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INJECTIVE HILBERT C*-MODULES

HuaxiN LIN

One difference between Hilbert modules and Hilbert spaces is that
Hilbert modules are not “self-dual” in general. Another difference is
that Hilbert modules are not orthogonally complementary. Let H
be a Hilbert module over a C*-algebra 4. We show that if A4 is
monotone complete then H*, the “dual” of H, can be made into
a self-dual Hilbert 4-module. We also show that if H is full and
countably generated, then H is orthogonally complementary if and
only if every bounded module map in H has an adjoint. It turns out
that these results are closely related to the problem of extensions of
bounded module maps. Let C; be the category whose objects are
Hilbert 4-modules and morphisms are contractive module maps with
adjoints, and C, the category whose objects are Hilbert 4-modules
and morphisms are contractive module maps. We find that injec-
tive modules in the category whose objects are Hilbert 4-modules
and morphisms are contractive module maps. We find that injective
modules in the category C; are precisely those that are orthogonally
complementary. We show that Hilbert modules over a monotone com-
plete C*-algebra are injective in C, if and only if they are self-dual.
We also show that if 4 is not an 47 *-algebra then A itself is not
injective A-module in the category C,. A few related results are also
included.

1. Introduction and preliminaries. The general theory of Hilbert
modules over a non-commutative C*-algebra has been studied by
many authors (e.g. [10], [12], [13], [16]-[24]). Its applications vary
from the theory of extensions of C*-algebras and K-theory to non-
commutative topology. One of the main differences between Hilbert
modules and Hilbert spaces is that Hilbert modules are not “self-dual”
in general. Another difference is that Hilbert modules are not orthog-
onally complementary. Let H be a Hilbert module over a C*-algebra
A and H* the A-module of all bounded A4-module maps from H
into 4. It is shown by W. Paschke [21] that if 4 is a W *-algebra
then H* can be made into a self-dual Hilbert 4-module containing
H as a closed submodule. It is then natural to ask if it is true for
other C*-algebras. It turns out that this question is closely related to
the following question: Let Hy be a (closed) submodule of H and ¢
a bounded module map from H; into 4. Is there a module map ¢
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from H into A such that ¢|y = ¢ and ||@|| = |l¢||? We show (in
§3) that both questions have an affirmative answer for monotone com-
plete C*-algebras and a negative answer for those C*-algebras which
are not AW *-algebras.

Suppose that H; and H, are two Hilbert 4-modules and 7 is an
invertible bounded module map from H; onto H,. We find that H,
may not be unitarily equivalent to H, . (We also show that H, and H,
are unitarily equivalent if both H; and H, are assumed to be count-
ably generated.) However, if in addition we assume that 7" has an
adjoint T* (from H, to H;) then H; is unitarily equivalent to H,.
It suggests that we may also consider the category whose objects are
Hilbert A-modules and morphisms are contractive module maps with
adjoints. We find that injective objects in this category are precisely
those Hilbert A-modules which are orthogonally complementary. In
particular, we show that A is injective in the category if and only if
LM(A)=M(A).

Much of this work was done when the author was visiting Mathe-
matics Institute, Copenhagen University. The author is very grateful
to both George A. Elliott and Gert K. Pedersen for their arrange-
ment to make this visit possible. He benefited from helpful con-
versations with Lawrence G. Brown, George A. Elliott and Gert K.
Pedersen, especially, a conversation with Gert K. Pedersen about the
“Kadison-Pedersen arrow”. He would like to thank Erik Christensen,
George A. Elliott, Ryszard Nest and Gert K. Pedersen for their hos-
pitality at Copenhagen University.

Recall the definition of a Hilbert module over a C*-algebra A
(112)).

DEFINITION 1.1. Let E be a linear space over the complex field
equipped with structure of a right 4-module. We suppose that A(xa)
= (ax)a = x(Aa), where x e E, a€ A and A is a complex number.
The space E is called a pre-Hilbert 4-module if there exists an inner
product (-, -): E x E — A satisfying the following conditions:

(1) (x,x) >0 and (x, x) =0 if and only if x =0;

(2) (x,y+2)=(x,p)+(x, z);

(3) (x,ya)=(x,y)a;

4) (x,y)* = (y,x), where x,y,z€ E, a€ 4 and A isa
complex number.

Put ||x|| = ||(x, x)||'/>. This is a norm on E. If E is complete,
E is called a Hilbert module over 4. The closure of the span of
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{(x, y):x,y € E} is called the support of E, denoted (E, E). E is
called full if (E, E) =A4.

DEerINITION 1.2. For a Hilbert A-module E, we let E* denote the
set of bounded A4-module maps from E into A. For x € E we
denote a module map x" in E* by x"(y) = (x,y) for y€ E. E*
becomes an A4-module if we define (7 -a)(x) = a*t(x) for t € E¥,
x € E and a€ A4 or a € C, and add maps in E* pointwise. We
call E self-dual if every module map in E* arises by taking A-valued
inner products with some fixed x in E. (See [21]).

DEFINITION 1.3. Let 4 be a C*-algebra. We denote by M (A4) the
idealiser of 4 in A**, where A** is the enveloping von Neumann
algebra of 4. We also denote by LM(A) the set {x € A*:xa € 4
for all a € A}, by RM(A) the set {x € A**:ax € A for all a € 4}
and by QM (A) the set {x € A*:axbe A forall a, b e A}.

DEFINITION 1.4. Let E be a Hilbert module over a C*-algebra 4.
We denote by B(E) the set of all bounded module maps from E
into E and by L(E) the set of all bounded module maps 7 € B(E)
such that there exists 7*: E — E satisfying the condition: (Tx, y) =
(x,T*y) forall x,ye E. If x,y € E, let 05 , be the module map
defined by 0y ,(z) = x(y, z) for z in E. The map 0 , isin L(E).
The closure of the linear span of {6, ,:x,y € E} in L(E) is denoted
by K(E) (see [12]). We also denote by B(E, E*) the set of bounded
module maps from E into E*. With the operator norm, B(E) is a
Banach algebra, L(E) and K(E) are C*-algebras and B(E, E¥) isa
Banach space. (See [12] and [18].)

We would like to state the following theorems that are used often
in this paper

THEOREM 1.5 (Kasparov [12, Theorem 1] and Green [31, Lemma
16).). Thereis anisometric isomorphism ¢, and L(E) onto M(K(E)).

THEOREM 1.6 ([18, 1.4]). There is an isometric isomorphism ¢, from
Banach algebra B(E) onto LM(K(E)) which is an extension of ¢, .

THEOREM 1.7 ([18, 1.5]). There is an isometric isomorphism ¢;
from Banach space B(E , E*) onto QM(K(E)) which is an extension

of .

DEeFINITION 1.8. Let E be a Hilbert A-module and E; be the ex-
tension of E by A** constructed in [21, 4]. We denote by E~ the



134 HUAXIN LIN

self-dual Hilbert A**-module E} (see [21, 4]. Every bounded mod-
ule map in B(E, E*) can be uniquely extended to a bounded module
map in B(E~). (This easily follows from the construction of E~ and
[21, 3.6]. See also [18, 1.3].) If E is self-dual, then B(E) = L(E).
(See [21, 3.5).) Thus M(K(E)) = LM(K(E)) = QM(K(E)). If in
addition, 4 is a W*-algebra, B(FE) is also a W*-algebra. In partic-
ular, B(E~) is a W*-algebra. Since all maps in B(E, E*) can be
uniquely extended to maps in B(E~), B(E™) is a W™*-algebra con-
taining K(F), M(K(E)), LM(K(E)) and QM (K(E)).

REMARK 1.9. Finally, throughout this paper, (a) K always denotes
the C*-algebra of all compact operators on a infinite dimensional,
separable Hilbert space; (b) if p is an open projection in A** for
some C*-algebra 4, Her(p) denotes the hereditary C*-algebra cor-
responding to p; (c) p denotes the smallest closed projection in 4**
majorizing p.

2. Hilbert modules with orthogonal complements.

DEerFINITION 2.1. Let H; and H, be two Hilbert modules over a
C*-algebra 4. We denote by B(H;, H,) the set of all bounded mod-
ule maps from H; into H,. We say that H; and H, are unitarily
equivalent or H, is H-isomorphic to H, and write H; = H, if there
is a unitary module map U which maps H; onto H, so that

(x,y)=(Ux, Uy) forall x,ye€ H.

It is natural to ask whether H,; is unitarily equivalent to H, if there
is an invertible map T € B(H,, H;).

