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SIMPLE LOCAL TRACE FORMULAS FOR
UNRAMIFIED p-AΌIC GROUPS

DAVID JOYNER

Let G be a connected unramified semi-simple group over a p-adic
field F. In this note, we compute a (Macdonald-)Plancherel-type
formula: IGiF)xG{F)f(fι)φ(g-ιhg)dgdh = / / v (*)/(*, φ)dμ(χ).
Here / is a spherical function, fv is its Satake transform, and
φ is a smooth function supported on the elliptic set. For this,
we use the Geometrical Lemma of Bernstein and Zelevinsky,
Macdonald's Plancherel formula, Macdonald's formula for the spher-
ical function, results of Casselman on intertwining operators of the
unramified series, and a combinatorial lemma of Arthur. This deriva-
tion follows a procedure of Waldspurger rather closely, where the case
of GL(ft) was worked out in detail. We may rewrite this formula as
SG(F) fiS~lyg) dg = Jfv(χ)I(χ, y) dμ{χ), for γ elliptic regular in
G(F) and / spherical. Here I(χ, y) is a distribution on the support
of the Plancherel measure (regarded as a compact complex analytic
variety).

Introduction. Let G be a connected unramified semi-simple group
over a /?-adic field F, let G r e g denote the subset of regular elements
of G(F), and let Ge\\ denote the subset of elliptic regular elements
of G(F). Let C™(G(F)) denote the algebra of locally constant com-
pactly supported functions on G(F) and let &(G9 K) denote the
commutative subalgebra of spherical functions associated to a hyper-
special, good, maximally bounded subgroup K of G(F).

Let Φ c C™(G(F)) denote the subspace of functions on G(F)
supported in (7e l l. For each φ e Φ, define

(0.1) Tφ: /.-> / f{h)φ(g-ιhg)dgdh.
JG(F)XG{F)

It is not hard to show that Tφ defines an "elliptic" invariant dis-
tribution in C£°(G(F)y with compactly generated support (that is
supp Tφ c CG, where C c G(F) is compact and CG denotes the
set of Gr(i7)-conjugacy classes containing an element of C). In
this note, we restrict Tφ to β?(G9K) and compute, in §§2-3, a
(Macdonald-)Plancherel-tyρe formula for Tφ:

(0.2)
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(see Theorem 3.10 below). For this, we use the Geometrical Lemma
of Bernstein and Zelevinsky, Macdonald's Plancherel formula, Mac-
donald's formula for the spherical function, results of Casselman on
intertwining operators of the unramified series, and a combinatorial
lemma of Arthur. This derivation follows the procedure of Wald-
spurger [W] rather closely, where the case of GL(n) was worked out
in detail.

Of course, the distribution Tψ also occurs in the context of Arthur's
local trace formula [Artl]. Let R denote the unitary representation of
G{F) x G(F) on L2(G(F)) given by (R(xx, x2)ψ){y) := ψ{x^yxi),
ψ e L2(G(F)). Given / = (fΪ9f2) in C?{G(F)) x C?(G(F)) ->
C°°(G(F) x G{F)), the kernel of the integral operator R(f) is

(0.3) Kf(xux2)= I fι(xιy)f2{yx2)dy
JG(F)

= ί A(y)f2(χϊιyχi)dy.
JG{F)

As in the global trace formula, one wants to find both a "geomet-
ric" and "spectral" formula for a truncated version of the integral of
Kf(x, x). It should be emphasized that this is done below only for a
very restricted class of / = (/i, f 2 ) .

Thus this paper could be viewed as a special case of Arthur's local
trace formula [Artl] or as a generalization of part of Waldspurger's
work [W]. Another way one might interpret these distributions I(χ, φ)
is as follows. We will see in §3 below that the φ H-> I{χ, φ) is in-
admissible in the sense of [HC]. Then, regarding this invariant dis-
tribution as a function (the existence of which is assured by applying
[HC, Theorem 19]), we may rewrite (0.2) as

(0.4) / f(g-ιγg)dg= ίfv(χ)I(χ,γ)dμ(χ),
JG(F) J

for γ € GQ\\ and / spherical. Here I(χ, γ) is a distribution on the
support of the Plancherel measure (regarded as a compact complex
analytic variety [M]).

A somewhat analogous formula to (0.4), for stable unipotent or-
bits, has been conjectured in [A]. Assem's conjecture is a theorem for
GL(n) and a number of other cases. For G = GL(n), the germ ex-
pansion and Assem's formula yield a relatively explicit expression for
I(χ, γ) (this idea can essentially be found in [W]). Finally, we remark
that in the case of SL(n) the fundamental lemma of Waldspurger [Wa]
may be reformulated as a functorial property of the I(χ, γ).
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1. Notation and background.

