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INJECTIVE HILBERT C*-MODULES

HUAXIN LIN

One difference between Hilbert modules and Hilbert spaces is that
Hilbert modules are not "self-dual" in general. Another difference is
that Hilbert modules are not orthogonally complementary. Let H
be a Hilbert module over a C* -algebra A . We show that if A is
monotone complete then H*, the "dual" of H, can be made into
a self-dual Hilbert ^-module. We also show that if H is full and
countably generated, then H is orthogonally complementary if and
only if every bounded module map in H has an adjoint. It turns out
that these results are closely related to the problem of extensions of
bounded module maps. Let Cx be the category whose objects are
Hilbert .4-modules and morphisms are contractive module maps with
adjoints, and Cι the category whose objects are Hilbert /ί-modules
and morphisms are contractive module maps. We find that injec-
tive modules in the category whose objects are Hilbert ^-modules
and morphisms are contractive module maps. We find that injective
modules in the category CΛ are precisely those that are orthogonally
complementary. We show that Hilbert modules over a monotone com-
plete C*-algebra are injective in Ci if and only if they are self-dual.
We also show that if A is not an AW"" -algebra then A itself is not
injective /4-module in the category CΊ . A few related results are also
included.

1. Introduction and preliminaries. The general theory of Hilbert
modules over a non-commutative C*-algebra has been studied by
many authors (e.g. [10], [12], [13], [16]-[24]). Its applications vary
from the theory of extensions of C*-algebras and ^-theory to non-
commutative topology. One of the main differences between Hilbert
modules and Hilbert spaces is that Hilbert modules are not "self-dual"
in general. Another difference is that Hilbert modules are not orthog-
onally complementary. Let H be a Hilbert module over a C*-algebra
A and H§ the ^-module of all bounded ^4-module maps from H
into A. It is shown by W. Paschke [21] that if A is a W* -algebra
then /f# can be made into a self-dual Hilbert ^4-module containing
H as a closed submodule. It is then natural to ask if it is true for
other C*-algebras. It turns out that this question is closely related to
the following question: Let Ho be a (closed) submodule of H and φ
a bounded module map from HQ into A. Is there a module map φ
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from H into A such that φ\Ho = φ and \\φ\\ = \\φ\\7 We show (in
§3) that both questions have an affirmative answer for monotone com-
plete C*-algebras and a negative answer for those C*-algebras which
are not ^4W*-algebras.

Suppose that H\ and Hi are two Hubert ^4-modules and T is an
invertible bounded module map from H\ onto Hi We find that H\
may not be unitarily equivalent to Hi. (We also show that H\ and Hi
are unitarily equivalent if both H\ and Hi are assumed to be count-
ably generated.) However, if in addition we assume that T has an
adjoint Γ* (from Hi to H\) then H\ is unitarily equivalent to Hχ.
It suggests that we may also consider the category whose objects are
Hubert yί-modules and morphisms are contractive module maps with
adjoints. We find that injective objects in this category are precisely
those Hubert ^-modules which are orthogonally complementary. In
particular, we show that A is injective in the category if and only if
LM(A) = M(A).

Much of this work was done when the author was visiting Mathe-
matics Institute, Copenhagen University. The author is very grateful
to both George A. Elliott and Gert K. Pedersen for their arrange-
ment to make this visit possible. He benefited from helpful con-
versations with Lawrence G. Brown, George A. Elliott and Gert K.
Pedersen, especially, a conversation with Gert K. Pedersen about the
"Kadison-Pedersen arrow". He would like to thank Erik Christensen,
George A. Elliott, Ryszard Nest and Gert K. Pedersen for their hos-
pitality at Copenhagen University.

Recall the definition of a Hubert module over a C*-algebra A

([12]).

DEFINITION 1.1. Let E be a linear space over the complex field
equipped with structure of a right ^4-module. We suppose that λ(xa)
= (ax)a = x(λa), where x e E, a eA and λ is a complex number.
The space E is called a pre-Hilbert ^4-module if there exists an inner
product ( , ):E x E -+ A satisfying the following conditions:

(1) (x9x)>0 and (x,x) = 0 if and only if x = 0
(2) (x9y + z) = {x,y) + {x,z);
(3) (x,ya) = (x9y)a;
(4) {x,y)* = ( y , x ) , w h e r e x,y,zeE9 a e A a n d λ i s a

complex number.
Put ||JC|| = \\{x9 x ) | | 1 / 2 . This is a norm on E. If E is complete,

E is called a Hubert module over A. The closure of the span of
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{(x, y): x, y e E} is called the support of E, denoted (E, E). E is
called full if (E,E)=A.

DEFINITION 1.2. For a Hubert ^-module £ , we let E# denote the
set of bounded ^4-module maps from E into A. For x e E we
denote a module map xΛ in E* by xΛ(y) = (x,]/) for y e E. 2s#

becomes an ^4-module if we define (τ a)(x) = α*τ(x) for τ e E*,
x e E and α e ^ or α e C, and add maps in £'# pointwise. We
call is self-dual if every module map in E# arises by taking ^4-valued
inner products with some fixed x in E. (See [21]).

DEFINITION 1.3. Let A be a C*-algebra. We denote by M(A) the
idealiser of 4̂ in A**, where v4** is the enveloping von Neumann
algebra of A. We also denote by LM(A) the set {x e ^4**:xα e A
for all α e A}, by i?M(^) the set {x e ^**:αx € A for all α G A}
and by βAf (Λ) the set {x e A**: axb eA for all a, be A}.

DEFINITION 1.4. Let E be a Hubert module over a C*-algebra ^ .
We denote by B(E) the set of all bounded module maps from E
into E and by L(E) the set of all bounded module maps T e B(E)
such that there exists T*:E —> E satisfying the condition: (Tx, y) =
(x, Γ*y) for all x j e ί . If x, y £ J?, let θx^y be the module map
defined by θXjy(z) =x(y, z) for z in E. The map θXyy is in L(E).
The closure of the linear span of {θx iy: x, y e E} in L(E) is denoted
by K{E) (see [12]). We also denote by B(E, £#) the set of bounded
module maps from 2s into £'#. With the operator norm, B(E) is a
Banach algebra, L(E) and AΓ(i?) are C*-algebras and B(E, £#) is a
Banach space. (See [12] and [18].)

We would like to state the following theorems that are used often
in this paper

THEOREM 1.5 (Kasparov [12, Theorem 1] and Green [31, Lemma
16].). There is an isometric isomorphism φi and L(E) onto M(K{E)).

THEOREM 1.6 ([18,1.4]). There is an isometric isomorphism φι from
Banach algebra B(E) onto LM(K(E)) which is an extension of φ\.

THEOREM 1.7 ([18, 1.5]). There is an isometric isomorphism φτ>
from Banach space B(E, E#) onto QM(K{E)) which is an extension
ofφi

DEFINITION 1.8. Let E be a Hubert ^-module and Ex be the ex-
tension of E by A** constructed in [21, 4], We denote by E~ the
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self-dual Hilbert ^4**-module Ef (see [21, 4]. Every bounded mod-
ule map in B(E, E#) can be uniquely extended to a bounded module
map in B(E~). (This easily follows from the construction of E~ and
[21, 3.6]. See also [18, 1.3].) If E is self-dual, then B{E) = L{E).
(See [21, 3.5].) Thus M(K(E)) = LM(K(E)) = QM(K{E)). If in
addition, A is a W*-algebra, B(E) is also a W*-algebra. In partic-
ular, B(E~) is a W*-algebra. Since all maps in B(E, is#) can be
uniquely extended to maps in B(E~), B(E~) is a W* -algebra con-
taining K(E), M(K(E))y LM(K(E)) and QM(K(E)).

REMARK 1.9. Finally, throughout this paper, (a) AT always denotes
the C*-algebra of all compact operators on a infinite dimensional,
separable Hilbert space; (b) if p is an open projection in A** for
some C*-algebra A, Her(/>) denotes the hereditary C*-algebra cor-
responding to p (c) p denotes the smallest closed projection in A**
majorizing p.

2. Hilbert modules with orthogonal complements.

DEFINITION 2.1. Let Hγ and H2 be two Hilbert modules over a
C*-algebra A. We denote by B(H\, #2) the set of all bounded mod-
ule maps from H\ into H2. We say that H\ and Hi are unitarily
equivalent or H\ is /f-isomorphic to Hi and write i/i = Hi if there
is a unitary module map U which maps Hi onto #2 so that

(JC, y) = (C/JC, £/y) for all JC, J; G # l β

It is natural to ask whether H\ is unitarily equivalent to Hi if there
is an invertible map T e B{H\, Hi).