THEOREM 2.2 (cf. [6, 3.2]). Let H, and H, be two countably gen-
erated Hilbert modules over a C*-algebra A. Suppose that there is T
in B(H,, H,) which is one-to-one and has dense range. Then H, and
H, are unitarily equivalent.

Proof. By [20, 1.5], both K(H;) and K(H,) are o-unital. Suppose
that K and L are strictly positive elements in K(H;) and K(H;),
respectively. Set H = H, @ H,. We define 7, K, L in B(H) as
follows: T(hy @ hy) =0@® Thy, K(hy ®@h) =Kh1 &0, L(h & hy) =
0® Lhy, where hy € Hy, hy € H,. Clearly, K, L € K(H). Then by
1.6, S = LTK € K(H). Let S = U|S| be the polar decomposition
(in B(H™)). We note that .S is one-to-one implies that |S| is one-to-
one, which implies that |S| is strictly positive in K(H;). Thus |S|H;
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is dense in H;. Therefore UH; = H, and (x,y) = (Ux, Uy) if
X,y € Hy. This completes the proof.

ExaMPLE 2.3. Now we present a C*-algebra 4 and a Hilbert A4-
module E such that there is an invertible map ¢ € B(E, 4), but
E is not unitarily equivalent to A. The example is borrowed from
L. G.Brown [6, 6.1]. Let n: B(H) — B(H)/K(H) = Q be the quotient
map, where H is an infinite dimensional and separable Hilbert space.
Let B ¢ Q be C*-subalgebras such that B - C = 0 and does not
contain s € Q with Bs = (1 —s)C = 0 (see [6, 6.1] and [9]). Let
A ={[a;;1€ B(H)® My:n(an1) € B, n(axn) € C, arz, ay € K(H)}.
T = [t;;] is a quasi-multiplier of 4 if and only if Azn(¢;;)4 C 4,
Bn(ty)B C B and An(t2)B = Bm(ty;)A = 0. In particular, any
scalar matrix is a quasi-multiplier. Set 7 = [i 1, where ¢ is a small
positive scalar. So T is an invertible positive quasimultiplier. L. G.
Brown [6, 6.1] showed that T ¢ Span(RM(A), LM(A)).

Now set E = {T'/2a:a € A}. Then E is aright 4-module. We de-
fine (T'/2a, T'/?b) = a*Th. Then E becomes a Hilbert 4-module.
There is an one-to-one and bounded module map ¢ from A4 onto
E defined by ¢(a) = T'/2a. However, A and H are not unitarily
equivalent. In fact, if there is a unitary module map U from H onto
A, then U(T'/2e,) converges left strictly to an element s in LM (A4),
where {e,} is an approximate identity for 4. Then

a*s*sb = (U(T'?a), U(T'?b)) = a*Th

for all a, b € A. Therefore T = S*S. This contradicts the fact that
T ¢ Span(RM(A4), LM(4)).

LEMMA 2.4. Let H be a Hilbert module and T € L(H). If T has
a closed range, then
H=KerT o |T|H.

In particular T has a polar decomposition T = V|T| in L(H).
Proof. Let T = V|T| be the polar decomposition in B(H"~). Since

TH is closed and V is a partial isometry, |T|H is closed. Notice
that |T| € L(H). Clearly, since |T|H is closed,

|T|H = |T|'/*|T|'/?H c |T|"/*H c |T|H.

So |T|'2H = |T\H. Set B = {S € L(H):S|T|H c |T|H}. So
|T)/2 € B. It is obvious that |T|!/2 is also one-to-one on |T|H .
Therefore |T|!'/? is invertible in B. Hence either 0 ¢ Sp(|T|!/?) or
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zero is an isolated point in Sp(|7’|!/2). Let p be the range projection
of |T| in L(H)**. Then |T|!/* — p in norm. So p € L(H). Clearly
pH =|T|H and (1 - p)H =KerT, whence V is a bounded module
map in L(H).

DEFINITION 2.5. Let H; and H, be two Hilbert modules and T €
B(H;, Hy). Define T; in B(H; @ H,) by

Ti(hy®hy)) =0® Th, for h; € Hy and h; € H,.

We denote by L(H,, H;) the set of those T € B(H;, H) such that
T, € L(H] @Hz) .

PROPOSITION 2.6. Let H, and H, be two Hilbert modules. If there
is an invertible map T € L(H,, H,) then H, = H,.

Proof. It is an immediate consequence of 2.4. In fact, the partial
isometry V in the polar decomposition of T lies in L(H;, H,).

ProOPOSITION 2.7. Let H; and H, be two Hilbert modules such that
L(H,) = B(H,). If there is an invertible map T € B(H,, H,) then
H = H,.

Proof. We notice that the adjoint 7* of T always exists, but 7™*
maps H, into Hf. Therefore T*T € B(H,, H}). Since L(H;) =
B(H;), by 1.5 and 1.6, M(K(H,)) = LM(K(H;)). It follows from
[6, 41.8] that QM (K (H,)) = M(K(H,)). Thus, by 1.7, B(H;, H}) =
L(H;). So T*T € L(H;), whence |T| € L(H;). Then the argument
in 2.4 applies.

DEeFINITION 2.8. Let H be a Hilbert module. We say H is orthog-
onally complementary if any Hilbert module H; containing H has
an orthogonal decomposition:

H; =H@HJ'.

Clearly, not all Hilbert modules are orthogonally complementary. It is
shown in [10] that if A4 is unital, then any orthogonal direct summand
of A", the direct sum of n copies of A, is orthogonally complemen-
tary.

It is certainly desirable to know which Hilbert modules are orthog-
onally complementary.
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THEOREM 2.9. Let E be a full Hilbert module over a C*-algebra
A such that L(E) = B(E). Then E is orthogonally complementary.
Moreover, if E' is another Hilbert A-module such that there is an
invertible map T € B(E, E'), then E' is also orthogonally comple-
mentary.

Proof. By 2.7, we need only to show the first part of the theorem.
Suppose that H is a Hilbert 4-module and £ C H. Let P be the
bounded module map from H into E* defined by

Px(y)=(x,y) forxeH, yekE.
Fix x e H and y € E, define
T(z) = y[Px(z)] = y{x, z)
for z € E. Working in B(E~) if necessary, we see that
T*(z) = Px{y,z) forzeFE.

Since T € B(E) = L(E), T* € L(E). Therefore Px{(y,y) € E for
all y € E. Let x = u(x, x)!/? be the polar decomposition of x in
H~ . (See [19, 3.11].) Then, for z€ FE,

(Px(y, y)z) =y, y){x, x)2{u, z).
With ||z|| < 1, we have

l{px, z) = (px(y, y), 2|l
<= s e, )2 G, 2)])
<N =,y e, X))
Since E isfulland Px(y, y) € E forall y € E, we conclude from the

above inequalities that Px € E for all x € H. Therefore P € B(H)
and H = (1 —p)H @ E . This completes the proof.

ExXAMPLE 2.10. The assumption that E is full in 2.6 cannot be
removed. Let H be an infinite dimensional Hilbert space. Then
K(H) is a Hilbert B(H)-module, where (x, y) =x*y forall x,y €
K(H). Then L(K(H)) = B(K(H)). However, it is clear that K(H)
is not an orthogonal direct summand of B(H). If we regard K(H)
as K(H)-module, then K(H) is an orthogonal direct summand of
any Hilbert K(H)-module containing it. The point is that if £ is a
Hilbert A-module and (E, E) = I, an ideal of A, we should regard
E as an I-module.

One may compare the following corollary to Proposition 1 in [10].
The condition LM(A4) = M(A) is actually necessary (see 2.15).



138 HUAXIN LIN

COROLLARY 2.11. Let A be a C*-algebra such that LM(A) =
M(A). Then orthogonal direct summands of A" are orthogonally com-
plementary, where n is a positive integer.

Proof. By 2.9, A is an orthogonally complementary Hilbert A-
module. Consequently, A" is orthogonally complementary. Now we
suppose that E is an orthogonal direct summand of 4", for some
positive integer, and H is a Hilbert A-module such that £ Cc H. We
have A" =E®FE;. So H® E| D A". Therefore

HEBE] =E2€BE@E1 and H=E2®E.

This completes the proof.

DEFINITION 2.12. Let Hy be a (closed) submodule of a Hilbert
module H over a C*-algebra 4, and H; is another Hilbert A-
module. Suppose that there is a bounded module map 7:Hy — H;.
Does there exist a module map 7:H — H; such that T|g =T and
IT|| = ||IT||? Fix a C*-algebra A. We denote by C, the category
whose objects are Hilbert 4-modules and morphisms are contractive
module maps with adjoints (i.e. those module maps with norms no
more than 1 in L(H,, H), for some Hilbert A-modules H; and
H,). Theorem 2.14 shows that the injective Hilbert modules in C;
are precisely those Hilbert modules with orthogonal complements.

