$ onto the inner normal at p is a set S_{p} at which Theorem 1 holds. We have constructed an example of boundary behavior that Theorem 1 does not restrict to sets of linear measure zero. In this example we also have at almost every point $a \in T^{*}$,

$$
\lim _{r \rightarrow 0} \frac{A(a, r)}{\pi r^{2}}=\frac{1}{2} .
$$

Figure 3
We finally consider Corollary 1 and Theorem 2. In [3] McMillan proved that except for a D-conformal null set of A^{*},

$$
\limsup _{r \rightarrow 0} \frac{A(a, r)}{\pi r^{2}} \geq \frac{1}{2} \quad \text { and } \quad \limsup _{r \rightarrow 0} \frac{L(a, r)}{2 \pi r} \geq \frac{1}{2}
$$

After considering a particular example, he then conjectured [3, p. 739], [4, p. 74] that except for a D-conformal null set of A^{*},

$$
\liminf _{r \rightarrow 0}, \frac{A(a, r)}{\pi r^{2}} \leq \frac{1}{2} \quad \text { and } \quad \liminf _{r \rightarrow 0} \frac{L(a, r)}{2 \pi r} \leq \frac{1}{2}
$$

In this paper we not only confirm this conjecture on T^{*} but also evaluate these quantities.

2. Proof of Theorem 1 and of Theorem 2.

2.1. Let

$$
\begin{array}{r}
F^{*}=\left\{a_{0} \in T^{*}: \text { for any relatively closed set } S \subset\left(0, r_{a_{0}}\right)\right. \\
\text { one of the properties (i)-(iv) fails }\}
\end{array}
$$

and $F=\left\{w\left(a_{0}\right): a_{0} \in F^{*}\right\}$. For any $B^{*} \subset F^{*}$, let $B=\{w(a): a \in$ $\left.B^{*}\right\}$. We must show that $\Lambda(F)=0$.
2.2. Suppose to the contrary that $\Lambda^{*}(F)>0$. Since there exists a bounded subset B of F such that $\Lambda^{*}(B)>0$, we replace F by such a subset and assume without loss of generality that F is bounded.

Let ε_{0} satisfy $0<\varepsilon_{0}<\pi / 10$. Associate with each $a \in F^{*}$ rational numbers $\alpha(a), \beta(a), \gamma(a)$ such that

$$
\begin{aligned}
& \pi / 2-\varepsilon_{0}<\alpha(a)<\pi / 2, \quad|\nu(a)-\beta(a)|<\varepsilon_{0} \quad \text { and } \\
& \Delta(a)=\left\{w(a)+\rho e^{i \nu}: 0<\rho<\gamma(a),|\nu-\beta(a)|<\alpha(a)\right\} \subset D .
\end{aligned}
$$

It follows that there exists a $B^{*} \subset F^{*}$ such that for all $a \in B^{*}$, $\alpha(a)=\alpha_{0}, \beta(a)=\beta_{0}, \gamma(a)=\gamma_{0}$, and $\Lambda^{*}(B)>0$. By replacing F^{*} by B^{*} we can assume without loss of generality that for all $a \in F^{*}$, $\alpha(a)=\alpha_{0}, \beta(a)=\beta_{0}$, and $\gamma(a)=\gamma_{0}$. Again associate with each $a \in F^{*}$ a straight $\ell(a)$ such that
$\ell(a)$ intersects the segment $\left\{w(a)+\rho e^{i \beta_{0}}: 0<\rho<\right.$
$\left.\gamma_{0}\right\}$ at right angles and the Euclidean distance from the origin to $\ell(a)$ is a rational number and one component of $\Delta(a) \backslash \ell(a)$ is triangular.
Since $\{\ell(a)\}$ is a countable set, there exists a $B^{*} \subset F^{*}$ such that for all $a \in B^{*}, \ell(a)=\ell_{0}$ and $\Lambda^{*}(B)>0$. We thus replace F^{*} by B^{*} and assume without loss of generality that for all $a \in F^{*}, \ell(a)=\ell_{0}$.