THEOREM 2.2 (cf. [6, 3.2]). Let Hx and H2 be two countably gen-
erated Hilbert modules over a C*-algebra A. Suppose that there is T
in B(H\, Hi) which is one-to-one and has dense range. Then H\ and
Hi are unitarily equivalent

Proof. By [20, 1.5], both K{H{) and K(H2) are σ-unital. Suppose
that K and L are strictly positive elements in K{H\) and K{Hι),
respectively. Set H = HX®H2. We define T,K,L in B(H) as
follows: T{hλ ®h2) = 0θ Thλ, K(hx Θh2) = Khx®0, L{hx Θh2) =
0 Θ L h 2 , where h{eHu h2eH2. Clearly, K,Le K(H). Then by
1.6, S = LTK e K(H). Let S = U\S\ be the polar decomposition
(in B(H~)). We note that S is one-to-one implies that \S\ is one-to-
one, which implies that |5Ί is strictly positive in K(H\). Thus
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is dense in H\. Therefore UH\ = H2 and (x,y) = (Ux, Uy) if
x, y €Hχ. This completes the proof.

EXAMPLE 2.3. Now we present a C*-algebra 4̂ and a Hilbert 4̂-
module is such that there is an invertible map φ G B(E, A), but
£ is not unitarily equivalent to ^4. The example is borrowed from
L. G. Brown [6, 6.1 ]. Let π: B(H) -> B(H)/K(H) = Q be the quotient
map, where if is an infinite dimensional and separable Hilbert space.
Let ΰ c β be C*-subalgebras such that B C = 0 and does not
contain 5 G β with Bs = (1 - s)C = 0 (see [6, 6.1] and [9]). Let
A = {[au]eB(H)®M2:π(an)eB, π(a22) e C, α 1 2 , α2i e K(H)}.
T = [ίy] is a quasi-multiplier of 4̂ if and only if Aπ(tu)A c Λl,
Bπ{t2i)B c 5 and Aπ(ti2)B = Bπ(t2ϊ)A = 0. In particular, any
scalar matrix is a quasi-multiplier. Set T = [* j],where β is a small
positive scalar. So Γ is an invertible positive quasimultiplier. L. G.
Brown [6, 6.1] showed that T £ Span(i?ΛΓ(^), LM(A)).

Now set E = {Tχl2a: aeA}. Then E is a right ^-module. We de-
fine {Tχl2a, Tχl2b) = a*Tb. Then E becomes a Hilbert ^-module.
There is an one-to-one and bounded module map φ from A onto
E defined by φ{a) = Tιl2a. However, A and H are not unitarily
equivalent. In fact, if there is a unitary module map U from H onto
A, then U(Tχl2ea) converges left strictly to an element s in LM(A),
where {ea} is an approximate identity for A. Then

αVίft = {U{Tι'2ά), U{Tι'2b)) = α*77>

for all a, be A. Therefore T = S*S. This contradicts the fact that
T $ Span(i?Af (A), LM(A)).

LEMMA 2.4. Lei i / f t ^ /Ή/fert m^wfe and T e L(H). If T has
a closed range, then

H = KerT®\T\H.

In particular T has a polar decomposition T= V\T\ in L(H).

Proof. Let T =V\T\ be the polar decomposition in B(H~). Since
TH is closed and V is a partial isometry, \T\H is closed. Notice
that \T\eL(H). Clearly, since \T\H is closed,

\T\H = \T\ι'2\T\ιl2H c ITf/2// c |Γ|/ί.

So \T\χl2H = |Γ|7f. Set B = {S e L(H):S\T\H c |Γ|/ί}. So
I7Ί1/2 € 5 . It is obvious that \T\ιl2 is also one-to-one on \T\H.
Therefore \T\1/2 is invertible in B. Hence either 0 g SpdΓ]1/2) or
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zero is an isolated point in Sp(\T\1/2). Let p be the range projection
of \T\ in L(H)**. Then \T\ιln -> p in norm. So p e L(H). Clearly
pH = \T\H and (1 - / ? ) # = Ker T, whence V is a bounded module
map in

DEFINITION 2.5. Let H\ and i/2 be two Hubert modules and T e
B(Hχ, i/2) Define Tλ in £ ( # ! Θi/ 2) by

Λ2) = 0 θ ΓΛi for hλ e Hx and Λ2 e H2.

We denote by L{HX, ^ 2 ) the set of those Γ E 5 ( ^ i , H2) such that

PROPOSITION 2.6. Lei i/i αnJ Hi be two Hilbert modules. If there
is an invertible map T e L(Hχ, H2) then Hι=H2.

Proof. It is an immediate consequence of 2.4. In fact, the partial
isometry V in the polar decomposition of T lies in L{H\, H2).

PROPOSITION 2.7. Let H\ and H2 be Wo Hilbert modules such that
L(Hχ) = B(Hχ). If there is an invertible map T e B(Hχ, H2) then
H\=H2.

Proof We notice that the adjoint Γ* of T always exists, but Γ*
maps H2 into Hf. Therefore T*T e B(Hχ,Hf). Since L(HX) =
B(HX), by 1.5 and 1.6, M(K(HX)) = LM(K{HX)). It follows from
[6, 41.8] that QM{K{HX)) = M{K(HX)). Thus, by 1.7, B{HX, 7/f) =
L(HX) . S o Γ Γ G L(//0, whence |Γ | e L(HX). Then the argument
in 2.4 applies.

DEFINITION 2.8. Let H be a Hilbert module. We say H is orthog-
onally complementary if any Hilbert module H\ containing H has
an orthogonal decomposition:

Clearly, not all Hilbert modules are orthogonally complementary. It is
shown in [10] that if A is unital, then any orthogonal direct summand
of An , the direct sum of n copies of A, is orthogonally complemen-
tary.

It is certainly desirable to know which Hilbert modules are orthog-
onally complementary.
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THEOREM 2.9. Let E be a full Hilbert module over a C* -algebra
A such that L(E) = B(E). Then E is orthogonally complementary.
Moreover, if Er is another Hilbert A-module such that there is an
invertible map T e B{E, E1), then E' is also orthogonally comple-
mentary.

Proof. By 2.7, we need only to show the first part of the theorem.
Suppose that H is a Hilbert ,4-module and E c H. Let P be the

bounded module map from H into E* defined by

Px(y) = (x, y) for x e H, y e E.

Fix x G H and y e E, define

T{z)=y[Px{z)\=y(x9z)

for z eE. Working in B(E~) if necessary, we see that

T*(z) = Px(y, z) for zeE.

Since T e B{E) = L(E), Γ* e L(E). Therefore Px(y, y) e E for
all y e E. Let x = u(x, x)ιl2 be the polar decomposition of x in
H~ . (See [19, 3.11].) Then, for z e E,

With | |z| | < 1, we have

\\{px9 z)-(px{y,y), z)

<\\(l-<y,y))(χ,χ)ι/2\\.

Since E is full and Px{y, y) e E for all y e £", we conclude from the
above inequalities that Px e E for all x e H. Therefore P e ̂ ( ^ )
and H = (I -p)H® E. This completes the proof.

EXAMPLE 2.10. The assumption that E is full in 2.6 cannot be
removed. Let H be an infinite dimensional Hilbert space. Then
K(H) is a Hilbert /?(i/)-module, where (x, y) = x*y for all X J G
# ( # ) . Then L(K(H)) = B{K{H)). However, it is clear that K(H)
is not an orthogonal direct summand of B(H). If we regard K(H)
as K(H)-module, then K(H) is an orthogonal direct summand of
any Hilbert K(H)-mod\ήe containing it. The point is that if E is a
Hilbert ^4-module and {E, E) = I, an ideal of A, we should regard
E as an /-module.

One may compare the following corollary to Proposition 1 in [10].
The condition LM(A) = M(A) is actually necessary (see 2.15).
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COROLLARY 2.11. Let A be a C*-algebra such that LM{A) =
M(A). Then orthogonal direct summands of An are orthogonally com-
plementary, where n is a positive integer.

Proof. By 2.9, A is an orthogonally complementary Hubert A-
module. Consequently, An is orthogonally complementary. Now we
suppose that E is an orthogonal direct summand of An, for some
positive integer, and H is a Hubert ^4-module such that E c H. We
have An = E Θ Ex. So H θ Ex D An . Therefore

x=E2®E®Eι and H = E2®E.

This completes the proof.