LEMMA 2.13. Let H be a Hilbert module over a C*-algebra A and
Hy a closed submodule of H. Suppose that~ T € K(Hy); then there
is T € K(H) such that ||T| = ||T|| and T\g, = T. Consequently,
K(Hy) may be regarded as a hereditary C*-subalgebra of K(H).

Proof. Let x;,yi € Hy, i=1,2,...,n. Clearly >/, 6y , ex-
tends to a map in K(H). We first show that

n
E e‘xi’yi
i=1

Suppose that || 3/_; 6x 5 || = 1. Then

(£0.) (0.

n

D s,

i=1

H,

=1.
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For any ¢ > 0, there is £ € H with ||| = 1 such that

’ (z e) (}: e) @
i=1 i=1

But [|(357, 0y )OI <1 and (3°1; 6y ,x)(&) € Hy. So

n
Z exl’yz
i=1

Now we assume that 7 € K(H,). Then there are {x§m) }, {y,(m)} C Hy
such that

>1—e.

n

D O,

i=1

H,

— 0.

m m _T
Eex,‘ oy
1

By the first part of the proof, }, 6 m o is also norm convergent as

elements in K(H). Let T be the limit. So T € K(H) and |T]| =
|T||. Moreover, it is easy to see that T'|y = T . Set

B ={SeK(H):SHy C Hy}.

Clearly B is a hereditary C*-subalgebra of K(H). We have just
proved that B = K(Hp).

THEOREM 2.14. A Hilbert A-module H is injective in the category
C, if and only if H is orthogonally complementary.

Proof. We first assume that H is orthogonally complementary. Let
H, be a closed submodule of a Hilbert 4-module H; and 7 a
bounded module map in L(Hy, H). Set Hy = Hy® H and define

Ty(hodh)=0&® T(hy)+Ah for hye Hy, he H,
where 0 <A< 1. Clearly T; € L(H;) and
IT3ll < (1T + 22)72.
Moreover, T, is surjective. It follows from 2.4 that
Hy =Ker T, ®|T;|H,.

Furthermore, 7 is one-to-one on |7;|H, and maps |7;|H, onto 0&
H. By 2.5, |T;|H, = H. So |T;|H, is orthogonally complementary.
Set H; = H; ® H ; then

Hy D> H, D ITA'H2~
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Therefore, we may write
H3 = Hy & |T|H,
for some closed submodule H,. We define 7 in L(H;) by
Ti(ha®h) = Tyh for hy € Hy and h € |Ty|Hs.

Clearly Ty|y, =T; and ||T;||=||T;||. By 1.5, we have T, M(K(Hj)).
It follows from 2.13 that K(H,) is a hereditary C*-subalgebra of
K(H;). Let p be the open projection in K(H3)** corresponding to
KH,).If he H ={he H3:(h, x) =0 for x € Hy},then T)h=0.
Therefore T;(1 —p) =0. For any k € K(H3),
kT)(1-p) =0
since T; € M(K(H3)), kT, € K(Hs3). Thus
kT;(T=p)=0, ie kT3(1—-p)=0

for all k € K(Hj3). Therefore T}(l -p)=0.

For any K € K(H,), he H,, Kh € H, and

(T3 = Ty)Kh|| < [A-X|[IKh].
Therefore o
I(Th = K| < 1A - XKl
for any K € K(H,). Thus
I(T; = Ty)pll < A=)
Since T3(1 —p) =0, we obtain that
1T = Tyl < 1A= 2.

Set T =1lim; 07;. So T € L(H3) and ||T| = limy_o | T3/l = | T].
Since Ty|p, = T (if we identify H with 0 & H). We conclude that
TIHO =T and ||f ||l = |IT]|. This shows that H is injective in the
category Cj.

For the converse, we assume that H is injective in the category
C) . Suppose that E is a Hilbert A-module containing H as a closed
submodule. Let i:H — H be the ider}tity map. Sir~1ce H is injective
in Cy thereis 1 € L(E, H) such that 1|y =i and ||z]| = ||#]|. Itis then
easily checked that (i)*(i) is a projection in L(E) and (i)*(i)|g =1i.

This implies that H is an orthogonal direct summand of E. This
completes the proof.
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THEOREM 2.15. Let A be a o-unital C*-algebra. Then the following
are equivalent:

(1) LM(4)=M(4);

(2) A is orthogonally complementary as a Hilbert A-module;

(3) A is injective as a Hilbert A-module in the category Ci;

(4) For any closed right ideal R of A and T € L(R, A) there is
T € M(A) such that T|g =T and |T|| = ||T||.

Proof. (1) = (2) follows from 2.9. (2) < (3) follows from 2.14
and (3) = (4) is trivial.
It remains to show that (4) implies (1). Suppose that .S € RM(A)
and set
R={re A:sre A}.
Then R is a closed right ideal of A. Let p be the open projection
corresponding to R.

Case (I): p=1. For r € R define
Tr=Sr.

Since S € RM(A4), S* € LM(4). So T € L(R, 4). Therefore
there is T € M(A) such that T|g = T and ||T|| = ||T||. For any
k € Her(p) and a€ A4,

kU(T)" - S*1a = [(Tk*)* - kS*1a
=[(Tk*)* — kS*]a =[(Sk*)* —kS*]a=0.
Therefore, for any a € 4
IpL(T)* - S*lal| =
since p is dense and [(T)*—S*lac 4, (( T -S8a=0.So (T)* =
S*, whence S € M(4).

Case(II): p#1 So S¢ M(A). Let g=1—-p and B = Her(q).
Then, for any b € B, b # 0, Sb ¢ A. It is obvious that for any
be B, b*S*Sb € B*. If B is of finite dimension, then B** = B. So
b*S*Sb e B C A. Since Sbe QM(A), by [5, 2.63], Sb € M(A) for
all b€ B. But then Sb € 4 for all b € B. So we now assume that
B is of infinite dimension. Take a sequence {b,}>, C B, such that

bob, = b, #0 for n=1,2,... and b,b,, =0 if n # m. Let {e,}
be an approximate identity for A satisfying

€nem = €m€en = €y if m > n.
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Since b,S* & A for all n, by passing to a subsequence and changing
notations, we may assume that

bnS*(eZn - eZn—l) 7é 0
for all n. Set
Cp = bnS*(eZn - e2n-—l)/”bnS*(e2n - e2n—1)” s

=1, 2,.... It is routine to check that {| Z’,i:l cnll} is bounded.
It is then easy to check that 3°%_, ¢, converges strictly to an element
c€ LM(A), as k — . Since |cy]| =1 for each n, c ¢ A. Let
B, be the closure of {J;-,(b,Aby). Then B; is a hereditary C*-
subalgebra of A. Let p; be the open projection corresponding to B;
and R = pA*NA. Forany b€ B; and ¢ > 0, there is n and k

such that "
(o)

Since 37, (b:)V*kc = Y1 (b:)V/k 1, i, we conclude that bc € A4
for all b € B;. Hence ¢ reA forall reR;. So c* € L(Ry, A),

since c € LM(A). Let p = p;+(1-p;) and R; = ppA*™*NA. Define
L in L(R,, A) by

Lr=c*r forreR,.

By (4), there is L € M(4) such that L|g = L and ||L|| = ||L||.
Since p, = 1, an argument used in Case (I) shows that ¢ € M(A4).
However, we know that byc = ¢ ¢ A. We reach a contradiction for
Case (II). This completes the proof.

REMARK 2.16. It should be noted that for the implications (1) =
(2) & (3) = (4) we do not need to assume that 4 is o-unital.

ExAMPLES 2.17. (a) Every unital C*-algebra satisfies the conditions
(H)-(4).

(b) Every commutative C*-algebra satisfies the conditions (1)-(4).

(c) Let B be a C*-algebra such that LM (B) = M(B) and ¢, be
the C*-algebra of sequences of complex numbers which converge to
zero. Then ¢y ® B satisfies the conditions (1)—(4).

(d) Let B be a unital C*-algebra and X a locally compact Haus-
dorff space. Then Cy(X)® B satisfies the conditions (1)—(4).

(e) We will show in 3.21 that every ideal of a monotone complete
C*-algebra satisfies the conditions (1)-(4).