Root spaces. Let G be a connected unramified reductive group of
semi-simple rank / over F which has a splitting defined over an
unramified extension E/F. (Recall that a reductive group G over
F is unramified if it is quasi-split over F and has a splitting over a
finite unramified extension [Car, p. 135].) Let T denote a maximal
torus of G, B a Borel subgroup defined over F, and A a maximal
F-split torus G contained in B. Let Γ := Gdλ{E/F), let X* denote
the character lattice of T, and let Σj c X* denote the root system
in X* with respect to T. The Γ-module structure of X* leaves Σj
invariant. Let Σ denote the set of reduced roots of G relative to A
and Δ the corresponding reduced fundamental system. These are also
left invariant by Γ. The character lattice

(1.1) X

may be regarded as a quotient of X* containing Σ. Let

(1.2) X*(A) •= H o m z ( ; r ( Λ ) , Z)

denote the co-character lattice. Let Σ + c Σ be the subset of positive
roots containing Δ. We let Δ v denote the set of dual roots {α7α|α €
Δ} associated to Δ. For parabolic subgroups P and Q with AcPc
Q, let Δ^ denote the set of simple positive roots of (P n MQ , Ap),
where Q = MQNQ denotes the Levi decomposition and Ap denotes
the center of Mp. As usual, if Q = G then we drop the superscript:
Δ£ = Δ P .

For each subset flcA,we denote by PQ the parabolic subgroup
containing B associated to θ, by Pβ = MΘNΘ its Levi decomposition
(so Pφ = B, Mφ = A), and by AM = Aθ the split component of the
center of M = MQ . We abuse language and call a Levi component
M = Mp of a parabolic subgroup P = MN = MpNp a Levi subgroup
of G. Furthermore, by a Levi (parabolic) subgroup we will always
mean a Levi (parabolic) subgroup containing the torus A above. We
denote by <^(M) the set of parabolic subgroups of G having Levi
component M. If P c Q are parabolic subgroups there is a surjective
map between the Lie algebras ap —• αg whose kernel will be denoted
α^. From [Art3] we know that there are orthogonal decompositions
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αP = aQ Θ α^ and a*P = a*Q Θ (c$)*. For P e &>(M) and X G α 5 , let

X »-> XΛ/ denote the projection α# —• αp and let X κ-> X M denote

the projection α# —> α£. Furthermore, (Δ^) v forms a basis for α^

and (Δ^)Λ forms a basis for (α^)*. Let τ^ denote the characteristic

function on α# of the set

and let τ^ denote the characteristic function on α# of the set

The kernel of the map HM\ M(F) —• #p defined in [Art3] will be
denoted by M(F)1. This may also be described as the intersection
of all the kernels of the absolute values of the rational characters of
M(F). The Haar measure on M(F)1 will be that measure determined
by those on M(F), ap, and the pull-back by the map HM -

The natural pairing ( , •): X*(A) x X*(A) -> Z allows us to identify
X*(A) with the dual lattice of X*(A). Using this, we may define an
isomorphism

(1.3) Hom F . g r p s (GL(l), A) = X*(A).

We fix a uniformizing parameter π of F, \π\f = q~x, and let
Aa G A(F) denote the image α v (π) of π , regarding the coroot α v

as an element of HonciF_grps(GL(l), A). If G is split over F then it
satisfies (a) OB(aa) = q~2, (b) {aa\a e Δ} generates the abelian group
A(F)/(A(F)nK) freely, and (c) w~lawa = α α ~ ^ ( α ) ' α > , where vA

is as in (1.4) below ([Car, pp. 141-142], [M, pp. 42-43]). To each
j ? G Σ u ^ Σ , w e associate as in [Car, (24)] a real number qβ > 0. If G
is split and a G Σ then qa = q, qa/2 = 1, where q denotes the order
of the residue field.

Let

) R := X*(A) ®zR ?

and extend ( , •) to X*(^l)RxX*(yl)R. We use this pairing to identify
X*(^4)R and its R-vector space dual with A/A,R Thus we have two
bases Δ c X*(^ί)R and Δ v c X * ( ^ ) R of sfΛ^ such that ( α v , β) =
2δaβ for all a, β G Δ. Let X*(^) c := ̂ *(-4) ®z C.