DEFINITION 2.12. Let Ho be a (closed) submodule of a Hubert
module H over a C*-algebra A, and H\ is another Hubert A-
module. Suppose that there is a bounded module map T\ HQ —• H\.
Does there exist a module map T:H —> H\ such that T\HQ = !Γ and
||f|| = | |Γ | |? Fix a C*-algebra A. We denote by Q the category
whose objects are Hubert ^-modules and morphisms are contractive
module maps with adjoints (i.e. those module maps with norms no
more than 1 in L{H\, H2), for some Hubert ^-modules H\ and
Hi). Theorem 2.14 shows that the injective Hubert modules in C\
are precisely those Hubert modules with orthogonal complements.

LEMMA 2.13. Let H be a Hubert module over a C*-algebra A and
HQ a closed submodule of H. Suppose that T e K(H0) then there
is T e K(H) such that \\f\\ = | |Γ| | and f\Ho = T. Consequently,
K(HQ) may be regarded as a hereditary C*-subalgebra of K(H).

Proof Let xt, yι e Ho, i = 1, 2 , . . . , « . Clearly X)"=1 θXi9yt ex-

tends to a map in K(H). We first show that

n

Σ«w.
i = l H

=

n

Σflw/
J=l

Suppose that = 1. Then

f n \ ί n >

z—i χ i ^ i I \ JL^ yi>xi
= 1.
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For any ε > 0, there is ζ e H with \\ξ\\ = 1 such that

> l-ε.

139

w=l

But \\(ΣUΘy..χ,)(t)\\ ϊ ι a n d (ΣUΘyιyX)(ζ)eH0. So

n

1=1
# 0

=

n

1=1

N o w w e a s s u m e t h a t T e K ( H 0 ) . T h e n t h e r e a r e { x ^ } , {y\ } C # 0
s u c h t h a t

(m) (m) — T —• 0 .
ί ' - ^ i

By the first part of the proof, ]ζz θχ(m) M is also norm convergent as

elements in K(H). Let f be the limit. So f e K{H) and ||f|| =
| |Γ | | . Moreover, it is easy to see that T\HQ = T. Set

B = {SeK(H):SHocHo}.

Clearly B is a hereditary C*-subalgebra of K{H). We have just
proved that B = K(H0).

THEOREM 2.14. A Hubert A-module H is injective in the category
C\ if and only if H is orthogonally complementary.

Proof. We first assume that H is orthogonally complementary. Let
Ho be a closed submodule of a Hubert ^4-module Hi and T a
bounded module map in L(HQ , H). Set H2 = Ho Θ H and define

Tλ(h0 ®h) = 0® T(h0) +λh for /z0 e Ho, h e H,

where 0 < λ < 1. Clearly Tλ e L(H2) and

IIΓ.HdlΓf + A2)1/2.

Moreover, Tλ is surjective. It follows from 2.4 that

H2 = YLεrTλ®\Tλ\H2.

Furthermore, Tλ is one-to-one on \Tλ\H2 and maps \Tλ\H2 onto 0 θ
H. By 2.5, \Tλ\H2 = H. So \Tλ\H2 is orthogonally complementary.
Set Hi — H\ 0 H then

H$ D -ί/2 D \Tχ\H2.
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Therefore, we may write

H3=H4®\Tλ\H2

for some closed submodule H4. We define Tχ in L(H3) by

fλ(h4 Θ A) = Tλh for h4 € H4 and h e \ Tλ\H2.

Clearly fλ\H=Tλ and ||fA|| = ||ΓA||. By 1.5, we have TλeM(K(H3)).
It follows from 2.13 that K{H2) is a hereditary C*-subalgebra of
K(H3). Let p be the open projection in K(H3)** corresponding to
K(H2). If Λ € /f2

x = {h € i/3: (A, x) = 0 for x € #2} , then fA/ι = 0.
Therefore 7^(1 -p ) = 0. For any k e

since fA € M(K(H3)), fcfA € ΛΓ(Λ"3). Thus

for all k € AΓ(/f3). Therefore fλ{\ -p) = 0.
For any K e K{H2), heH2, KheH2 and

Therefore

for any K € K{H2). Thus

\\(fλ- fλ.)p\\ <\λ-λ'\

Since fA(l -p) = 0, we obtain that

Set T = limλ_o ft. So f € L(/Γ3) and ||f|| = lim^o ||ίill = ||2Ί|.
Since fλ\Ho = T (if we identify H with 0 φ H). We conclude that

f\Ho = T and \\f\Hι\\ = \\T\\. This shows that H is injective in the
category C\.

For the converse, we assume that H is injective in the category
C\. Suppose that E is a Hubert ^4-module containing H as a closed
submodule. Let ϊ.H —• H be the identity map. Since H is injective
in C\ there is 1 € L(E, H) such that ~i\H = i and ||;|| = ||/||. It is then
easily checked that (i)*(i) is a projection in L(E) and (I)*(I)\H = i
This implies that H is an orthogonal direct summand of E. This
completes the proof.
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THEOREM 2.15. Let A be a σ-unital C*-algebra. Then the following
are equivalent

(1) LM(A) = M(A)\
(2) A is orthogonally complementary as a Hubert A-module\
(3) A is injective as a Hubert A-module in the category C\
(4) For any closed right ideal R of A and T e L(R, A) there is

T G M(A) such that f\R = T and \\f\\ = \\T\\.

Proof (1) =» (2) follows from 2.9. (2) <* (3) follows from 2.14
and (3) => (4) is trivial.

It remains to show that (4) implies (1). Suppose that S e RM(A)
and set

R = {reA:sreA}.

Then R is a closed right ideal of A. Let p be the open projection
corresponding to R.

Case (I): p = 1. For r e R define

Tr = Sr.

Since S e RM(A), S* e LM{A). So T e L(R,A). Therefore
there is f e M(A) such that T\R = Γ and ||Γ|| = | |Γ| |. For any
k G Her(p) and aeA,

k[(fy - S*]a = [(ffc*)* - kS*]a

= [(Tk*)* - kS*]a = [(Sk*)* - fcS*]* = 0.

T h e r e f o r e , f o r a n y aeA

\\p[(T)* - ST]a\\ = 0

since p is dense and [ ( f )* - 5*]α G ̂ , ( ( f )* - S*)a = 0 . So ( f )* =

5 * , whence S G

(II): pφ\ So S £ M(A). Let q = 1 - p and B = Her(#).
Then, for any b e B, b Φ 0, 56 ̂  ^4. It is obvious that for any
beB, b*S*Sb e B**. If B is of finite dimension, then B** = B. So
Z?*S*S6 eB cA. Since 56 G βJI/(Λ), by [5, 2.63], Sb e M(A) for
all b e B. But then Sb e A for all b e B. So we now assume that
5 is of infinite dimension. Take a sequence {bn}™=0 C 2?+ such that
606π = &„ ̂ έ 0 for n = 1, 2, . . . and bnbm = 0 if n Φ m. Let {en}
be an approximate identity for A satisfying

enem = emen = en if m > n.
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Since bnS* & A for all n, by passing to a subsequence and changing
notations, we may assume that

for all n. Set

Cn = bnS*{e2n - e2n__x)l\\bnS*{e2n - eln^)\\,

n = 1, 2, . . . . It is routine to check that {|| Σ Λ = I CΛ) is bounded.
It is then easy to check that Σ Λ = I

 Cn c o n v e r g e s strictly to an element
c G LM(A)9 as k —• oo. Since ||c«|| = 1 for each #, c £ ^4. Let
2?i be the closure of \J™=ι(bnAbn). Then 2?! is a hereditary C -
subalgebra of A. Let p\ be the open projection corresponding to B\
and l?i = pA** Π ̂ 4. For any b e B\ and ε > 0, there is n and k
such that

< ε.

Since Σ ^ i ί ^ ί ) 1 ^ = Σ?=i(^i) 1 ^Σ?=i c /> w e conclude that be e A
for all b e Bx. Hence c*r G ̂ ί for all r e i?i. So c* G L(i?i, ^ ) ,
since c G LM(A). Let P2 = Pi + (1 —Pi) and R2 = p2A**nA. Define
L in L(i? 2, A) by

Lr = c*r for r G i?2

By (4), there is Z G M{A) such that L\Ri = L and ||L|| = | |L | | .
Since p2 = 1, an argument used in Case (I) shows that c G M(A).
However, we know that b$c = c & A. We reach a contradiction for
Case (II). This completes the proof.

REMARK 2.16. It should be noted that for the implications (1) =>
(2) o (3) =» (4) we do not need to assume that A is σ-unital.