(f) We will see that if LM (B) = M(B), then 4.= M,(B), the
C*-algebra of n x n matrices over B, satisfies the conditions (1)-(4).
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(g) The only stable C*-algebra ( C*-algebras with the form B ® K)
satisfying the conditions (1)—(4) are those dual C*-algebras.

(h) The only o-unital simple C*-algebra satisfying the conditions
(1)—(4) are those elementary ones (and unital ones). (See [14].)

ExXAMPLE 2.18. Let A be a g-unital C*-algebra such that LM (A) #
M(A). From 2.15 we know that there is a Hilbert 4-module H D> 4
such that 4 is not an orthogonal direct summand of H. However,
the proof of the implication (2) => (1) in 2.15 depends on 2.14 and
the implication (4) = (1). It does not tell us how to construct such
a Hilbert 4-module H. The following is an example how one may
construct such H. Take 4 = ¢ ® K, the C*-algebra of norm conver-
gent sequences in K. An element x in A** may be identified with
a bounded collection {x,:1 < n < 00, x, € B(?)}. Let S be in
A* given by Sy =6 ¢, 0 < n <oo and S = 0, where {e,} is
an orthonormal basis for /2. One can check that s € RM(A4). Let
x be the element in 4 with x, = 6 . for 1 < n < oco. Notice
that S;S, = 6, o for 0 < n < oo and S; S0 =0. If a,b € 4
such that aS*Sbh € A. Then a,,Hel,elb,, — 0 in norm as n — oco. So
aS*Sb =axb. Now set E ={a+ Sh:a, b € A} and define

(a+sb,a +sb')=a*d +a*sb' + b*sa’ + b*xb’
for a, b, a’, b’ € A. It is now clear that with this inner product E is

a pre-Hilbert A-module containing 4. Let H be the completion of
E . Clearly, A is not an orthogonal direct summand of H .

THEOREM 2.19. Let H be a countably generated Hilbert A-module.
If H is orthogonally complementary or equivalently, H is injective in
the category C,, then L(H) = B(H).

Proof. 1t follows from [20, 1.5] that k(H) is o-unital. By 1.5, 1.6
and 2.15, it suffices to show that K(H) satisfies the condition (4) in
2.15. Let R be a closed right ideal of K(H) and T € L(R, K(H)).
Let p be the open projection in K(H)** corresponding to R and
B = Her(p). Set

Hoo={bh2b€B, hEH}
Let Hjy be the closure of Hy,. It follows from 2.13 that B = K(H,).
For any x € H; define

T(x) = lim (T6x 0)(xX)[(x, x) + 417",

Exactly as in [18], one shows that 7 defines a module map
from H, into H with the same norm. Since 7 € L(R, K(H)),
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T* € LM(K(H)) (by 1.6). By 1.6, this implies 7" € L(Hy, H).
Since H is injective in the category Cj, there is 7 € L(H) such
that T[HO =T and ||T|| = |T||. By 1.6, T € M(K(H)). Clearly,
since TlHo =T, forany K € K(H), TK = TK. So K(H) does
satisfy the condition (4). This completes the proof.

REMARK 2.20. One may notice that the converse of 2.19 is true if
H is full, without the assumption that H is countably generated.

COROLLARY 2.21. Let B be a g-unital C*-algebra with the property
that LM(B) = M(B) and A = M,(B), the C*-algebra of n x n
matrices over B. Then LM(A) = M(A).

Proof. Let H = B", then 2.21 follows immediately from 2.19.

3. Extensions of bounded module maps. Let H be a Hilbert module
over a C*-algebra A. In general, the 4-module H* is not equal to
H , (see 1.2). In [21], W. Paschke shows that if 4 isa W *-algebra, the
A-valued inner product (-, -) extends to H* x H* in such a way as to
make H* into a self-dual Hilbert 4-module. It is certainly desirable
to know if it is also true for other C*-algebras. It turns out that the
problem is closely related to the following extension problem: Let H)
be a (closed) submodule of a Hilbert 4-module H and ¢ a bounded
module map from H, into A. Does there exist a module map ¢
from H into A such that ¢|y = ¢ and |¢| = |l¢||?

DEFINITON 3.1. Let 4 be a C*-algebra. We denote by C, the cat-
egory whose objects are Hilbert 4-modules and morphisms are con-
tractive module maps. The extension problem mentioned above is
equivalent to ask if A is injective in the category C,. We say a
Hilbert A-module H is C,-injective if it is injective in the category
C, . In particular, if A is C,-injective as an 4-module, we say A is
a Cs-injective C*-algebra.

PRroOPOSITION 3.2. Closed ideals and unital hereditary C*-subalgebras
of a Cy-injective C*-algebra are C,-injective.

Proof. Let A be a C,-injective C*-algebra and B a hereditary
C*-subalgebra of 4. Suppose that H is a Hilbert B-module, Hy a
(closed) B-submodule of H and ¢ a bounded B-module map from
Hy into B. Consider the algebraic tensor product H ® 4, which
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becomes a right 4-module when we set (x ® b) -a = x ® ba for
x€H,acA and be A. Define [, JTH®AxH®A— A by

n m
[ij ®a;, Y yi ®b,] =Y ai(x;, yi)bi.

Let N ={ze€ H® A:[z, z] = 0}. By [21, 5.1], Eg = H® A/N is
a pre-Hilbert 4-module and H (by identifying with H x 1 + N) is
a closed B-submodule of E,. Denote by E the completion of Ej.
So E is a Hilbert A-module. Let E; be the closed 4-submodule of
E generated by Hp. It is clear that ¢ extends an A-module map
¢, from E;, into A. For any x € E;, we may write x = ya where
y€Hy (=Hy®1+ N). Notice that

o)) < llolP(y,y)  see[21, 2.8 (ii)].
We have

o1 = llp()al® = lla* e (») 9 (»)al
< llolPlla*(y, y)all = gl lxall®.

So |le1]l = ||l@ll. Since 4 is C,-injective, there is ¢, € E* such that
leill = lle1ll and ¢1]g, = ¢ .

For any x € H, let x = u(x, x)!/? be the polar decomposition of
x in H~. Then z = u(x, x)!/4 € H. We have

P1(x) = G1(z)(x, x)'/4

If B is an ideal, ¢;(z)(x, x)!/* € B, since (x, x)!/* € B. Thus
¢1ln is a B-module map from H into B such that ¢|g, = ¢ and
I@1lall = lledll = llell.

If B is a unital hereditary C*-subalgebra of A4, set ¥ = e@, , where
e is the unit of B. Then for x e H

w(x) = edi(z)(x, x)!/* € B.

Clearly ep = ¢. So v extends ¢ and |y| = ||¢||. This completes
the proof.

THEOREM 3.3. Every self-dual Hilbert module over a C,-injective
C*-algebra is Cy-injective.

Proof. Let H be a self-dual Hilbert module over a C,-injective C*-
algebra A. Suppose that H; is a Hilbert 4-module, Hy a (closed)
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submodule of H; and T a bounded module map from Hj into H.
For fixed x € H, define ¢, € H by

@x(h) = (x, Th) for h € Hy.

Since A is C,-injective, there is ¢, € H with |§xl = llex|l such
that @, (h) = ¢x(h) forall h € Hy. Deﬁneamap T:H, — H* (= H)
by

Th(x)=[@x(h)]* forxe H, he H,.

Clearly T is a module map, Th = Th if h € Hy and

TR < gl Il = llosxll 2l < 1T 1] |14l
for x€ H and h e Hy. So ||T|| = ||T||. This completes the proof.

REMARK 3.4. It should be noted that if A is not C,-injective then
any Hilbert A-module containing 4 as a submodule is not Cj-injec-
tive. Proposition 3.11 gives a partial converse of 3.3.

LEMMA 3.5. Let H and E be two Hilbert modules over a C*-
algebra A, and T a bounded module map from H into E. If there
is a bounded module extension T of T from H* into E*, then T is
unique.

Proof. Suppose that L is a bounded module map from H* into
E* suchthat L|y = T. Set F = H® E and define 7T; and L, in
B(F*) by

Tihoe)=0®Th and
Li(h®de)=0®Lh for he H* and e € E*.

By [21, 4], F~ = M(F, A*), where M(F, A*) is the set of all
bounded A-module maps from F into 4**. Itis then clear F *C F~.
Let Fy be the closed Hilbert A**-submodule (of F) generated by
F*_  Soboth 7 and L; can be extended to maps in B(F). Since
F is self-dual W*-module, by 3.4, F~ is Cs-injective 4**-module.
Therefore both 77 and L; can be further extended to module maps
in B(F~). However, by 1.8, T}|r has only one extension in B(F"~).
This implies that T, | F, = L,| F,- So T is unique.