We fix a special, good, maximally bounded subgroup K of G(F).
Each w e WG := NG^(A)/CG^(A) has a representation in K by
means of the identification

NG{F)(A)/CG{F)(A) = (KΠ NG{F)(A))/(K Π CG{F){A))



LOCAL TRACE FORMULAS 107

[Car, p. 140] (here CQ denotes the centralizer and NG denotes the
normalizer).

There is a surjection vA\ A(F) —• X*(A) characterized by

(1.4) (^(fl),A*) = M ^ ( f l ) ) , Vλ*eX*{A), aeA(F),

where vF\ Fx —> Z denotes the normalized valuation. Thus we obtain
an isomorphism

(1.5) v~A

x: XM) - A(F)/(A(F) n tf).

Thus every unramified character of A(F) may be identified with a
character of the discrete group X*(A). More generally, to each Levi
M of G we have

MM) {M)WA\) ^ ( ) / ( ^ ( ) n

Denote

Let
-ι(X) e Mι

= {X e X*(A)\v-ι(X) e Mι(F)/(A(F) ΠK)}

and let J ^ M := stf^ ® z R. Recall the projection S/A,R -
X ^ XM.

The complex dual of X*(A) is

(1.6)

where X*{A)L denotes the lattice of all A* e X*(A)C such that, for all
λ* G X*(A), (λ*, A*) G 2π/Z. Let C x l denote the unit circle in C.
We will use the notation j ^ * c to denote the complex dual of J ^ R ,
so that

(1.7) Hom u n r (^(F), C x l ) =

as complex varieties, where

In fact, once we fix an ordering of the roots Δ this isomorphism
is canonical. Here Hom u n r is defined as follows. If H(F) is any
closed subgroup of G(F), with the inherited compact-open topology
and if V is any (complex) Hubert space, with the discrete topology,
then TΛomum(H(F), End V) is the set of continuous homomorphisms
H(F) -> End V with a non-zero H(F) n infixed vector.
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Intertwining operators. For the unramified principal series represen-
tations (vχ, I(χ)) of G(F), associated to a character χ of A(F), we
refer to [Car]. We remark that the pairing ( , •) on I(χ) x I(χ~ι) de-
fined in [Car] allows us to identify the contragredient representation

(v?,i(x)~) with (1/,-,,/cr1)).
Let χ be a regular unramified character of A(F) (so wχ, w G WG ,

are all distinct), and let Tw: I(χ) —• I(wχ) denote the intertwining
operator of [Car]. If ΦA:,^ El(χ)κ denotes the unique ΛΓ-fixed vector
satisfying Φ ^ χ ( l ) = 1 then Casselman [Casl], [Car, Theorem 3.9]
has shown that

(1.8) T

where

Cw(X) =
aeΣ+ ,wa<0

It is also known that TWχWi = TwTWi, provided l{w\W2) =
/(^ 2) (here /(tt;) denotes the length of w e W).

PlanchereΓs formula andMacdonald's formula. Let ^(G,AΓ) de-
note the subalgebra of C£°(G) consisting of bi-AΓ-invariant functions
and C°°(G, K) the analogous subalgebra of C°°(G)—the space of
locally constant functions on G(F). Let G(F)1 denote the kernel of
the map HG: G(F) -* aG.

For / G I(χ), and χ unramified, define

f(g):= ί f(kg)dk,
JK

where the measure on K has total volume 1, and let Tχ := Φ^ .
Macdonald's formula states that

LEMMA 1.9. If χ is an unramified regular character of A(F) then

Tχ{a) = Q-χδB{a)χl2 Σ c(wχ)(wχ){a), a G A(F),
wew

where
Q:=

/ denoting the Iwahori subgroup of G and c(χ) :=
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For / e βf(G, K) and χ unramified, define the Fourier transform
of / at χ by

(1.10) /V(X):=/ f(g)Γx{g-ι)dg.
JG(Fγ

Let Ωχ(G) denote the set of all zonal spherical functions of G(F)1

relative to K:

(1.11) Ωκ(G):={ωeCco(G9K)\ω(l) = 1 and,

VfeJr(G,K), f*ω = λfω, some λfeC}.

Let Ω£(G) denote the subset of all positive definite zonal spherical
functions. It is known that, if / is unitary, then Γ^ e Ω£((?) [M,
Theorem 3.3.12]. We define, more generally, the Fourier transform of
fe&(G,K) at ωeΩ+(G) by

(1.12) Γ(ω):= ί f(g)ω(g-ι)dg.
JG{Fγ

The relation between the Fourier transform and the Satake transform
is given on [M, p. 47]. The Plancherel measure dμ(ω) is a positive
measure on Ω+((?) such that, for all / € ̂ (G, K),

(1.13) Γ(ω)eL2(Ω+(G),dμ)

and

(1.14) / \f(g)\2dg= I \Γ(ω)\2dμ(ω).
JG(Fγ Ja+

K(G)

By a theorem of Godement, such a measure exists and is unique.