EXAMPLES 2.17. (a) Every unital C*-algebra satisfies the conditions

(b) Every commutative C*-algebra satisfies the conditions (l)-(4).
(c) Let B be a C*-algebra such that LM(B) = M(B) and c0 be

the C*-algebra of sequences of complex numbers which converge to
zero. Then c0 ® B satisfies the conditions (l)-(4).

(d) Let B be a unital C*-algebra and X a locally compact Haus-
dorff space. Then C0{X) ® B satisfies the conditions (l)-(4).

(e) We will show in 3.21 that every ideal of a monotone complete
C*-algebra satisfies the conditions (l)-(4).

(f) We will see that if LM(B) = M(B), then A = Mn(B), the
C*-algebra of n x n matrices over B, satisfies the conditions (l)-(4).
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(g) The only stable C*-algebra ( C*-algebras with the form B ®K)
satisfying the conditions (l)-(4) are those dual C*-algebras.

(h) The only σ-unital simple C*-algebra satisfying the conditions
(l)-(4) are those elementary ones (and unital ones). (See [14].)

EXAMPLE 2.18. Let A be a σ-unital C*-algebra such that LM{A) φ
M{A). From 2.15 we know that there is a Hubert ^4-module H D A
such that A is not an orthogonal direct summand of H. However,
the proof of the implication (2) => (1) in 2.15 depends on 2.14 and
the implication (4) => (1). It does not tell us how to construct such
a Hubert yl-module H. The following is an example how one may
construct such H. Take A = c ® K, the C*-algebra of norm conver-
gent sequences in K. An element x in A** may be identified with
a bounded collection {xn: 1 < n < oo, xn G B(l2)}. Let S be in
A** given by Sn = θe^ , 0 < n < oo and SΌo = 0, where {en} is
an orthonormal basis for I2. One can check that s £ RM(A). Let
x be the element in A with xn = θe ,e fo r 1 < n < oo. Notice
t h a t S * S n = θei9ex f o r 0 < n < oo a n d ̂ ^ = 0 . If α,b e A
such that αS*Sb e ^4. Then αnθe^ebn —> 0 in norm as w —• oo. So
αS*Sb = αxδ. Now set E = {α + Sb:α, b e A} and define

{α + sb,α' + sbι) = α*α' + α*sbf + b*sα' + b*xb'

for α, b, αf, b' eA. Itis now clear that with this inner product E is
a pre-Hilbert ^4-module containing A. Let H be the completion of
E. Clearly, ,4 is not an orthogonal direct summand of H.

THEOREM 2.19. Let H be α countαbly generated Hilbert A-module.
If H is orthogonally complementary or equivalently\ H is injective in
the category Cx, then L{H) = B{H).

Proof. It follows from [20, 1.5] that k{H) is σ-unital. By 1.5, 1.6
and 2.15, it suffices to show that K(H) satisfies the condition (4) in
2.15. Let R be a closed right ideal of K(H) and TeL(R, K{H)).
Let p be the open projection in K(H)** corresponding to R and
B = Her(p). Set

H00 = {bh:beB, heH}.

Let Ho be the closure of Hoo . It follows from 2.13 that B = K(H0).
For any x e Ho define

T{x) = Um (TΘX9X)(x)[(x, x) + I ] - 1 -

Exactly as in [18], one shows that T defines a module map
from HQ into i/ with the same norm. Since T € L(R, K(H)),
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Γ* G LM{K(H)) (by 1.6). By 1.6, this implies T e L{H0,H).
Since H is injective in the category C\, there is T e £ ( # ) such
that T\H0 = Γ and ||f|| = | |Γ | | . By 1.6, f e M(K(H)). Clearly,
since T\\ = T, for any K e K(H), TK = TK. So K(H) does
satisfy the condition (4). This completes the proof.

REMARK 2.20. One may notice that the converse of 2.19 is true if
H is full, without the assumption that H is countably generated.

COROLLARY 2.21. Let B be a σ-unital C*-algebra with the property
that LM{B) = M(B) and A = Mn(B), the C*-algebra of n x n
matrices over B. Then LM(A) = M(A).

Proof. Let H = Bn, then 2.21 follows immediately from 2.19.

3. Extensions of bounded module maps. Let H be a Hubert module
over a C*-algebra A. In general, the ^4-module H* is not equal to
H, (see 1.2). In [21], W. Paschke shows that if A is a W*-algebra, the
^4-valued inner product ( , •) extends to H# x H# in such a way as to
make H# into a self-dual Hubert ^-module. It is certainly desirable
to know if it is also true for other C*-algebras. It turns out that the
problem is closely related to the following extension problem: Let Ho

be a (closed) submodule of a Hubert ^4-module H and φ a bounded
module map from HQ into A. Does there exist a module map φ
from H into A such that φ\π = φ and \\φ\\ = \\φ\\ ?

DEFINITON 3.1. Let A be a C*-algebra. We denote by C2 the cat-
egory whose objects are Hubert ^4-modules and morphisms are con-
tractive module maps. The extension problem mentioned above is
equivalent to ask if A is injective in the category C2. We say a
Hubert ^4-module H is C2-injective if it is injective in the category
C2. In particular, if A is C2-injective as an ^4-module, we say A is
a C2-injective C*-algebra.

PROPOSITION 3.2. Closed ideals and unital hereditary C*-subalgebras
of a C2-injective C*-algebra are C2-injective.

Proof. Let A be a C2-injective C*-algebra and B a hereditary
C*-subalgebra of A. Suppose that H is a Hubert 2?-module, HQ a
(closed) 5-submodule of H and φ a bounded 2?-module map from
HQ into B. Consider the algebraic tensor product H <g> A, which
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becomes a right ^4-module when we set (x ® b) a = x ® 6α for
x eH, aeA and 6 e ^ϊ. Define [ , •]: i/ ® ̂ ί x H ® ΛF-+ 4̂ by

m

= 1 1=1

Let N = {z e H®A:[z, z] = 0}. By [21, 5.1], Eo = H®A/N is
a pre-Hilbert yl-module and // (by identifying with H x 1 + N) is
a closed 2?-submodule of Eo. Denote by E the completion of £Ό
So E is a Hilbert ^4-module. Let E\ be the closed ^4-submodule of
E generated by Ho. It is clear that φ extends an ^-module map
ψx from E\ into A. For any x G £Ί , we may write Λ: = ya where
ye Ho (=HO®1+N). Notice that

φ{yTφ{y)<\\φ\\2(y,y) see [21, 2.8 (ii)].

We have

So ll^i || = ll^ll. Since 4̂ is C2-injective, there is <j>\ € E* such that
Il9»ill = l l ί» i l l a n d φ x \ E χ = ψ \ .

For any Λ: € H , let x = u{x, x)χl2 be the polar decomposition of
x in H~. Then z = u(x, x ) 1 / 4 € i / . We have

If 5 is an ideal, #I(Z)<JC, JC)1/4 e 5 , since <x,x)1 / 4 e 5 . Thus
^ i|^ is a 2?-module map from / / into B such that 0i |# = φ and

If .S is a unital hereditary C*-subalgebra of A 9 set ψ = eφ\, where
is the unit of B. Then for x e H

ψ(x) = eφι(z)(x,x)ι'4eB.

Clearly eφ = φ. So ψ extends φ and \\ψ\\ = | |^ | | . This completes
the proof.

THEOREM 3.3. Every self dual Hilbert module over a C2'injective
C*-algebra is Ci-injective.

Proof. Let H be a self-dual Hilbert module over a C2-injective C*-
algebra ^4. Suppose that H\ is a Hilbert ^4-module, Ho a (closed)



146 HUAXIN LIN

submodule of Hx and T a bounded module map from Ho into H.
For fixed x e H, define φx e Hfi by

φx{h) = {x,Th) for heH0.

Since 4̂ is C2-injective, there is φx € JF/f with | | ^ | | = H^H such
that φx(h) = φx{h) for all heH0. Define a map f: Hx -> H* (= H)
by

fA(x) = [φx(h)Y forxeH, heHx.

Clearly f is a module map, fh = Th if he Ho and

for x e H and heHx. So | | f || = | |Γ | | . This completes the proof.

REMARK 3.4. It should be noted that if A is not C2-injective then
any Hilbert ^4-module containing A as a, submodule is not C2-injec-
tive. Proposition 3.11 gives a partial converse of 3.3.

LEMMA 3.5. Let H and E be two Hilbert modules over a C*-
algebra A, and T a bounded module map from H into E. If there
is a bounded module extension T of T from H# into E*, then T is
unique.

Proof. Suppose that L is a bounded module map from H# into
E* such that L\H = T. Set F = H Θ E and define fx and Lx in
B(F#) by

fx(h@e) = 0θfΛ and

Lχ{h Θ e) = 0 θ Lh for h e H* and e e E#.