DEFINITION 3.6. Let A4 be a monotone complete C*-algebra. Then
A is always unital. If {x;} is a bounded, monotone increasing net in
As.a. , then it has a least upper bound x in A4, . We write x; ~ x
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to describe this relation. For any net {x;} in 4, R. V. Kadison and
G. K. Pedersen in [11] write x; — x if there are four increasing nets

{x/(lk)} in As4, k=0,1, 2,3, such that (with i = /(-1))

3
k) sl Zlk ()_x/1 and Zikx(k)=
k:

This Kadison-Pedersen arrow “—” plays an important role in the
following lemma.

LEMMA 3.7. Let H be a Hilbert module over a monotone complete
C*-algebra A. Then the A-valued inner product (-, -) extends to H* x
H* in such a way as to make H* into a self-dual Hilbert A-module,
(t, x) =1(x) and

Iz, DI = sup{llz(x)[: x| = 1, x € H}
for te H® and x € H.

Proof. Let ¢ € H*. Set Hy = H® A and define ¢,: H, — H; by
p1(h®a)=0®¢(h) forhe Handac A.

So |lgll = el and ¢, € B(H,). By 1.6, ¢; € LM(K(H;)). Let
{U,} be an approximate identity for k(H;), e=0®1 and p=6, ..
Then ¢ U; € K(H;) and pp,U; = ¢,U; for each A. Thus, there is
K, € K(H;) such that ¢,U, = pK;, whence ¢,U; = Ge’K;e for each
A. Therefore ¢,U;(¢1U,)* € pK(Hy)p (= A) and ¢1U;(pUy)* 1sa
bounded increasing net in pK(H;)p. We identify pK(H;)p with 4
and denote by (¢, ¢) the least upper bound of ¢,U;(¢,U;)* in 4.
If t € H*, then

3
(91 Up)(t Uy)* = Z (11Uy — i1 U) (01 Uy — i, Up)*.

Therefore ((plU,l)(tlU,l)* — (¢, 1) for some (¢, 1) in A with the
Kadison-Pedersen arrow. Notice that if ¢ € H*, a€ A, (¢ -a)(z) =
a*¢(z) and if 7, y € H?,

(01Ut + w)Uil* = (01 Un)(t11Up)* + (01 Uy) (w1 Uy)™.
By [11, 2.1], we have

(p-a,1B)=0a*(p,7)B and
(it +v)=(p, 1) +{p, ¥)
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where a, f€A4,¢p,t, y € H*. Since

(1 U) (71 U)*T = (t1U) (01 U))"

we also have (¢, 7)* = (7, ¢). Moreover, (¢, ¢) >0 and (¢, ¢) =0
if and only if ¢ = 0. Thus we have defined an A-valued inner product
on H* such that H* becomes a pre-Hilbert 4A-module. If x,y €
H, the (x"); = 6,,x and (y"); = be,y. So [(X" )\ N[ Ui]* =
08’<fo’y)e. By identifying pK(H;)p with A, we have

[N U WU = (Ufx, v)
so [(x") U )[(»")1U;]* converges to (x, y) in norm. It follows from
[11, Lemma 2.2] that [(x");U;][(»")1U;]* — (x, y) with the Kadison-
Pedersen arrow.
If 1€ H*, x € H, then we have

[T U™ Ul = ©(URx),

by identifying pK(H;)p with A. So (t, x)=1(x). Since ¢,U,(9p,U,)*
< leiliPp, lI{p, o)l < llplI*>. By Cauchy-Schwarz inequality for A-
valued inner products, we conclude that

I{z, DIV = sup{J|z(x)ll: x| = 1, x € H}.

Since every self-dual pre-Hilbert module is complete (see [21, 3]), it
remains to show that H* with newly defined inner product is self-
dual. Suppose that y is a bounded module map from H” into A4.
Therefore there is ¢ € H* such that y(x) = ¢(x) for all x € H. By
3.5, ¢ = y. This completes the proof.

THEOREM 3.8. Let A be a monotone complete C*-algebra. Suppose
that H is a Hilbert A-module, Hy a (closed) submodule of H and ¢
a bounded module map from H, into A. Then there is a module map
@:H — A such that ||9|| = ||¢|| and ¢(h) = ¢(y) for all h € Hy.

Proof. By Lemma 3.8 for any 7 € H define

¢,(T) = <¢ > T)'

By Lemma 3.7, ¢’ is a module map from Hf into A and |¢’|| = ||g] .
Let P be the module map from H into H{ defined by

Px(h)=(x,h) forxe H, he H,.

Set ¢ = ¢’ o P. It is easy to verify that ||@|| = ||¢’|| = ||¢|]| and ¢
extends ¢ as desired.
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COROLLARY 3.9. Every closed ideal of a monotone complete C*-
algebra is Cy-injective.

ProrosiTION 3.10. Let H be a Hilbert module over a monotone
C*-algebra A. Then H is Cy-injective if and only if H is self-dual.

Proof. By 3.3 and 3.9 we only need to show the “only if” part. Let
H be a Cj-injective Hilbert A-module. It follows from 3.7 that H
is a submodule of H*. Let i:H — H be the identity map. Then
there is i*: H* — H such that ||i*|| = 1 and i*(h) = h for he H.
Let i be the identity map from H?* into itself. Then i* — il = 0.
It follows from Lemma 3.5 that i* = i. But this is impossible, since
i*(H*) c H, unless H = H*. This completes the proof.

DEFINITION 3.11. Let 4 be a C*-algebra. We denote by Cj the
category whose objects are closed right ideals and morphisms are con-
tractive A-module maps. We say that 4 is Cs-injective if it is injec-
tive in the category Cj, i.e. for any closed right ideal R of A4 and
@ € R*, there is ¢ € LM(A) such that ¢(r) = ¢(r) forall r € R and
@]l = lle]| . Clearly, every C,-injective C*-algebra is Cj-injective.

DEFINITION 3.12. Let A be a C*-algebra, p an open projection in
A**. Let R, = ANpA*; then R is a closed right ideal of 4. So
R, is a Hilbert A-module. Let S € Rz and {e,} be an approximate
identity for Her(p). Then for any r € R,

S(r) = li;nS(ea -r).
Suppose that S; is a weak limit of {S(e,)} in 4**. Then
S(r)=S8r forallreR,.

We see that S} is uniquely determined. We denote by LM(R,, A)
the set of elements S in 4**p such that Sr € 4. It can be shown (as in
[25, 3.2.3]) that there is a linear isometry from R}',* onto LM(R,, A).
We will identify these two sets.

ProposITION 3.1.3. Every closed ideal or unital hereditary C*-sub-
algebra of a Cs-injective C*-algebra is Cs-injective.

Proof. Let A be a Cs-injective C*-algebra and B a hereditary
C*-algebra of A. Suppose that R is a closed right ideal of B and
S € LM(R, B). Let R; be the closure of R-A. Then R, is a
closed right ideal of 4. Clearly S € LM(R,, A). Therefore there is
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S € LM(A) such that Sr = Sr for r € R, and ||S|| = ||S||. For any
X € B, by [25, 1.4.5], x = ua, for some u,a € B. So Sx = (Su)a.
If B is an ideal, Sx € B for all x € B. Let S| = S,, where p
is the open projection corresponding to B, then S; € LM (B) and
Syr=_S8r forall r€ R and ||S;]| = ||S||. If B has a unit e, we can
take S; = eSe. This completes the proof.

Recall that a projection p in A** is called regular (Tomita [28],
see [1, II.12] and [26, 19] also) if ||xp|| = ||xp| forevery x in 4. A
projection p in A** is called denseif p=1.

THEOREM 3.14. Let A be a unital Cs-injective C*-algebra. Then
(a) every open projection in A** is regular;

(b) for every open projection p in A**, pe A.

(c) A is an AW*-algebra.

Proof. We first show that every dense open projection g in A** is
regular. Put R =gA*NA. So R is a closed right ideal of 4, whence
a (closed) submodule of 4. For any x € 4, define a map ¢ € R* by

@(r)=xqr=xr forreR.
Since A4 is Cs-injective, there is ¢ € 4* (= A) which extends ¢ and
@]l = llell . Therefore there is y € A such that

(y—x)r=0 forallxeR

and |y|| = ||¢||- Hence (y — x)g = 0. Since g is dense, y = x. In
other words, ¢ is unique. Thus

Il = 1@l = llell = lIxqll.
Therefore ¢ is regular.