LEMMA 1.5 (Macdonald [M, Theorem 5.1.2]). The support of the
Plancherel measure is the complex torus (1.7). Let s = (s\,... , s{) e
J ^ * c , let ds denote the Haar measure on s/J"c/L having total
volume 1, and let dχ be the corresponding Haar measure on
Yίomcoriχ{A{F), C x l ) obtained by transport of measure by (1.7). The
Plancherel measure of G(F) with respect to K is



110 DAVID JOYNER

COROLLARY 1.16. For all f eβ?{G,K),we have

Also, for all f\, fa € %?{G, K), we have

ί fχ{g)Mg)dg= ί jnω)jY(ω)dμ(ω)
JG{F)' JΩ+

K(G)

= ί JΪ(x)J7ωdμ(χ).
JsfϊJL

The Jacquet functor. The maximal compact subgroup K has the
property that for any parabolic subgroup P = MN of G, G(F) =
P(F)K, and for each Levi M of G, and every parabolic PM of M,
we also have M(F) = PM(F)(K ΠM(F)) [Car, p. 140]. In this case,
the notion of "compactly induced" representations [BZ, §1.8] agrees
with the usual notion of "unitarily induced" representations. Let

(1.17) iG§M: A l g M ^ A l g G ,

denote unitary induction, in the notation of [BZ], and let

(1.18) rMjG: AlgG-+AlgAf

denote the Jacquet functor [BZ, §2.3] (called the first Jacquet functor
in [Car, §2.2]). We shall sometimes write π# = rM,G(π) and Vp(τ) =

fcMτ)
Let WM denote the irrational Weyl group of M. The special case

of the "Geometrical lemma" of Bernstein-Zelevinsky which we need
is the following

LEMMA 1.19 [BZ, §2.12]. There is an enumeration w\, . . . , w^ of
WjWM (which we regard as a subgroup of W as in [Cas2, §1]) such
that, for each χ e Alg^4, we have the following decomposition of M-
modules

rM,G° ΪG9A(X) = VkDVk_lD-'-DVlDV0 = {0},

where each

is an irreducible M-module.

Let V(S) denote the semi-simplification of an M-module V.
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COROLLARY 1.20. For each χ e AlgA, we have the following de-
composition of M-modules

wew/wM

where the coset representations w are chosen as in Lemma 1.19.

REMARK. If χ is regular, so wχ Φ χ for all w e W/WM, then
a result of Casselman [Cas2, §§3, 6] implies that rMiGoiGA(χ) is a
semi-simple M-module.

Proof. Follows from Lemma 1.19 and the definition of the semi-
simplification. D

2. Inner products of some matrix coefficients.

Matrix coefficients. Assume as before that G is connected, unram-
ified, and reductive. Let P = MN denote a standard parabolic sub-
group of G. We often write G in place of G(F) when there is no
confusion.

We choose measures da, dn, dg so that meas(A(F) n K) =
meas(iV(jF) n K) = meas(^) = 1, let χ denote an unramified regular
character of A(F), and let Vβ(χ) denote the space of the full prin-
cipal series representation induced unitarily from χ. The elements
of VB(X) πiay be regarded as functions on G determined by their
restriction to K. Let RM denote the restriction map sending locally
constant functions on K to functions on M(F)Γ)K. From Casselman
[Cas2, §4], there is a canonical pairing ( , ) N on VB(χ)N x VB(χ~ι)N

such that, for all / , / ; e VB(χ), there is an e > 0 (depending on / ,
/ ' but independent of χ) satisfying

(2.1) <iσ,Λ*)(fl)/, f)G = (rA,GθiGM

for all a e A~(ε), where

A-(ε) := {a e A(F)/Z(G(F))\ \a(a)\F < ε, Vα e Δ},

and where ( , -)Q is as in [Car]. When ε = 1 we denote this by A~ .
This pairing allows us to identify VB{X~X)N with the contragredient
of VB(X)N The fact that ε is independent of (unramified) χ follows
from [Car, §3]. The dependence of / , f (once a basis {Kn} of
subgroup neighborhoods of the identity with respect to B has been
fixed [Cas2, §1.4]) can be seen from [Cas2, §§4.1-4.2].