By [21, 4], F~ = M(F, A**), where M(F, A**) is the set of all
bounded ^4-module maps from F into A**. It is then clear F # C F~ .
Let FQ be the closed Hilbert ,4**-submodule (of F) generated by
F#. So both fx and Lx can be extended to maps in B(F0). Since
F is self-dual fΓ*-module, by 3.4, F~ is C2-injective ^4**-module.
Therefore both fx and Lx can be further extended to module maps
in B(F~). However, by 1.8, Tx\p has only one extension in B(F~).
This implies that Tx \F = Lx \p . So Γ is unique.

DEFINITION 3.6. Let A be a monotone complete C*-algebra. Then
4̂ is always unital. If {xχ} is a bounded, monotone increasing net in

As.a. 9 then it has a least upper bound x in ASM. We write x^ / x
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to describe this relation. For any net {xχ} in A, R. V. Kadison and
G. K. Pedersen in [11] write Xχ —> x if there are four increasing nets
{x{k)} in ASM. , £ = 0 , 1 , 2 , 3 , such that (with / = . / (-I ) )

3 3

fc=0 k=0

This Kadison-Pedersen arrow "—• " plays an important role in the
following lemma.

LEMMA 3.7. Let H be a Hilbert module over a monotone complete
C*-algebra A. Then the A-valued inner product ( , •) extends to H*x
H# in such a way as to make H* into a self-dual Hilbert A-moduley

(T, X) = τ(x) and

x)||:||x|| = l ? x e H}

for τ e H# and x e H.

Proof. Let φ e i / # . Set Hx = H ®A and define φχ:Hx-± Hx by

ψ\{h@a) = 0® ψ\{h) fovheH and aeA.

So HPII = IMI and φx e B{HX). By 1.6, φx e LM{K{HX)). Let
{Uχ} be an approximate identity for k(Hx), e = 0 θ 1 and p = θe>e .
Then φxUχ G K(HX) and pφxUχ = ^iL^ for each A. Thus, there is
ΛT t G K(HX) such that ^iC4 = /λK ,̂ whence φxUλ = θe κ*e for each
λ. Therefore φxUλ{φxUλγ epK{Hx)p (= A) and ^it/l(^iC/Λ)* is a
bounded increasing net in pK(Hx)p. We identify pK{Hx)p with 4̂
and denote by {φ9 φ) the least upper bound of (p\Uχ{φxUλy in ^4.
If τ G if#, then

i 3

UXT = 7 ^ ^(^i 17A - ikφχUλ)(τxUλ - ikφxUλ)\
k=0

Therefore (^it^)(τiϊ7^)* —> (9?5 τ) for some (^, τ) in A with the
Kadison-Pedersen arrow. Notice that if φ G H#, αG^4 ? (p fl)(z) =
α*^(z) and if τ , ψ e H#,

{ψιUλ)[{τx + ψx)Uλγ = (φxUλ)(τxUλy + {φxUλ){ΨxUλ)\

By [11, 2.1], we have

(p α, τβ) = a%φ, τ)β and

ψ) = {<P, τ) + {<P, Ψ)
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where a,βeA,φ,τ,ψeH*. Since

we also have (φ, τ)* = (τ, φ). Moreover, (φ, φ) > 0 and (^, #?) = 0
if and only if φ = 0. Thus we have defined an ^4-valued inner product
on H* such that H# becomes a pre-Hilbert ^4-module. If x, y e
//, the (x Λ )! = 0e>JC and {y*)λ = θe,r So [(xA)ιUλ][(yAhUλY =
θe,(u2x,y)e B>" identifying pK(Hχ)p with Λ, we have

so [(xA)iC/A][(yA)iC/A]* converges to (x,y) in norm. It follows from
[11? Lemma 2.2] that [(xΛ)i C/A][(yΛ)i C^]* -> (x, y) with the Kadison-
Pedersen arrow.

If τ G H # , x eH, then we have

by identifying pK{Hχ)p with ΛL So (τ, x) = τ(x). Since ψ\Uλ(φ\Uλ)*
^ ll^ill2/?? IK^? ^)ll ^ IWI2 By Cauchy-Schwarz inequality for A-
valued inner products, we conclude that

| | ( τ ,τ) | | 1 / 2 = sup{| |τ(x)| | :W = l , xeH}.

Since every self-dual pre-Hilbert module is complete (see [21, 3]), it
remains to show that H* with newly defined inner product is self-
dual. Suppose that ψ is a bounded module map from H* into A.
Therefore there is φ e H# such that ψ{x) = φ{x) for all x e H. By
3.5, φ = ψ. This completes the proof.

THEOREM 3.8. Lei A be a monotone complete C*-algebra. Suppose
that H is a Hilbert A-module, Ho a (closed) submodule of H and φ
a bounded module map from HQ into A. Then there is a module map
φ:H-+A such that \\φ\\ = | |p | | and φ{h) = φ(y) for all heH0.

Proof. By Lemma 3.8 for any τ € H§ define

φ'(τ) = {φ,τ).

By Lemma 3.7, φf is a module map from HQ into A and \\φ'\\ = \\φ\\.
Let P be the module map from H into Hβ defined by

Px(h) = (x,h) ΐorxeH, heH0.

Set φ = φ' o P. It is easy to verify that \\φ\\ = ||0>'|| = \\φ\\ and φ
extends φ as desired.
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COROLLARY 3.9. Every closed ideal of a monotone complete C*
algebra is Ci-injective.

PROPOSITION 3.10. Let H be a Hubert module over a monotone
C*-algebra A. Then H is C^-injective if and only if H is self dual.

Proof. By 3.3 and 3.9 we only need to show the "only i f part. Let
if be a C2-injective Hubert ^4-module. It follows from 3.7 that H
is a submodule of H#. Let ϊ.H —> H be the identity map. Then
there is ft\H* -+ H such that | | i# | | = 1 and ft{h) = h for h e H.
Let / be the identity map from 77# into itself. Then ft - i\H = 0.
It follows from Lemma 3.5 that ft = 7. But this is impossible, since
ft(H*) c H, unless H = H*. This completes the proof.

DEFINITION 3.11. Let A be a C*-algebra. We denote by C3 the
category whose objects are closed right ideals and morphisms are con-
tractive ^4-module maps. We say that A is C3-injective if it is injec-
tive in the category C3, i.e. for any closed right ideal R of A and
φ eR#, there is φ e LM(A) such that φ(r) = φ{r) for all r eR and

Clearly, every C2-injective C*-algebra is C3-injective.

DEFINITION 3.12. Let A be a C*-algebra, p an open projection in
A**. Let Rp = An pA** then R is a closed right ideal of A. So
Rp is a Hubert ^4-module. Let S e R* and {ea} be an approximate
identity for Her(p). Then for any r eR,

Suppose that S\ is a weak limit of {S(ea)} in A**. Then

for all reRp.

We see that S\ is uniquely determined. We denote by LM(RP, ,4)
the set of elements S in A**p such that SV e A. It can be shown (as in
[25, 3.2.3]) that there is a linear isometry from R* onto LM(RP, A).
We will identify these two sets.

PROPOSITION 3.1.3. Every closed ideal or unital hereditary ^-sub-
algebra of a Cyinjective C*-algebra is Cyinjective.

Proof. Let A be a C3-injective C*-algebra and B a hereditary
C*-algebra of A. Suppose that R is a closed right ideal of B and
S e LM(R, B). Let Rλ be the closure of RA. Then i?! is a
closed right ideal of A. Clearly S e LM(R\, A). Therefore there is
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S £ LM(A) such that Sr = Sr for r e i?i and \\S\\ = \\S\\. For any
x eB ,by [25, 1.4.5], x = ua, for some u, aeB. So Sx = (£u)α.
If 2? is an ideal, Sx £ B for all x £ B. Let 5Ί = *S^, where p
is the open projection corresponding to B, then S\ £ LM(B) and
5Ίr = SV for all r € R and ||ιSΊ|| = | |S | | . If B has a unit e, we can
take S\ = eSe. This completes the proof.

Recall that a projection p in A** is called regular (Tomita [28],
see [1,11.12] and [26, 19] also) if \\xp\\ = ]\xp\\ for every x in A. A
projection /? in 4̂** is called dense if p = 1.

THEOREM 3.14. Lei A be a unital Cyinjective C*-algebra. Then
(a) every open projection in A** is regular;
(b) for every open projection p in A**, peA.
(c) A is an AW*-algebra.