Now let p be any open projection in A**. Put ¢ = p+ (1 -p) and
R=gA*NA, Ri=pA*NA and R, =(1-p)A*NA. R, R; and
R, are closed right ideals of 4, whence they are submodules of 4.
Moreover, we have R = R; & R, (as an orthonormal direct sum of
two Hilbert 4-modules). Define a map y € R* by

y(ri®r)=r forallr, € R;and r; € R;.

We have 7 € 4* (= A) such that |z = v and ||¢| = ||w||. Thus
there is e € A such that er; = r; and er, =0 for all r, € R; and
rp € Ry. Let B = Her(q), B; = Her(p) and B, = Her(1 —p). For
any ap, bl € B; and a,, b2 €B,,

(a1 + ax)e(by + by) = (a1 + a2)by = a1 by.
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(a1 + az)e™(by + by) = (af + a3)"e™ (b + b3)"
= [(b] + by)e(ai + ax)" = [biaj]” = a1by.

Thus for any a, b € B, a(e — e*)b = 0. This implies
gle—e*)g=0

since g is a regular dense open projection, ¢ = e* (see [7, 4.1 (c)] for
example). For any b € B with b = b; + b,, where b; € By, b, € B,,
we have

e’b=e(e(by + b)) =eb, =eb,

so (e2—e)g = 0. By the density of g, e2 = e. Hence e is a
projectionin 4. Since e>p, e>p.But e(l-p)=0,s0e=p. It
follows from Proposition 3.14 that eAe is a C,-injective. Since p is
a dense open projection in [eAe]**, from the first part of the proof,
p 1is regular.

It remains to show that 4 is an AW*-algebra. In fact, we have
already shown it. If B; and B, are two orthogonal hereditary C*-
subalgebras and p; and p, are open projections corresponding to B;
and B,, respectively, then p;p) = 0. Since p; € 4, pyp, = 0. It
follows from [26, 1] that 4 is an AW *-algebra.

COROLLARY 3.15. Every unital Cy-injective C*-algebra is an AW*-
algebra.

THEOREM 3.16. Let A be a Cs-injective C*-algebra. Then M(A)
is Cy-injective if and only if M(A) = LM(A).

Proof. Let p be an open projection in M(A)*™, R, = pM(A4)* N
M(A) and Her(p) = pM(A)*NM(A). Set Rg =R,NA and By =
Her(p)NA. Then Ry is a closed ideal of 4 and By is a hereditary C*-
subalgebra of 4. Let py be the open projection in 4** corresponding
to R. Suppose that x € LM(R,, M(A)). Let y be the element in
LM(Ry, A) such that yr = xr for r € Ry. Clearly ||y|| < ||x||. Since
A is Cs-injective, there is X € LM (A) = M(A) such that |X|| = ||y||
and Xr = xr for all r € Ry. It is obvious that p(1 — py) = 0. Put
do = Dpo+ (1 —Py). So ¢qg is a dense open projection in 4**. For any
a € Her(qy) (the hereditary C*-subalgebra of 4 corresponding to gg)
and b € Her(p),

Xba = xba
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since ba € Her(qp). Thus
|(Xb — xb)qo|| =0 for b € Her(p).
Let {e;} be an approximate identity for A4; then
llex(® — x)bgo|| = 0 for each A.

Since qq is a dense open projection in A** and e;(X —x)be€ 4,

llex(X — x)b|| = 0
for each A. This implies Xb = xb for all b € Her(p). Therefore
Xr = xr for all r € R,. Moreover, ||X| = ||x||.

For the converse, take x € LM(A)\M(A). Since A is a closed ideal
of M(A), if M(A) were Cs-injective, there would be a X € M(A)
such that ||X|| = ||x|| and Xa = xa for all a € 4. This is impossible.

THEOREM 3.17. Let A be a C*-algebra. Consider the following
conditions:

(i) A4 is Cs-injective,

(ii) For every hereditary C*-subalgebra B of A and x € QM (B)

there is X € QM(A) such that axb = axb and ||X| = ||x||.

Then

(a) if every dense open projection in A** is regular, then (i) = (ii).

(b) if LM(A) = M(A), then (i) < (ii).

Proof. (a) Let A be a Cs-injective C*-algebra and p be an open
projection in 4**. Set B = Her(p) and g = p + (1 —p). Suppose
that x € QM(B) and {e;} is an approximate identity for B. Then
for each A, ¢; € LM(R,, A). Thus there is x; € LM(A) such that
x;r =e;xr forall r€ R; and ||x;|| = ||e;x|. Forany re R;, b€ B,

lbxzr — bxyr|l < ||bey — bey || [|xr|l.

Thus
(bx; — bx;)qll < ||bey — bey|| || xq|l.

Since g is a dense open projection, by the assumption, g is regular.
Since be; converges to b in norm, ¢ is dense and regular and bx;,
bx; € QM(A), by [7, 4.3 (a)],

lbx; — bxy ]| — 0.

Suppose that x,, is a weak limit of {x;} in A**; then bx; converges
to bx. in norm and ||x-|| < ||x||. For any a € A, bx;a converges
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to bx, in norm. Because bxja € A for each A, bx,a € A. Let
{u,} be an approximate identity for 4. Then

(XoolUa)* € LM(Ry, A).

Therefore there is X, € RM(A) with ||X,| = ||[XoUa| such that for
any t € (Ry)*, tXo = tXsoUq for all a. Thus, for any ¢ € (Ry)* and
aeA,

[tXaa — tXyall < [[tXeo|| [ 4aa — uyal|-

Notice that x,, tX, € QM(A). Repeating the previous arguments,
we conclude that X,a converges in norm for every a € A. Let X be
a weak limit of {X,} in A4**, then Xa =limX,a forall a € 4 and
IXIl = IIXall. For any a, c € A, cX,a converges to cXa in norm.
Since c¢X,a € A for each o, cXa € A. Therefore X € QM(A).
Clearly, axb = axb for all a, b€ B and |[X|| = ||x||.

(b) We first show (ii) = (i). We assume that R is a closed right
ideal of 4 and s € R* (= LM(R, A)). Let p be the open projection
corresponding to R, set ¢ = p+ (1 —p) and B = Her(q). Then
gs € QM (B). Therefore there is 5 € M(A4) = QM (A) (see [6, 4.18])
with ||5|| = ||¢gs|| such that ash = asb for all a and b € B. So
IIs]l = |Is]| - Moreover, for all b € B,

q5—s)b=0

since (5 = s)b € A, q is dense, (5 —s)b = 0. Hence 5r = sr for
r € R. This shows that 4 is Cs-injective. For (i) = (ii), we notice
from 3.16 that M(A) is Cs-injective. It follows from 3.14 that every
open projection in M(A) is regular. Since A4 is an ideal of M(A4),
every open projection in A is regular. By (a), (i) implies (ii).

REMARK 3.18. We do not know if (i) = (ii) is true in general.
However, we do know that (ii) does not imply (i) in general. See 3.26
(c) for an example.

COROLLARY 3.19. Every hereditary C*-subalgebra of a unital Cs-
injective C*-algebra satisfies the condition (ii) in 3.17.

COROLLARY 3.20. Let A be a unital Cs-injective C*-algebra and p
an open projection in A**.

(1) Suppose that s € Rg, then there is a unique 5 € Ap such that
s(r)=3r forall re R, and ||5|| = ||s||.



154 HUAXIN LIN

(2) Suppose that s € QM (Her(p)), then there is a unique 5 € pAp
such that asb = asb for all a, b € Her(p) and ||5| = ||s]| -

Proof. The uniqueness of 5 follows from the regularity of p.

COROLLARY 3.21. Let A be a closed ideal of a unital Cs-injective
C*-algebra. Then LM(A) = M(A).

Proof. Let B be a unital Cz-injective C*-algebra containing A4 as
a closed ideal. Suppose that p is the open projection in B** corre-
sponding to 4. By 3.14 (b), we may assume that 7 = 1. Suppose
that s € LM(A). By 3.20 (1), there is 5§ € B such that Sa = sa for
all ae 4 and ||5)| = ||s||. So for all a, b € A, asb = asb. Thus

asp = asp =as forall a € A.

Since A is an ideal of B, as € A. Therefore asp = a5, whence
as = as . This implies that s € M(A4).

COROLLARY 3.22. Let A be a hereditary C*-subalgebra of a C;s-
injective C*-algebra B. Consider the following conditions:

(1) A is Cs-injective;

(2) LM(A4) =M(A);

(3) A is an ideal of a Cs-injective C*-algebra,

(4) A is an ideal of a unital Cs-injective C*-algebra.
Then

(a) In general, we have

(2)=(@4)=(03)=(1).
(b) If B is unital, then
(1) & (4)=(3) = (1).