For each $a \in F^{*}$ we define $\Delta^{\prime}(a)$ to be the triangular component of $\Delta(a) \backslash \ell_{0}$. The set $\bigcup_{a \in F^{*}} \Delta^{\prime}(a)$ has at most countably many components, one of which has the form $G=\bigcup_{a \in B^{*}} \Delta^{\prime}(a)$ where $\Lambda^{*}(B)>0$. Replacing F^{*} by B^{*} we again assume without loss of generality that $G=\bigcup_{a \in F^{*}} \Delta^{\prime}(a)$ is connected. Thus, part of the boundary of G is a closed segment lying on ℓ_{0} and the rest of the boundary is contained in one of the half planes determined by $\mathbf{C} \backslash \ell_{0}$. Without loss of generality we may assume that ℓ_{0} is the x axis, $\ell_{0} \cap \partial G$, is the segment from $(0,0)$ to $(m, 0)$, which we denote by $[0, m]$, and $\partial G \backslash[0, m]$ lies in the upper half plane. Using the construction of G and the fact that, $\frac{\pi}{2}-\alpha_{0}<\varepsilon_{0}<\frac{\pi}{10}$, one is able to define a function $f(x)$ on $[0, m]$ such that

$$
\begin{aligned}
& \partial G=\Gamma \cup[0, m] \quad \text { where } \Gamma=\{(x, f(x)): x \in[0, m]\} \quad \text { and } \\
& \left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right| \leq \frac{1}{3}\left|x^{\prime}-x^{\prime \prime}\right| \quad \text { for all } x^{\prime}, x^{\prime \prime} \in[0, m] .
\end{aligned}
$$

It follows that ∂G is a rectifiable Jordan curve that contains the point set $F \subset \Gamma$ and that $\Lambda^{*}(F)>0$. Let $\varepsilon=\Lambda^{*}(F)$.

We shall make no distinction between ∂G and the set of accessible boundary points of G.

We now construct a subset B^{*} of T^{*} so that
(i) B is a closed, Λ-measurable subset of Γ for which $\Lambda^{*}(B \cap F)$ >0
(ii) $\rho_{0}=\operatorname{dist}(B,[0, m])>0$
(iii) If P is the projection map from $\Gamma \rightarrow[0, m]$ then $\left.f^{\prime}\right|_{P(B)}$ is continuous.
We have the inequalities $\Lambda^{*}(P(X)) \leq \Lambda^{*}(X) \leq 3 \Lambda^{*}(P(X))$ for any subset of Γ. The second inequality is true since f is Lipschitz with character $1 / 3$. Since f is Lipschitz, the subset of $[0, m$] where f is not differentiable has Λ^{*} (and thus Λ) measure zero. Thus, by Lusin's theorem, f^{\prime} is continuous on some closed subset \widehat{B} of $[0, m]$ where $\Lambda^{*}([0, m] \backslash \widehat{B})<\varepsilon / 6$, and we may assume that $\widehat{B} \subset(0, m)$. Let B be such that $P(B)=\widehat{B}$. Then

$$
\begin{aligned}
\Lambda^{*}(B \cap F) & \geq \Lambda^{*}(P(B \cap F)) \\
& =\Lambda^{*}(P(B) \cap P(F))=\Lambda^{*}(\widehat{B} \cap P(F)) \\
& \geq \Lambda^{*}(P(F))-\Lambda^{*}(P(F) \backslash \widehat{B})
\end{aligned}
$$

Now $\Lambda^{*}(P(F)) \geq \varepsilon / 3$ and $\Lambda^{*}(P(F) \backslash \widehat{B}) \leq \Lambda^{*}([0, m] \backslash \widehat{B}) \leq \varepsilon / 6$. Thus,

$$
\Lambda^{*}(B \cap F) \geq \frac{\varepsilon}{3}-\frac{\varepsilon}{6}=\frac{\varepsilon}{6}
$$