112 DAVID JOYNER

LEMMA 2.2. For χ unramified regular, and any aeA~,

wew/wM

where fw is defined by rMyG(f) = fN = @w fw for f e VB{χ). Here
the decomposition is by Corollary 1.20 above and the coset representa-
tives w are chosen (without further mention) as in Lemma 1.19.

Proof. This is an immediate consequence of the fact that

(2.3) fN

w

and hence

(iG,A(x)(a)f)N=

= Yjδ
χl2{a){wχ){a)RMoTwf

W

w

LEMMA 2.4. If the image of f e VB(χ) under the Jacquet functor is

/N = Θwew/wMfw e VB(X)N and the image of f e VB(χ~ι) under

the Jacquet functor is f'N = @weWjwMfw € VB(χ~x)N then

(/N, ΓN)N = Σ C(W>M> X)(fw , /W)M,
wew/wM

for some constants c(w, M, χ) (to be determined later) and where

{u,uf)M:= I u(k)u'(k)dk.
JM{F)nκ

REMARK. We remark that for our choice of Haar measures, if u, u'
eJ^(M,MnK) then (w, w')M = w(l)w'(l).

Proof Identify VB(χ)N with the M-module ®W€JV/WJA9M(WX~1) -
As vector spaces, any bilinear pairing on

VB(χ)NxBv(χ-ι)N

is of the form

w,w'ew/wM
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where the aww. are constants, z = (zw\w e W/WM) e (BwiM,A(wX)>
z' = {z'w,\wr G WjWu) G Φu/ iM,A(w'χ-1), and (zw , z ^ ) 0 denotes
the pairing on V£*(χ) = IM,A(X) Using (2.1), we want to show that
aww> = 0 if wφw1.

Suppose not: if aww> φQ for some w ψw1, choose z to be such
that every component is zero except zw and choose z' to be such
that every component is zero except z'w,. We have

ΓM,G ° iG,A(x)(a)\iMjwχ)' z ^ δγl2(ά){wχ)(a)z,

and, of course, (w /"^(α) = (w'χ)(a)~ι. In particular,

for α € A~(ε). This is a contradiction. D

The following result generalizes Macdonald's formula (for split
groups). An analogous result is in [W, Lemma 1.3.1]. The proof given
here, which is more of a verification than a derivation, is different
from that in [W] in that we use Macdonald's formula (twice, in fact)
to evaluate the coefficients instead of a direct calculation.

LEMMA 2.5. Let χ be as in (2.2), / e VB(χ), and f e VB(χ-1).
For a G A~(ε), we have

(")f> f)
c(w,M, χ)δι'2(a)(wχ)(a)(Rm o Twf, Rm o Twf)M,

wew/wM

where e > 0 depends only on the level of f, f. Here c(w, M, χ) is
given by

n-\

In particular, if M = CQ{Λ) then

c{wχ)
c(w,A9χ) =

cw(χ)cw(χ~ι)9

as in [M] (for f = ΦA:^ and f = Φ^,/)

REMARK. Suppose that / is bi-invariant under Kf c K and f is
bi-invariant under Kf c K. We will use the fact that we may choose
ε > 0 once and for all with the property that the analogous identity
holds true (with this fixed value of ε) even if G is replaced by a



114 DAVID JOYNER

Levi M and / is replaced by f(w, k) := iM,A(wX)RMTwf, where
w € W/WM and k e K are arbitrary.

Proof. The identity itself, modulo the evaluation of the constants,
follows from Lemmas 2.2 and 2.4. To evaluate the constants when
M = CG(A) , take / = Φκ,χ and / ' = Φ^ χ-ι (in the notation of
[Car]). Then (iG,A(χ)(a)f, > ) = Yχ{a), by [Car, p. 151]. Moreover,

and
Twf = TWΦK χ-> = cw{χ-ι)ΦKwχ-ι,

by (1.8), so by the remark following Lemma 2.4, the identity becomes

Tx(a)=

Comparing this with Macdonald's formula (1.9) gives the result
claimed when M = CG{A).