(c) If A is o-unital and every dense open projection of A is regular,
then
(4)=03)=(1)=>(2).
(d) If B is unital and A is o-unital, then

(1) & (2) & (3) &« (4).
Proof. Both (a) and (b) are now known and (d) follows from (b)

and (c). It remains to show (c) and it suffices to show (1) = (2). Let
R be a closed right ideal of 4 and s € L(R, A). Suppose that p is



C*-MODULES 155

the open projection in A** corresponding to R. Set ¢ =p + (1 — D)
and define s, € L(Ry, A) by

s1(r) =spr forreRy.

(Notice that R, is orthogonal to R(;_p).) Since 4 is Cs-injective,
and s; € L(R;, A) C LM(R,, A), there is §; € LM(A) such that
5ir = s;r for all r € R; and ||5;| = ||sy||. Since s; € L(Ry, 4),
s;€ LM(A). Forany re R; and a€ 4,

r*(sy —sj)a=0.

Thus ||g(57 —s7)all = 0 for all a € 4. Since (5] —s7)a € QM(A),
and ¢ is dense and regular, it follows from [7, 4.3 (a)] that

(sij—s7)a=0 forallae A.

Hence 5, € M(A). So A satisfies the condition (4) in 2.15. Since 4
is g-unital, by 2.15, LM (A) = M(A). This completes the proof.

THEOREM 3.23. Let H be a self-dual Hilbert module over a C,-
injective C*-algebra A. Then B(H) is a unital Cs-injective C*-
algebra. Consequently, K(H) is a Cs-injective C*-algebra.

Proof. Let p be an open projection in K(H)** and B = Her(p).
Suppose that T € QM(B). Set Hy = {bh:b € B, h € H} and
Hj is the closure of Hy,. By 2.13, K(Hp) = B. It follows from 1.7
that T € B(Hy, Hf). Since H is a self-dual Hilbert module over a
C,-injective C*-algebra 4, Hf c H (= H*). So T € B(Hy, H).
It follows from 3.3 that there is 7 € B(H) such that T| H =T
and ||T|| = ||T||. By 1.6, T € LM(K(H)). So K(H) satisfies the
condition (ii) in 3.17. Since H is self-dual, by [21, 3.5] and 1.6,
B(H) is unital and LM (K(H)) = M(K(H)) = B(H). By 3.17 (b)
and 3.16 both K(H) and B(H) are Cj-injective C*-algebras.

COROLLARY 3.24. Let A be a unital Cy-injective C*-algebra and
let M,(A) be the n x n matrix algebra over A. Then every hereditary
C*-subalgebra of M,(A) is Cs-injective. In particular, M,(A) is an
AW*-algebra.

Proof. Let H =A™ . Then H is self-dual.

REMARK 3.25. It is known that M,(A4) is an AW*-algebra if 4 is
an AW*-algebra. (See [3, §62].) It is definitely a deep theorem. It is
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shown by Gert K. Pedersen [27] that M, (A4) is a monotone complete
C*-algebra if A4 is. Corollary 3.24 is somehow related to these results.
For a better result, see 4.11.

THEOREM 3.26. Let A be an infinite dimensional monotone com-
plete C*-algebra. Then

(a) M(A®K) is not Cs-injective;

(b) OM(Q ® K) becomes a monotone complete C*-algebra;

(c) Every hereditary C*-subalgebra of A® K satisfies the condition
(ii) in 3.17. However, AQ® K is not Cs-injective.

Proof. Let H, be the Hilbert 4-module
{{an}: an€ A4,y aya, norm convergent} )
n

It follows from 3.7 that Hj is a self-dual A-module. By 3.8 and
3.5, every map in B(H,, H%) extends uniquely to a map in B(Hj)
with the same norm. It follows from [21, 3.5] that B(H%) = L(H¥),
whence B(HY) is a C*-algebra. For every map 7 € B(HY), T|n, €
B(H,4, HY). Therefore we may identify B(H,, H%) with B(H¥). By
1.8,
QM(A®K) = B(H,, HY).

By identifying QM (4A®K) with B(H%), QM(A®K) becomes a C*-
algebra. Suppose that {x,} C QM (A® K);,. is a bounded increasing
net. Let {e;;} be a matrix unit for K and set

k
e = Z 1 ®ej;.
i=1

It follows from [21] that for each n, M,(A4) is monotone complete.
So e,QM(A® K)e, (= My (A)) is monotone complete. Let x*) be
the least upper bound of the net {e,x,e;}. Since for any m > 0,

ek (€k+mXaCkim)ek = €xXal

we conclude that e x*+me, = x*) for all k (e.g. [11, Lemma 2.1]).
For any a, b € |, ex(4 ® K)ey , we define

axb =ax®p for some large k

such that both a and b are in ¢,(4 ® K)e, . This is well defined.
Since {x(®)} is bounded, x defines a quasi-multiplier of 4® K. We
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are now ready to check that x is a least upper bound of the net {x,}.
This proves (b). Since 4 x K and its hereditary C*-subalgebras are
hereditary C*-subalgebras of QM (4 ® K), by 3.8 and 3.19, the first
part of (c) follows. It is well known that if 4 is a unital, infinite
dimensional C*-algebra, LM(A® K) # M(A® K) (e.g. [19, part II,
Remarks]). Since 4 ® K is o-unital, by 3.22 (d), 4 ® K is not Cs3-
injective. Since 4 ® K is an ideal of M (4 ® K), it follows from 3.2
that M (A ® K) is not Cs-injective.

REMARK 3.27. From [27] we know that M, (A4) are monotone com-
plete for all n if 4 is a monotone complete C*-algebra. One may
suspect that M(A®K) is also monotone complete. However, 3.26 tells
us that QM (A ® K) is a monotone complete C*-algebra, M (4 ® K)
is not even Cj-injective. On the other hand, 4 ® K does have a nice
extension property.

One should notice that QM (A®K) is not a subalgebra of (AQK)**.
It is shown by L. G. Brown that for general C*-algebra B, if x €
QM (B), with x? € QM (B) then x € M(B) ([5, 2.61]). However,
this by no means contradicts 3.26 (c). If one examines carefully, one
may actually see how the multiplication is defined in QM (4 ® K) in
3.2 (b). In fact, if x € QM (A ® K), x is represented by an infinite
matrix (a;;) with a;; € A such that (a;;) is bounded. Moreover,
| 3°; aijaj;|l is bounded. Therefore if (b;;) is also in QM(4® K),
Yk Qikbyj — cij for some c;; € A with the Kadison-Pedersen arrow.
And (c¢;;) is in fact in QM (A ® K). The product of (a;;) with (b;;)
in 3.25 (b) is in fact (c;;). On the other hand ), a;.bx; does con-
verge weakly to an element c] ; in A**. This is why in (4 ® K)**,
(aij) € OM(M(A® K)), in general. Let m be a faithful representa-
tion of A® K. Then 7 can be extended to a faithful isomorphism of
M(A®K) and if we extend 7 further, n(QM(A®K)) is faithful. (See
[25, 3.12.5] and [6, 4.15].) Let Q be the C*-subalgebra of (4 ® K)**
generated by QM (A® K). By [6, 4.15], the atomic representation 7,
is faithful on Q. But the above shows that in general n(Q) is not
faithful.

COROLLARY 3.28. Let H be a countably generated Hilbert module
over a monotone complete C*-algebra A. Then B(H?) is a monotone
complete C*-algebra.

Proof. By Kasparov’s stabilization theorem [12], H = pH, for
some projection p in M(K(Hy)). It is clear then H* = pH* and
B(H*) = B(pH%) = pQM(A® K)p.
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REMARK 3.29. Let 4 be a unital C*-algebra. Consider the follow-
ing conditions:

(1) A is monotone complete;

(2) A is Cy-injective;

(3) 4 is Cs-injective;

(4) A is an AW*-algebra.
In general we have (1) = (2) = (3) = (4). If, in addition, 4 is
commutative, then they all are equivalent. There is no 4W™*-algebra
known not to be monotone complete. The first three types of C*-
algebras have a common property that all open projections in their
second duals are regular. We ask the following questions:

(a) Is every open projection in the second dual of an 4 *-algebra
regular (cf. [26, 21])?

(b) Is every AW*-algebra with the property that every open projec-
tion is regular in its second dual monotone complete?

(c) Any implication in reverse order among (1), (2), (3), (4)?