Proof. We first show that every dense open projection q in A** is
regular. Put R = qA** ΠA. So R is a closed right ideal of ^4, whence
a (closed) submodule of ^4. For any x e A, define a map φ eR* by

0?(r) = ;c#r = xr for r G R.

Since 4̂ is C3-injective, there is φ £ ̂ 4# (= A) which extends 0> and
|| 0|| = || 4? ||. Therefore there is y £ A such that

(y - χ)r = 0 for all x £ i?

and ||j/|| = ||p||. Hence (y - x)<? = 0. Since q is dense, y = x . In
other words, 0 is unique. Thus

IMI = ll#ll = \\Ψ\\ = \\XQ\\.

Therefore q is regular.
Now let p be any open projection in A**. Put q=p + (l—p) and

R = qA**nA, Rι =pA**nA and R2 = (l-p)A**nA. R,Rχ and
i?2 are closed right ideals of A, whence they are submodules of A.
Moreover, we have R = i?i θ i?2 (as an orthonormal direct sum of
two Hubert ^4-modules). Define a map ψ £ i?# by

all r\ £ i?i and r-i £ i?2.

We have ψ e A# (= ̂ 4) such that Ψ\R = ^ and | |^| | = | |^ | | . Thus
there is e £ A such that er\ = rt and er^ = 0 for all r\ e R\ and
r2eR2. Let 5 = Her(ήf), ^ = Her(p) and B2 = Her(l - p ) . For
any ax, bx £ 5i and a2,b2eB2,



C* -MODULES 151

So

(a, + a2)e*{bx + b2) = {a\ + a*2)*e*{bl + b*2)*

= [(bt + b*2)e{a\ + a*2)\* = [ftf αj]* = * i* i

Thus for any a, b e B, a(e - e*)b = 0. This implies

q(e-e*)q = 0

since q is a regular dense open projection, e = e* (see [7, 4.1 (c)] for
example). For any b e B with 6 = b\ + &2 > where bι e B\, b2eB2,
we have

e 2έ = e(e(6i 4- fe2)) = ebi = eb,

so (e2 - e)q = 0. By the density of q, e 2 = e. Hence e is a
projection in A. Since e >p, e > p . But ^(1 -p) = 0, so e =p . It
follows from Proposition 3.14 that eAe is a C2-injective. Since p is
a dense open projection in [eAe]**, from the first part of the proof,
p is regular.

It remains to show that A is an A W*-algebra. In fact, we have
already shown it. If B\ and B2 are two orthogonal hereditary C*-
subalgebras and p\ and p2 are open projections corresponding to B\
and 2?2> respectively, then pχp2 = 0. Since px e A, P\p2 = 0. It
follows from [26, 1] that A is an AW*-algebra.

COROLLARY 3.15. Every unital C2-injective C*-algebra is an AW*-
algebra.

THEOREM 3.16. Let A be a C^-injective C*-algebra. Then M(A)
is C2-injective if and only if M(A) = LM(A).

Proof. Let p be an open projection in M(A)**, Rp = pM(A)** n
Λ/(Λ) and Her(p) = pM(A)** n Λ/(Λ). Set i?0 = i?P Π ̂  and Bo =
HQY(P)Γ\A . Then Ro is a closed ideal of A and 2?o is a hereditary C*-
subalgebra of A. Let /?o be the open projection in A** corresponding
to i?. Suppose that x e LM(RP, M(A)). Let y be the element in
LM(R0, 4) such that j r = xr for r G Ro. Clearly ||y|| < | |x| | . Since
A is Cβ-injective, there is x e LM(A) = M(A) such that ||x|| = ||y||
and xr = xr for all r G i?o It is obvious that p{\ - p0) = 0. Put
q0 = p0 + (l -p0). So ίo i s a dense open projection in A**. For any
tf G Her(#0) (the hereditary C*-subalgebra of A corresponding to q$)
and b G Her(p),

xba =
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since ba G Her(#o) Thus

\\(xb-xb)qQ\\ = O for b e Her(p).

Let {eλ} be an approximate identity for A then

\\eλ(x - x)bqo\\ = 0 for each λ.

Since #o is a dense open projection in 4̂** and eχ(x - x)Z? G A,

for each λ. This implies JCZ? = xb for all 6 G Her(p). Therefore
xr = xr for all r eRp. Moreover, \\x\\ = ||JC|| .

For the converse, take x G LM(A)\M(A). Since 4̂ is a closed ideal
of M(A), if M(^4) were C3-injective, there would b e a ϊ G M(A)
such that ||JC|| = ||x|| and xa = xa for all a G A. This is impossible.

THEOREM 3.17. Lei A be a C*-algebra. Consider the following
conditions:

(i) A is Cyinjective\
(ii) .For every hereditary C*-subalgebra B of A and x G QM(B)

there is x G QM{A) such that axb = axb and \\x\\ = ||JC|| .

Then

(a) if every dense open projection in A** is regular, then (i) => (ii).
(b) if LM(A) = M(A), then (i) o (ii).

Proof, (a) Let A be a C3-injective C*-algebra and p be an open
projection in A**. Set B = Her(/?) and # = /? + (1 -p). Suppose
that x G QM{B) and {^} is an approximate identity for B. Then
for each λ, eλe LM(Rq, Λ). Thus there is xλ e LM(A) such that
Xχr = eχxr for all r eRq and ||JC^|| = | |^JC| | . For any r G i?i, b eB,

\\bxλr-bxλ.r\\<\\beλ-beλ Uxr\\.

Thus

Since ^ is a dense open projection, by the assumption, q is regular.
Since 6 ^ converges to b in norm, q is dense and regular and bxχ,

, by [7, 4.3 (a)],

-δ^H->0.

Suppose that JCoo is a weak limit of {xχ} in 4̂** then bxλ converges
to bxoo in norm and ||Xoo|| < \\x\\ - For any a e A, bxλa converges
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to bXoo in norm. Because bxχa e A for each λ, bx^a G A. Let
{ua} be an approximate identity for A. Then

Therefore there is xa G RM(A) with ||xα|| = || XooWα|| such that for
any t G {Rq)*, txa = tx^Ua for all a. Thus, for any t e (Rq)* and
aeA,

\\fxaa - fxa'a\\ < \\tXoc\\ \\uaa - ua>a\\.

Notice that fxa, ίxa> G QM{A). Repeating the previous arguments,
we conclude that xaa converges in norm for every a e A. Let x be
a weak limit of {xa} in ^**, then xa = limxaa for all α G A and
11*11 = ll̂ αll F°Γ anY ^ ? ^ G ̂ 4, cxαα converges to cxa in norm.
Since cxaa G ̂ 4 for each a, cx^ G A. Therefore x G QM(A).
Clearly, αjcδ = axb for all a.beB and ||JC|| = ||JC|| .

(b) We first show (ii) =» (i). We assume that R is a closed right
ideal of A and s eR# (= LM(R 9 A)). Let /? be the open projection
corresponding to JR, set <? = p + (1 — p) and B = Her(#). Then
ί5 G QM(£). Therefore there is s G M(^) = QM(A) (see [6, 4.18])
with ||J|| = ll^ll such that asb = asb for all a and b e B. So
pll = pH. Moreover, for all b e B,

ί(ϊ-5)6 = 0

since (J = 5)6 G ̂ 4, ^ is dense, (s - s)b — 0. Hence sr — sr for
r G R. This shows that 4̂ is Cβ-injective. For (i) =» (ii), we notice
from 3.16 that M(A) is C3-injective. It follows from 3.14 that every
open projection in M(A) is regular. Since A is an ideal of M(A),
every open projection in A is regular. By (a), (i) implies (ii).

REMARK 3.18. We do not know if (i) => (ii) is true in general.
However, we do know that (ii) does not imply (i) in general. See 3.26
(c) for an example.

COROLLARY 3.19. Every hereditary C*-subalgebra of a unίtal Cy
injective C*-algebra satisfies the condition (ii) in 3.17.

COROLLARY 3.20. Let A be a unital C^injective C*-algebra and p
an open projection in A**.

(1) Suppose that s G R*, then there is a unique s G Ap such that
s(r) = sr for all reRp and \\s\\ = \\s\\.
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(2) Suppose that s e QM(Heτ(p)), then there is a unique s e pAp
such that asb = ash for all a, b e Her(p) and \\s\\ = \\s\\.

Proof. The uniqueness of s follows from the regularity of p.

COROLLARY 3.21. Let A be a closed ideal of a unital Cyinjective
C*-algebra. Then LM(A) = M(A).