A little thought shows that if $w \in \partial D \cap \partial G$ then there is a unique accessible boundary point a of D, with complex coordinate w, which is accessible through G. Using this observation for each $w \in B$ defines a set B^{*} with all the desired properties.
2.3. We have the following information on B^{*} and B :
(i) For each $a \in B^{*}$, define $N(w(a))=\operatorname{Arctan}\left(f^{\prime}(P(w(a)))\right)-\frac{\pi}{2}$. Since $\left.f^{\prime}\right|_{P(B)}$ is continuous, N is continuous on B. Also, $N(w(a))$ satisfies the same inner tangent condition as $\nu(a)$. It follows from the uniqueness of $\nu(a)$ (recall the definition of $\left.T^{*}\right)$ that $N(w(a))=$ $\nu(a)$ and as a consequence $\nu(a)$ is continuous on B^{*}. Thus Property (iii) of Theorem 1 holds at each point a of B^{*}. We now show that Property (ii) of Theorem 1 holds at each point a of B^{*}. In fact, let $a_{0} \in B^{*}$.

Since f^{\prime} is continuous at $P\left(w\left(a_{0}\right)\right)$,

$$
\lim _{\substack{P(w(a))>P\left(w\left(a_{0}\right)\right) \\ a \rightarrow a_{0}, a \in B^{*}}} \arg \left(w(a)-w\left(a_{0}\right)\right)=\arctan f^{\prime}\left(P\left(w\left(a_{0}\right)\right)\right)=\nu\left(a_{0}\right)+\frac{\pi}{2}
$$

Similarly,

$$
\begin{aligned}
& \lim _{\substack{P(w(a))<P\left(w\left(a_{0}\right)\right) \\
a \rightarrow a_{0}, a \in B^{*}}} \arg \left(w(a)-w\left(a_{0}\right)\right) \\
&=\arctan f^{\prime}\left(P\left(w\left(a_{0}\right)\right)\right)-\pi=\nu\left(a_{0}\right)-\frac{\pi}{2}
\end{aligned}
$$

(ii) For each $w \in B, w=w(a)$ with $a \in B^{*}$, and for each $r>0$, define $\alpha_{G}(w, r)$ to be the measure of the largest angle such that

$$
\left\{w+\rho e^{i \nu}: 0<\rho<r,|\nu-\nu(a)|<\alpha_{G}(w, r)\right\} \subset G .
$$

If no such angle exists, set $\alpha_{G}(w, r)=0$. Note that $\alpha_{G}(w, r)$: is analogous to $\alpha(a, r)$ defined in §1.3. From the construction of G, $\alpha_{G}(w, r)$ is positive for all $w \in B$ and $r<\rho_{0}=\operatorname{dist}(B,[0, m])$. Fix $r<\rho_{0}$. After drawing a picture and using the continuity of $\nu(a)$ at a_{0}, one sees that $\alpha_{G}(w, r)$ is uppersemicontinuous at $w_{0}=w\left(a_{0}\right)$; that is,

$$
\lim _{\substack{w \rightarrow w_{0} \\ w \rightarrow w_{0} \in B}} \alpha_{G}(w, r) \leq \alpha_{G}\left(w_{0}, r\right)
$$

We shall show that there exists a closed subset $\widetilde{B} \subset B$ such that $\Lambda^{*}(\widetilde{B} \cap F)>0$ and for $w, w_{0} \in \widetilde{B}$,

$$
\lim _{w \rightarrow w_{0}} \alpha_{G}\left(w, h\left(\left|w-w_{0}\right|\right)\right)=\pi / 2
$$