In general we must proceed as follows. Taking f,f as above, we
find that

wew/wM

= Σ c{w9M9χ)T%χ{a)c%{χ)c*£{χ')
wew/wM

= δ(a)1'2 Σ(w'χ)(a)c(w'χ).
w'ew

The last equality is just Macdonald's formula for G. On the other
hand, Macdonald's formula for M states that

Plugging this into the above equation gives

wew/wM

Comparing these two equations gives

c(vwχ)
c{w,M, χ) =

for any υ G WjWM. Taking v — 1 gives the lemma. D
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LEMMA 2.6. Let χ, χf be two regular unramified characters of A{F)
and let u e VB(χ~ι) and uf e VB(χ'~ι). For all a e A~(e), with ε>0
as in (2.5),

/ (iG,A{χ)(g)Φκ,χ,u)G(iGyA(χ')(g)Φκ .,u')Gdg
JKaK

= mens(KaK) ] Γ cM(a, w, χ)cM{a, w', /')
w,w'ew/wM

X (U(W, * ) , M/(T£7/, * ) ) G ,

Proof. Using Lemma 2.5, we have

i^) / {iG,A(x)(a)φκ,z' π (

X<ίGM(/)(

c(ty , M, /)

w,w'ew/wM

x c K , M, / ) / ( Ϊ ' G ^ W W Λ J I / T ^ Φ ^ ^ , RMTwπ(k)u)M
JK

x (iGM'){a)RMTw>ΦKa>, RMTw>π{k)u')Mdk,

where π := /G,ΛOC)|A' = iG,A(x')\κ is independent of (unramified) χ.
Plugging Casselman's (1.8) into this, we find that the above equation
equals

δ{a) meas(KaK) 5Z c(w, M, χ)
w,w'ew/wM

x c(w'9 M , χ')cw{χ){wχ){a)cw'{χ){wfχf){a)

x / (RMΦκ,wχ,RMTwπ{k)uf)M

J K

x (RM&K,W'9χ' > RMTw>π{k)u")Mdk.

Putting these equations together gives the desired result. D
A truncated inner product of matrix coefficients. Let T ES/A,R and

assume that d(T) := inf α e Δ (Γ, a) is positive, so T belongs to the
positive Weyl chamber. The set

(2.7) sfA(T) := {a e X*(A) modvA(Z(G(F)))\(a9 a) > 0,
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is obviously finite. By (1.4), we may choose T as above so that

where sfΛ{T)c = vA(A-)-s*Λ(T). Define G(T) := Kv~x (stfA{T)c)K c
K.A-(ε)-K.

Using the bijection (1.5), we define

(2.8) Jτ(χ,χ',tS,t/')

:= Σ /
-\^T))JK

Before calculating this, we need the following

LEMMA 2.9. Let χ be a regular unramified character of A{F) and
let T = Σa Ta<xy e X*(A) c <&A,R be as above. For each subset ω c Δ
with corresponding parabolic P = Pω, there is an entire function of χ,
denoted Fω^τ{χ) = Fp,τ{χ)> uniformly bounded on the support of the
Plancherel measure (1.7), such that

ω c A a e ω

ωcΔ

PnCP

where θ is defined in (2.13) below. (Of course, the zeros of Fωiτix)
cancelwith the poles of l\aeω(l-χ(aa))~ι, since ujι(ssfA(T)) is finite.)
In fact, Fω9τ(χ) may be written as

where Fω(χ) is independent of T.

REMARK. The statement of the lemma remains true if we replace
VA

1(<&A(T)) by A~(l), provided the sum is defined (either / is in
the product of half-planes where the sum converges absolutely, or, if
X belongs to the complement of this region define the sum by analytic
continuation). In this case, the poles of this meromorphic function of
X are precisely those of Y[aeω{q - χ(aa))'1.
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Proof. First consider the part of vJι(&fA(T)) away from the walls:

moduA(Z(G(F)))\

(a, a) > 0 , (α v , a-T) < 0 , VαeΔ}.

We can assume χ(a) is of the form

where Resα < 0. In this case, one can see directly that

- χ{aa))-\

where F^rOt) is a polynomial in the χ{aa). Now let

s/A(T)ω:={aes/A(T)\(a,a)<0,

Vα G ω, (a, a) = 0, Vα € Δ - ω},

so Λi(Γ) Δ =j< 1 (Γ) i e g and

(2.10) sfA(T)=U^
ωeA

In each case, one can see directly that

(2.H)

and the result follows. D

From [M, Proposition 3.2.15] we find that, for a e A~{\),

(2.12) 1

where 2^ = 2 ^ ^ ^ is constant on each v^x(stfA{T)ω). The case of
the above lemma which we will need is the following. Assume that
χ, χ1 are unramified regular unitary characters of A(F). Then

{wχ)(a){w'χ'){a)Qa,

equals

(2.13)
w.w'ew POCP

(l-(wχw'χ')(aa)),

where
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PROPOSITION 2.14. Assume that χ, χ' are unramified regular char-
acters of A(F), that u e VB(χ~ι), u! e VB(χ'-χ), and that Γ G J / ^ R

is chosen as above (depending on G and the "level" of w, u1). We
have

Jτ(χ,χ',u,u') = Σ Cτ(χ,χ',w,w')(Twu,Twfu')G.
w,w'ew

If T G X*(A) is chosen sufficiently regular as in Lemma 2.9, then
Cτ{χ, / ' , w, wr) may be effectively calculated using Lemma 2.9 and
(2.13). In any case, Cτ(χ, χ', w, w') is meromorphic in χ and χ'
and has no poles on the support of the Plancherel measure (1.7). (Note
that the sum here is over W and not W/WM.)