Proof. Let B be a unital C3-injective C*-algebra containing A as
a closed ideal. Suppose that p is the open projection in B** corre-
sponding to A. By 3.14 (b), we may assume that p = 1. Suppose
that s e LM(A). By 3.20 (1), there is s e B such that sa = sa for
all a e A and p | | = | |s | | . So for all a, be A, asb = asb. Thus

asp = asp = as for all aeA.

Since A is an ideal ofB, as e A. Therefore asp = as, whence
as = as. This implies that s e M(A).

COROLLARY 3.22. Let A be a hereditary C* -subalgebra of a C3-
injective C*-algebra B. Consider the following conditions:

(1) A is Ci-injective;
(2) LM(A) = M{A);
(3) A is an ideal of a Cyinjective C*-algebra\
(4) A is an ideal of a unital Cyinjective C*-algebra.

Then
(a) In general we have

(b) If B is unital then

(1)^(4)^(3)^(1).

(c) If A is o -unital and every dense open projection of A is regular,
then

( 4 ) = > ( 3 ) = > ( 1 ) = » ( 2 ) .

(d) If B is unital and A is σ-unital, then

Proof. Both (a) and (b) are now known and (d) follows from (b)
and (c). It remains to show (c) and it suffices to show (1) => (2). Let
R be a closed right ideal of A and s e L(R, A). Suppose that p is
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the open projection in A** corresponding to R. Set q = p + (1 - p)
and define S\ G L(Rg, A) by

sχ(r)=spr ϊorreRq.

(Notice that Rp is orthogonal to Rμ-p).) Since 4̂ is Cβ-injective,
and s\ G L(Rg, A) c LM(Rq, A), there is Si G LM(A) such that
^ r = ΛΊr for all r G Rq and p i | | = ||5Ί||. Since s\ G L(Rg,A),
s* e LM(A). For any r eRg and aeA,

Thus ||0(SΪ - ^Παll = 0 for all α G ̂ . Since (J[ - s*x)a e QM(A),
and # is dense and regular, it follows from [7, 4.3 (a)] that

( ϊ ί - ^ ) ^ = 0 for all αG A

Hence Sγ G M(^4). So A satisfies the condition (4) in 2.15. Since A
is cr-unital, by 2.15, LM(A) = M(A). This completes the proof.

THEOREM 3.23. Let H be a self-dual Hilbert module over a C2-
injective C*-algebra A. Then B{H) is a unital Cyinjective C*-
algebra. Consequently, K(H) is a Cyinjective C*-algebra.

Proof. Let p be an open projection in K(H)** and B = Her(p).
Suppose that T G QM(B). Set Hoo = {bh:b G B, h G H) and
//o is the closure of flbo BY 2 1 3

? ^(^o) = -B. It follows from 1.7
that Γ G B(HQ, Hβ). Since /ί is a self-dual Hilbert module over a
C2-injective C*-algebra A, H$ c H (= /7#). So Γ G B(HO,H).

It follows from 3.3 that there is f e B(H) such that f\Ho = 3Γ
and ||f|| = | |Γ| | . By 1.6, f G LM(K(H)). So # ( # ) satisfies the
condition (ii) in 3.17. Since H is self-dual, by [21, 3.5] and 1.6,
B(H) is unital and LM{K(H)) = M(K(H)) = £(//). By 3.17 (b)
and 3.16 both K(H) and 2?(/f) are C3-injective C*-algebras.

COROLLARY 3.24. Let A be a unital Ci-injective C*-algebra and
let Mn(A) be the nxn matrix algebra over A. Then every hereditary
C*-subalgebra of Mn(A) is Cyinjective. In particular, Mn(A) is an
AW*-algebra.

Proof. Let H = A^ . Then H is self-dual.

REMARK 3.25. It is known that Mn(A) is an ΛW-algebra if A is
an ;4W*-algebra. (See [3, §62].) It is definitely a deep theorem. It is



156 HUAXIN LIN

shown by Gert K. Pedersen [27] that Mn{A) is a monotone complete
C*-algebra if A is. Corollary 3.24 is somehow related to these results.
For a better result, see 4.11.

THEOREM 3.26. Let A be an infinite dimensional monotone com-
plete C*-algebra. Then

(a) M(A <g> K) is not Cγinjective\
(b) QM{Q®K) becomes a monotone complete C*-algebra;
(c) Every hereditary C*-subalgebra of A®K satisfies the condition

(ii) in 3.17. However, A®K is not Cyinjective.

Proof. Let HA be the Hubert ^4-module

( {an}:aneA,γ2anan norm convergent >.
n J

It follows from 3.7 that H\ is a self-dual ^4-module. By 3.8 and
3.5, every map in B(HA, JFfJ) extends uniquely to a map in B(H%)
with the same norm. It follows from [21, 3.5] that B(H%) = L(H%),
whence B(H*) is a C*-algebra. For every map T e B(H#), T\Hjί e
B(HA, H%). Therefore we may identify B(HA, fζj) with B(H%). By
1.8,

By identifying QM{A®K) with B(H%), QM{A®K) becomes a C*-
algebra. Suppose that {xa} c QM(A ® K)SM. is a bounded increasing
net. Let {ey} be a matrix unit for K and set

ϊ = l

It follows from [21] that for each n, Mn{A) is monotone complete.
So e]cQM{A®K)e]c (= Mk(A)) is monotone complete. Let xW be
the least upper bound of the net {e^Xae^}. Since for any m > 0,

we conclude that ekx^k+m^ek = x^ for all A: (e.g. [11, Lemma 2.1]).
For any a, b e \Jk ek(A (8) ϋΓ)^, we define

axb = ax^b for some large A:

such that both a and 6 are in ek(A ® AΓ)^. This is well defined.
Since {x^} is bounded, x defines a quasi-multiplier of A®K. We
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are now ready to check that x is a least upper bound of the net {xa} .
This proves (b). Since A x K and its hereditary C*-subalgebras are
hereditary C*-subalgebras of QM(A <8> K), by 3.8 and 3.19, the first
part of (c) follows. It is well known that if A is a unital, infinite
dimensional C*-algebra, LM(A ® K) Φ M(A ® K) (e.g. [19, part II,
Remarks]). Since A ® K is σ-unital, by 3.22 (d), A ® K is not Cy
injective. Since 4̂ ® K is an ideal of M(A ® AT), it follows from 3.2
that Af(Λi ® AT) is not C3-injective.

REMARK 3.27. From [27] we know that Mn(A) are monotone com-
plete for all n if A is a monotone complete C*-algebra. One may
suspect that M(A®K) is also monotone complete. However, 3.26 tells
us that QM(A ® K) is a monotone complete C*-algebra, M(A ® AT)
is not even C3-injective. On the other hand, A®K does have a nice
extension property.

One should notice that QM(A®K) is not a subalgebra of (A<g>K)**.
It is shown by L. G. Brown that for general C*-algebra B, if x e
QM(B)+ with x 2 € QM(5) then x e M(B) ([5, 2.61]). However,
this by no means contradicts 3.26 (c). If one examines carefully, one
may actually see how the multiplication is defined in QM(A ® K) in
3.2 (b). In fact, if x e QM(A ® K), x is represented by an infinite
matrix (α^ ) with α ί7 e A such that (α/7) is bounded. Moreover,
WΣjCLija^jW is bounded. Therefore if (bjj) is also in QM (A ® AT),
Σ& αiik^7 "^ c 0 f°Γ some c/7 G ̂ 4 with the Kadison-Pedersen arrow.
And (Cij) is in fact in QM{A®K). The product of (αZ7) with (bij)
in 3.25 (b) is in fact (c/ ;). On the other hand Y^^diΦkj d ° e s con-
verge weakly to an element c\; in A**. This is why in (A ® AT)**,
(#θ) ^ QΛ^(^(^ ® AT)), in general. Let π be a faithful representa-
tion of A ® AT. Then π can be extended to a faithful isomorphism of
M{A®K) and if we extend π further, π{QM(A®K)) is faithful. (See
[25, 3.12.5] and [6, 4.15].) Let Q be the C*-subalgebra of (A®K)**
generated by QM{A® K). By [6, 4.15], the atomic representation πa

is faithful on Q. But the above shows that in general π(Q) is not
faithful.

COROLLARY 3.28. Let H be a countably generated Hilbert module
over a monotone complete C*-algebra A. Then B(H*) is a monotone
complete C*-algebra.

Proof. By Kasparov's stabilization theorem [12], H = pHA for
some projection p in M(K(HA)). It is clear then i/# = pH\ and
B(H#) = B{pH*) = pQM{A ® K)p .
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REMARK 3.29. Let A be a unital C*-algebra. Consider the follow-
ing conditions:

(1) A is monotone complete;
(2) A is C2-injective;
(3) A is Cβ-injective;
(4) A is an ^4W*-algebra.