From the uppersemicontinuity of α_{G}, for each $r<\rho_{0}, \alpha_{G}(w, r)$ is measurable on B. We let $\left\{r_{n}\right\}$ be a sequence of numbers such that $r_{n} \rightarrow 0$ and $r_{n}<\rho_{0}$ for all n. We define $\alpha_{n}(w)=\alpha_{G}\left(w, r_{n}\right)$ on B for each n. The sequence of measurable functions $\left\{\alpha_{n}(w)\right\}$ defined on B converges pointwise to the function $\alpha_{0}(w)=\pi / 2$. By Egoroff's Theorem [5, p. 108] there exists a measurable subset $B_{1} \subset B$ such that $\Lambda^{*}\left(B_{1} \cap F\right)>0$ and such that $\alpha_{n}(w)$ converges uniformly to $\alpha_{0}(w)=$ $\pi / 2$ on B_{1}. Since B_{1} is measurable there exists a closed set $\widetilde{B} \subset B_{1}$, such that $\Lambda\left(B_{1} \backslash \widetilde{B}\right)$ is sufficiently small to ensure $\Lambda^{*}(\widetilde{B} \cap F)>0$. We now let $w, w_{0} \in \widetilde{B}$ and let ε be an arbitrary positive number. Since $\left\{\alpha_{n}(w)\right\}$ converges uniformly on \widetilde{B} to $\pi / 2$, there exists $N>0$ such that $\left|\pi / 2-\alpha_{N}(w)\right|<\varepsilon$ for all $w \in \widetilde{B}$. Let w be sufficiently near w_{0} to ensure that $h\left(\left|w-w_{0}\right|\right)<r_{N}$. Thus, for all $w \in \widetilde{B}$ sufficiently near $w_{0} \in \widetilde{B},\left|\pi / 2-\alpha_{G}\left(w, h\left(\left|w-w_{0}\right|\right)\right)\right| \leq\left|\pi / 2-\alpha_{G}\left(w, r_{N}\right)\right|<\varepsilon$.
(iii) By replacing B with \widetilde{B} one can assume without loss of generality that the properties listed in (i)-(ii) above hold on B^{*} and B and that B is closed. In addition, since

$$
\alpha_{G}\left(w, h\left(\left|w-w_{0}\right|\right)\right) \leq \alpha\left(a, h\left(\left|w(a)-w\left(a_{0}\right)\right|\right)\right) \leq \pi / 2
$$

we have that

$$
\lim _{\substack{a \rightarrow a_{0} \\ a, a_{0} \in B^{*}}} \alpha\left(a, h\left(\left|w(a)-w\left(a_{0}\right)\right|\right)\right)=\pi / 2
$$

and this is property (iv) of Theorem 1.
2.4. Since almost every point of $B \cap F$ is a point of density for $B \cap F$ and $\Lambda^{*}(B \cap F)>0$, there exists a point $w_{0}=w\left(a_{0}\right) \in B \cap F$ that is a point of density of the set. We fix this w_{0} and consider the circular projection of Γ onto the inner normal at w_{0}. (Recall that the tangent to Γ exists at $\left.w_{0}.\right)$ Using the Lipschitz condition from $\S 2.2$ it can be shown [1, pp. 33, 39] that the restriction of the circular projection to that part of Γ to the right of w_{0}, that is, the part of Γ from $w\left(a_{0}\right)$ to $(m, f(m))$, is a one-to-one map and that w_{0} is a point of density of the image of B under such a map. Similarly, the restriction of the circular projection to that part of Γ to the left of w_{0} is one-to-one and w_{0} is a point of density of the image of B under such a map. As was done in Example 3 we define $S_{w_{0}}$ to be those points on the inner normal at w_{0}, whose distance from w_{0} is less than ρ_{0}, that are the intersection of the circular projections of that part of $B \subset \Gamma$ to the right of w_{0} and that part of $B \subset \Gamma$ to the left of w_{0}. Let $S=\left\{\rho: w_{0}+\rho e^{i \nu\left(a_{0}\right)} \in S_{w_{0}}\right\}$. It follows that S is closed relative to $\left(0, \rho_{0}\right)$ and 0 is a point of density of S on $\left(0, \rho_{0}\right)$. Letting $E_{R}(S)=\left\{w(a): a \in E_{R}^{*}(S)\right\}, E_{L}(S)=\left\{w(a): a \in E_{L}^{*}(S)\right\}$, and $E(S)=\left\{w(a): a \in E^{*}(S)\right\}$, and using the one-to-one property of the restricted circular projections, one has that $E_{R}(S)$ is contained in that part of B to the right of $w_{0}, E_{L}(S)$ is contained in that part of B to the left of w_{0}, and $E(S)$ is contained in B. Thus from $\S 2.3$ we have an $a_{0} \in F^{*}$ and an S that satisfies all the properties of Theorem 1. This is a contradiction. Thus F must have linear measure zero and the theorem is proved.
2.5. A result that immediately follows from (ii) of Theorem 1 is that for almost every $a \in T^{*}$,