REMARK. We only indicate below the formal derivative of the for-
mula, referring the proof of the statement about the poles and mero-
morphicity to Lemma 2.9 and (2.13).

Proof. The proof is by induction on the semi-simple rank of G.
If the semi-simple rank of G is 0 then G is a torus and the result

follows immediately from definition (2.8), (2.12), Lemma 2.6 and the
case of Lemma 2.9 mentioned in (2.13). Indeed, in this case

so (2.12) gives

(2.15a) Σ δ(a)(wχ)(a)(w'χf)(a)m^(KaK)

a&-\sίΛ(T))

= Σ, (wx)(a)(w'x')(a)QA-
a&-\sίΛ(T))

By (2.13), this is

(2.15b) Σ QωFω,τ(™X™'x') Π t
ωCΔ aζω

Putting these together gives

Jτ(χ,χ',u,u')= Σ ί

κ,χ'> u')Gdg

Σ cM(a,w,χ)cM(a,w',χ')(Twu,Tw'U
f)G,

w.w'ew

by Lemma 2.6.
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Now suppose that the semi-simple rank of G is greater than zero.
By the induction hypothesis the result holds true for all proper Levi
subgroups of G.

Let D c vA(Z(G)) ® R be a subset invariant under translation by
uA(Z(G)), let Γ, U e J ^ , R be such that d(U - T) > 0 with T as
above. Let ξ(M, D, T ,U) denote the characteristic function of the
set of X €3?A,R such that

{a,XM)>0, (ά,XM) < (α, Γ M ) , Vα€Δ M ,

(α, XM) > (α, Γ M ) , (ά, XM) < (ά, £/M) , V α E Δ G - Δ M .

Let /D(X) equal 1 if XG e i) and equal 0 otherwise. Observe that the
statement and proof of [W, Lemma Π.3.1], in the context of GL{n),
is valid without change for the more general class of groups G used
here. Multiplying both sides of the equation in [W, Lemma II.3.1] by
ID we obtain the following equation (see also [W, p. 15]):

MCG

We will use the same notation for the pull-back of ξ(M, D, T ,U)
to A(F) via vA in (1.4).

Let

(2A6)JE(χ,χ',u,u'):= £ / {
JT\ J KaK

ξ(G,D, U, U)(a) f (iG,A(χ)(8)Φκ,χ,u)G
JlCaK

= Σ Σ / (h,AiX)(gy>K,X^)G
MCG aeA~ K a K

x {iG,A(x')(g)φκ,χ' ,u')Gdg'ξ(M, D, T, U)(a)

jl'v{M,χ,χ',u,u'),
MCG
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where each j£>u(M, χ, χr, w, u!), defined by the identity above,
depends on T and U but the sum over M of them depends only on
U.

To verify the proposition we calculate the Jp'u(M, χ, χf, w, uf)
inductively. We consider the cases M = G and M φG separately.

Case M = G. In this case there is no dependence on U:

JKaK
/

- JKaK

,D, T, T)(ά)

Case M Φ G. In this case the semi-simple rank of M is strictly
less than that of G, so the induction hypothesis is applicable to M.
Suppose X e aB is such that ξ(M, D, Γ, U){X) = 1. For each
a e ΣG - ΣM with α > 0 there exists a β G ΔG - AM such that
α - β is a positive root, so (a, X) > (/?, X). We thus have (α, X) >
(JS, A) > (jβ, T). With Γ chosen sufficiently regular, Lemma 2.6
gives

(2.18) / (
JKaK

Σ yol(KaK)
w,w'ew/wM

x / (iG,A(wx)(a)RM
J K

x {iG,A{o>'χ')(a)RMΦκ,w',χ'> RMTω'π{k)u")Mdk

y (iG,A(wχ)(a)φMMwχ, u(w,k))M

where u(w, k) := R.MTwπ{k)u. Concerning the integral in this last
expression, reversing the reasoning in the proof of Lemma 2.6 above
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gives

( 2 . 1 9 ) i \iG3A[v>X)(a)vriPM 9nη,,u\w9κ))M
IK

x (iG,A(w'χ')(a)Φ^wlχ,,u'(w', k))Mdk

= / f <iG,A(wχ)(a)Φ%M wγ,u(w,hk))M
JκJκM 'wχ

x (iG,A(w'χ')(a)Φ^>w,χl, u'(w', hk))Mdhdk

= δM{a)-λvo\{KMaKM)-χ

L
x {iM,A(™'x')(m)Φ%M>w,χ,, u'(w', k))Mdmdk.