In general we have (1) => (2) =» (3) =>> (4). If, in addition, A is
commutative, then they all are equivalent. There is no ^4W*-algebra
known not to be monotone complete. The first three types of C*-
algebras have a common property that all open projections in their
second duals are regular. We ask the following questions:

(a) Is every open projection in the second dual of an A W*-algebra
regular (cf. [26, 21])?

(b) Is every AW*-algέbra, with the property that every open projec-
tion is regular in its second dual monotone complete?

(c) Any implication in reverse order among (1), (2), (3), (4)?

4. Extensions of bounded module maps, continued. In this section
we consider countably generated Hubert modules. However, we are
not going to give countable versions of 3.1 and 3.11. In fact, there are
several ways to put countable conditions. We begin with a few easy
consequences of the last section.

COROLLARY 4.1. Let A be α monotone sequentially complete C -
algebra and H a countably generated Hίlbert A-module. Then the
A-valued inner product ( , •} extends to H# x H* in such a way as to
make H# into a self-dual Hubert A-module. Moreover, the extended
inner product satisfies (τ, x) = τ(x) and

\x\\ = U xeH}

for teH* and xeH.

Proof By [20, 1.5], K(H) is σ-unital.

COROLLARY 4.2. Let A be a monotone sequentially complete C*-
algebra. Suppose that H is a Hubert A-module, Ho is a countably
generated, closed submodule of H and φ e H$. Then there is φ e H#

such that φ\Ho = φ and \\φ\\ = \\φ\\.

COROLLARY 4.3. Let A be a monotone sequentially complete, uni-
tal C*-algebra. Then QM(A <g> K) becomes a monotone sequentially
complete C*-algebra.
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An open projection is called σ-unital, if Her(/?) is σ-unital ([26,
21]).

LEMMA 4.4. Let A be a C*-algebra with real rank zero and cancel-
lation of projections. Suppose that p is a σ-unital open projection in
Mn(A)**. There is a partial isometry u G Mn(A)** such that

n

u*u=p and uu* = ^ P qx• ® eg,

where q\ are open projections in A** and {eij} is a matrix unit for
Mn. Moreover, for any x G Her(p),

uxu* G Her(ww*).

Proof. Since A has real rank zero, there are projections {en} in
Her(p) such that {en} forms an approximate identity for Her(p).
Let px = ex and pn+x = en+x - en , n = 1, 2, . . . . By [29], there is a
partial isometry wi e Mn(A) such that

w * W l = ^ and I
ι = l

where q^ are projections in A. Since Mn(A) has cancellation of
projections (see [4, ΠI.2.4]),

Applying [29] again, there is u^ G Mn{A) such that

n

u\u2 = p2 and

where ^ P are projections in A such that # P < \ - qf\ By induc-

tion, there are a sequence of partial isometries u^ G Mn(A) and a

sequence of {#! ^}"=1 in A such that

= Pk and
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and q\k) Lq\k>) if kφk9

9 i = 1, 2, . . . ,/i . Then ueMn{Ay*. By
the construction, we have

n

u*u=p and uu* = y^ qx ® en,

where #z = Σ^Lj <7/̂  *s a n ° P e n projection in A**. Clearly, if x e
Her(/?), wxw* € Her(ww*). This completes the proof.

THEOREM 4.5. Let A be a unital C^-injective C*-algebra. Suppose
that Ho is a countably generated Hilbert A-submodule of a Hilbert
A-module H and φ is a bounded module map from HQ into A. If
Ho is a closed submodule of An, then there is a module map φ from
H into A such that φ\H() = φ and \\φ\\ = \\φ\\.

Proof. By 3.14, A is an ^PF*-algebra. It follows form [3, §15] that
we may write A = A\ Θ Aι, where A\ is properly infinite and Ai is
finite. For any Hilbert ^-module H, then H = H1 ®H", where H'
is an A\-module and H" an v42-module. It follows from [30] that A\
is monotone sequentially complete. By 4.2, we may assume that A is
finite.

Since Ho c An, by 2.13, K(H0) is a hereditary C*-subalgebra of
Mn(A). Let p be the open projection in Mn(A)** corresponding to
K(HQ) . Since A is a finite ^4W*-algebra, A has real rank zero and
Mn(A) is finite for each n. So Lemma 4.4 applies. Thus

1=1

where the pt 's are open projections in A**. So we may write

φ = φι@φ2@'-®φn,

where each wt is in R# . It follows from 3.20, that R* = R„ . So

=
ί = l

Therefore, φ extends to a module map on Hfi (with the same norm).
Let P be the projection from H into Hfi defined by

Px(h) = (x,h) forxeH, heH0.

Set φ = φoP. Then φ e H#, Φ\HQ = ^ and | |^ | | = | | p | | . This

completes the proof.
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COROLLARY 4.6. Let A be a unital C^-injective C*-algebra and H
a countably generated Hilbert A-module. If H is a closed submodule
of' An, then the A-valued inner product ( , •) extends to H*xH* such
that H* becomes a self dual Hilbert A-module with this inner product,

(τ,x) = τ(x) and | |(τ, τ)\\1'2 = sup{||τ(x)||: ||x|| = 1, x e H}

for τeH* and xeH.

Proof. It is a combination of 4.1 and the proof of 4.5.

COROLLARY 4.7. Let A be a unital Cyinjective C*-algebra with a
faithful representation on a separable Hilbert space. Then Mn(A) is
also a Cyinjective C*-algebra for all n.

Proof Since Mn(A) is unital, by 3.17 (b), it suffices to show that
Mn{A) satisfies the condition (ii) in 3.17. Let B be a hereditary C*-
subalgebra of Mn(A) and T e QM(B). Since A has a faithful rep-
resentation on a separable Hilbert space, so does Mn(A). Therefore
B is σ-unital. Let HQ be the closure of the set

{bh .beB, heAn}.

Then, by 2.13, K(H0) = B. By [20, 1.5], Ho is countably generated.
By 1.7, T e B(H0, Hξ). For fixed x e An , define Tx e H* by

Tx(h) = (x,Th) forheHo.

It follows from 4.5 that there is fx e An (An is a self-dual) with
||Till = IITill such that fx{h) = Tx(h) for all heH0. Define a map
T\An ->H* by

fh(x) = [fx(h)T for x and heAn.

Clearly T is a module map, Th = Th for all h eHo and

for x,y e An. So ||f|| = | |Γ | | . By 4.6, Hξ C An. Therefore
f e B(An) = Mn(A). Since f\H0 = Γ, T\B = T. This completes
the proof.

COROLLARY 4.8. Let A be α unital Cyinjective C*-algebra with a
faithful representation on a separable Hilbert space. Then every open
projection in Mn(A)** is regular.
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THEOREM 4.9. Let A be a C*-algebra. If the A-valued inner product
( , •) extends to H\ x H\ so that H\ becomes a self-dual Hubert A-
module and (τ, x) = τ{x),

(x)| |: | |x| | = l ? x e H}

for τ e H\ and x e HA, then A is monotone sequentially complete.

Proof. It suffices to show that for any {xn} c A+ such that
{II YΛ=\ xk\\) is bounded, there is a least upper bound for {]C5Li xk)
in A.

Set τ = {x^2} then τ defines an element in H\ (see [14]). We
claim that (τ, τ) is a least upper bound for ( Σ ^ = 1 Xk) Let pn be
the projection in K(HA) such that

Pn({ak}) = {bk} 9

where b]^ — a^ if 0 < k <n and bk = 0 iΐ k> n. Then {/?„} forms
an approximate identity for K(HA). Clearly,

(τ, τ) > (pnτ, τ) =
k=\

Suppose that y G A and y > Σ^=i x ^ f°Γ all w We need to show
that y > (τ, τ) .

Let 0 < a < \ . For each k, set

It is known (e.g. [25, 1.4.4]) that u^ converges in norm (as n —> oo),
Set

uk = lim u^\

Since

k=\ k=\

as n —• o o ,

k=\

for all m. Set ξ = {uk} , then ξ e Ή*A . Clearly, τ = ξ ya . Therefore

(τ,τ)=ya(ξ,ζ)ya forO<α<i.



C* -MODULES 163

By [14],
1/2

llίll= Σ4^

(where J2h=i u\uk is the strong limit of {XX=i u^u^} in ^4**). Thus
| |^ | |2<| |3;l-2α| |2 β R e n c e

(τ, τ) < \\yι-2a\\2y2a

for all 0 < a < \ . Let α —• \ , we have

This completes the proof.
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