$$
\lim _{\substack{r \rightarrow 0 \\ r \in S}} \frac{L(a, r)}{2 \pi r}=\frac{1}{2}
$$

From this Corollaries 1 and 2 can easily be established. We are now ready to prove Theorem 2 . We let ε be an arbitrary positive number. Using the defining properties of the set T^{*} it follows that

$$
\begin{equation*}
\liminf _{r \rightarrow 0} \frac{A(a, r)}{\pi r^{2}} \geq \frac{1}{2}-\varepsilon \tag{1}
\end{equation*}
$$

for every $a \in T^{*}$. We set

$$
H=\left\{r \in\left(0, r_{a}\right): \frac{L(a, r)}{2 \pi r}>\frac{1}{2}+\varepsilon\right\}
$$

For almost every $a \in T^{*}, H$ is a measurable set that has density zero at 0 . From §1.3 we have that

$$
\begin{aligned}
A(a, r) & =\int_{0}^{r} L\left(a, r^{\prime}\right) d r^{\prime} \\
& =\int_{H \cap(0, r)} L\left(a, r^{\prime}\right) d r^{\prime}+\int_{C H \cap(0, r)} L\left(a, r^{\prime}\right) d r^{\prime} \\
& \text { where } C H \text { denotes the complement of } H, \\
& \leq(2 \pi r) m(H \cap(0, r))+(1 / 2+\varepsilon)\left(\pi r^{2}\right)
\end{aligned}
$$

Hence
(2) $\limsup _{r \rightarrow 0} \frac{A(a, r)}{\pi r^{2}} \leq 2 \lim _{r \rightarrow 0} \frac{m(H \cap(0, r))}{r}+(1 / 2+\varepsilon)=1 / 2+\varepsilon$.

Using (1) and (2) we have that the limit exists and is $1 / 2$.

References

[1] J. Marafino, Concerning boundary behavior under conformal mappings, Ph.D. Dissertation, University of Wisconsin-Milwaukee, 1984, pp. 33-40.
[2] J. E. McMillan, Boundary behavior of a conformal mapping, Acta Math., 123 (1969), 43-67.
[3] _, On the boundary correspondence under conformal mapping, Duke Math. J., 37 (1970), 725-739.
[4] _, Boundary behavior under conformal mapping, Proceedings of the NRL Conference on Classical Function Theory, Mathematics Research Center, Naval Research Laboratory, Washington, D.C. 1970.
[5] M. E. Monroe, Measure and Integration, 2nd ed., Addison-Wesley Publishing Company, (1971), 184, 187, 108-110.
[6] A. Ostrowski, Zur Randverzerrung bei Konformer Abbildung, Prace Mat. Fisycz., 44 (1936), 371-471.
[7] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht in Göttingen, 1975.
[8] B. Rodin and S. E. Warschawski, Extremal length and univalent functions, Mathematisch Zetschrift, 153 (1977), 1-17.
[9] M. Tsuji, Potential Theory in Modern Function Theory, Maruzan Company, Tokyo, (1959), 64, 318-322.

Received September 11, 1989.
James Madison University
Harrisonburg, VA 22807