4. Extensions of bounded module maps, continued. In this section
we consider countably generated Hilbert modules. However, we are
not going to give countable versions of 3.1 and 3.11. In fact, there are
several ways to put countable conditions. We begin with a few easy
consequences of the last section.

COROLLARY 4.1. Let A be a monotone sequentially complete C*-
algebra and H a countably generated Hilbert A-module. Then the
A-valued inner product (-, -) extends to H* x H* in such a way as to
make H* into a self-dual Hilbert A-module. Moreover, the extended
inner product satisfies (1, x) = 1(x) and

Iz, DI'? = sup{Jlz(x)|: x| = 1, x € H}
for te H* and x € H.

Proof. By [20, 1.5], K(H) is o-unital.

COROLLARY 4.2. Let A be a monotone sequentially complete C*-
algebra. Suppose that H is a Hilbert A-module, Hy is a countably
generated, closed submodule of H and ¢ € H} . Then thereis ¢ € H*
such that §|y, = ¢ and ||¢]| = ||o|.

COROLLARY 4.3. Let A be a monotone sequentially complete, uni-
tal C*-algebra. Then QM (A ® K) becomes a monotone sequentially
complete C*-algebra.
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An open projection is called o-unital, if Her(p) is o-unital ([26,
21]).

LEMMA 4.4. Let A be a C*-algebra with real rank zero and cancel-
lation of projections. Suppose that p is a o-unital open projection in
M, (A)*. There is a partial isometry u € M,(A)* such that

n
Wwu=p and uu*= Zqi®eii,
i=1
where q; are open projections in A** and {e;;} is a matrix unit for
M, . Moreover, for any x € Her(p),

uxu* € Her(uu™).

Proof. Since A has real rank zero, there are projections {e,} in
Her(p) such that {e,} forms an approximate identity for Her(p).
Let py =€, and p,.1 =e€,1—€y, n=1,2,.... By [29], thereisa
partial isometry u; € M,(A) such that

n
1
uiuy =p and wuj = Zq} '®eii,
i=1

where q}l) are projections in 4. Since M,(A4) has cancellation of

projections (see [4, II1.2.4]),
. 1
<Y (1-gV)®ey.
i=1
Applying [29] again, there is u; € M, (A) such that
~
usup, =p, and wuyus = Z q,( ) ® ey,
i=1

where qlg) are projections in A4 such that qu) <l1l- qfl). By induc-
tion, there are a sequence of partial isometries u; € M,(4) and a

sequence of {qi(k)};’=l in A4 such that

n
* k
U Uy = Di and uku,*; = Z q,(c ) ® e;;

=1
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and ¢ 1¢®) if k#k', i=1,2,...,n. Then u € M,(4)*. By
the construction, we have

n
wu=p and uu*= ZQi®eiia
i=1
where ¢; = > 72 q,(k) is an open projection in 4**. Clearly, if x €
Her(p), uxu* € Her(uu*). This completes the proof.

THEOREM 4.5. Let A be a unital Cs-injective C*-algebra. Suppose
that Hy is a countably generated Hilbert A-submodule of a Hilbert
A-module H and ¢ is a bounded module map from H, into A. If
Hy is a closed submodule of A", then there is a module map ¢ from
H into A such that 9|y = ¢ and ||§| = |||l

Proof. By 3.14, A is an AW*-algebra. It follows form [3, §15] that
we may write 4 = A; ® A, where A; is properly infinite and A4, is
finite. For any Hilbert 4-module H, then H = H' & H"” , where H’
is an A4;-module and H” an A4,-module. It follows from [30] that 4,
is monotone sequentially complete. By 4.2, we may assume that A4 is
finite.

Since Hy C A", by 2.13, K(H,) is a hereditary C*-subalgebra of
M, (A). Let p be the open projection in M,(A4)** corresponding to
K(Hp). Since A is a finite AW*-algebra, 4 has real rank zero and
M, (A) is finite for each n. So Lemma 4.4 applies. Thus

n
HO = @ Rpi ’
i=1
where the p;’s are open projections in 4**. So we may write

P=010020 D ¢n,
where each ¢; isin R} . It follows from 3.20, that R} = R5 . So

Hf = éR,—,i.
i=1

Therefore, ¢ extends to a module map on H} (with the same norm).
Let P be the projection from H into Hg defined by

Px(h)=(x,h) forxe H, he H,.

Set 9 = poP. Then ¢ € H*, ¢|ly = ¢ and ||¢|| = |lp|l. This
completes the proof.



C*-MODULES 161

COROLLARY 4.6. Let A be a unital Cs-injective C*-algebra and H
a countably generated Hilbert A-module. If H is a closed submodule
of A", then the A-valued inner product (-, -) extends to H* x H* such
that H* becomes a self-dual Hilbert A-module with this inner product,

(tr,x)=1(x) and ||(z, D)|'* =sup{|lz(x)|:l|lx]| =1, x € H}
for te H* and x e H.

Proof. 1t is a combination of 4.1 and the proof of 4.5.

COROLLARY 4.7. Let A be a unital Cs-injective C*-algebra with a
faithful representation on a separable Hilbert space. Then M,(A) is
also a Cs-injective C*-algebra for all n.

Proof. Since M,(A) is unital, by 3.17 (b), it suffices to show that
M, (A) satisfies the condition (ii) in 3.17. Let B be a hereditary C*-
subalgebra of M,(A) and T € QM(B). Since A has a faithful rep-
resentation on a separable Hilbert space, so does M,,(A4). Therefore
B is o-unital. Let Hy be the closure of the set

{bh:be B, he A"}.

Then, by 2.13, K(Hy) = B. By [20, 1.5], Hy is countably generated.
By 1.7, T € B(Hy, Hf). For fixed x € A", define Ty € H} by

Tx(h)=(x, Th) for h e H,.

It follows from 4.5 that there is Ty € A" (A" is a self-dual) with
| 7%/l = lITx|| such that Tx(h) = Tx(h) for all » € Hy. Define a map
T:A" — H by

Th(x) = [Tx(h)]* for x and h € A"
Clearly T is a module map, Th = Th for all h € Hy and
IThON < I Tl IWall = N Teell el < DTl 12

for x,y € 4". So |T|| = ||T||. By 4.6, Hf c A". Therefore
T € B(A") = M,(A). Since T|Hy =T, T|p = T. This completes
the proof.

COROLLARY 4.8. Let A be a unital Cs-injective C*-algebra with a
faithful representation on a separable Hilbert space. Then every open
projection in M,(A)** is regular.
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THEOREM 4.9. Let A bea C*-algebra. If the A-valued inner product
(-, ) extends to H% x H¥% so that HY becomes a self-dual Hilbert A-
module and (1, x) = 1(Xx),

I{z, D'/ = sup{l|r()|: Ixll = 1, x € H}

for 1€ H% and x € Hy, then A is monotone sequentially complete.

Proof. Tt suffices to show that for any {x,} C A4, such that
{ll %=, x|} is bounded, there is a least upper bound for {} ;_, xx}
in 4.

Set 7 = {x,i/ 2}; then 7 defines an element in H% (see [14]). We
claim that (7, 7) is a least upper bound for {}7_, x;}. Let p, be
the projection in K(H,) such that

pn({ai}) = {by}

where by =a; if 0<k <n and by =0 if k > n. Then {p,} forms
an approximate identity for K(H,). Clearly,

(t, 1) > (ppt, 1) = Zn:xk.
k=1

Suppose that y € 4 and y > >°7_; x; for all n. We need to show
that y > (7, 7).
Let 0 <a < . For each k, set

1/2 _ _
ug(n) =xk/ (%+y) 1/2y1/2 a

It is known (e.g. [25, 1.4.4]) that uf{”) converges in norm (as 1 — 00) .
Set

u, = lim ugc").

n—oo
Since
m m
Z(ug‘))*(ug’)) — Z(_’l7 +y)—l/2yl/2_axk(’,1; +y)—1/2y1/2—a
k=1 k=1
< (% +y)—1/2y1/2—ay(% +y)—1/2y1/2—a,
as n — oo,

m
S wpu <yt <y,
k=1

forall m. Set & = {u;}, then & € H%. Clearly, v =¢-y~. Therefore
(7, 7) =y*(&, &y* for0<a<].
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By [14], 2

Il =

o0
5 v
k=1
(where > 72, ufuy is the strong limit of {) ;_, uju;} in 4**). Thus
I€]1> < |ly'~22||*. Hence

(€, < 2Py
forall 0 <a < }.Let a — 1, we have

(t, 1) <.

This completes the proof.
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