(This is the analog of the calculation on [W, bottom of p. 16].) We
will now show that this last expression is the integral over K of the
summand of J^,'u'M(wχ, w'χ', u(w, k), u(w', k)), where D' will
be defined below. This inner product

jT'u'M(wχ,w'χ', u(w,k), u(w', k))

is an M-analog of our original inner product, so the induction hy-
pothesis applies.

In more detail, by (2.12) there is a constant CM independent of a
such that

cMδM(a)δ(a)-1=yol(KaK)yol(KMaKM)-ϊ.

Now plug (2.19) into (2.18) to get

(2.20)

jl'u{M,χ,χ',u,u')

L Σξ{M,D,T,U)(a)
w,w'ew/wM

X / u JiM,A(wχ)(m)ΦfM , u(w, k))M
JKMaKM X

^ w , χ l , u'(w', k))Mdm dk.

Denote by DM{T, U) the set of X € Λ ^ ) R such that

XGeD, (a,X-T)>0 and (ά,X-U)<0, VaeAG-AM.
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We have ([W, p. 17])

(2.21) ξ(M, D, T9 U)=ζM(M, DM(T, U), T, Γ),

which gives our D' mentioned above. Putting together (2.20), (2.21),
and the definition of the inner product integral, we obtain

Jτ'u(M9χ9χ'9u9u!)

= cM Σ / JDM(T,u)(wX > w'x' > u(w > k)> w'(™' > k))dk -
w,w'ew/wM

 κ

wM

Note that the T chosen above depends only on G and the "level" of
u and uf. We want to apply the induction hypothesis with u and
u' replaced by u(w, k) and u'(w', k), but with the same T. To
check that this is valid it suffices to check that the level of u(w, k)
and u'(w', k) in M is not worse than the level of u and ur in
G. Since W is finite, K is compact, and w, uf are supported in
some fixed compact set, we may fix T so large that the induction
hypothesis applies to u, ur and all the u(w, k), u'(w', k). Applying
the induction hypothesis to j£ ^τ jj){wχ, w'χf, u{w, k), u'(w', k)),
we obtain

(2.22a) j£>u{M,χ,χ'9u,i/)

= cM /
w,w'ew/wM

 κ

x (Tfu(w9k)TFu!(w'9 k))Mdk.

In fact, since u(w, k) := RMTwπ(k)u it follows that

{Tv

Mu(w,k),TMu'(w',k))Mdk= Σ (Tσu,Tσ.u')G

v,υ'eWM v,υ'eWM

where σ = wfw^vw, σ' = wfw^v'w', and wf* denotes the
longest element of WM (see [W, p. 17, eqs. (2), (3)]). Therefore,

(2.22b) jT>u(M,χ,χ',u,u')

= CM Σ CT

M>u{v,v>){Twu,Tw,u')Gdk,
w ,w'ew

where C^u(v ,vf) takes the form

(2.23) Cl*u(v9v') = cM(-Vfl*M) E
a€A
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Here γa(χ, χ', υ, v') is meromorphic in χ and χ', having no poles
on the support of the Plancherel measure (1.7), and χ(M) denotes
the characteristic function of the set of a € A~ such that

vA(a)GeD,

(a,uA(a)M - TM) > 0, (ά, uA(a)M - UM) > 0, Va e Δ ° - AM,

(ά,uA(a)M-TM)>0, V α € Δ M .

Collecting equations (2.16), (2.17), (2.22), and (2.23), we get

(2.24)

Jί'u(χ,χ',u,u')

= Jί'U(G,χ,χ', M, «') + X; Jl'u(M,χ,χ', u, u')
MCG

S(χχ'uu')= JS(χ,χ',u,u')+ X
w,w'eW

] Γ (Twu,Tw>u')G

w,w'eW MCG
MφG

w,w'ew

Here is where we apply a combinatorial lemma. In the notation of
[Art3], we have

(2.25) χ(M)(a)

uG(a) -T,U- T)τM(vG(a) - T),

where ID denotes the characteristic function of D and Γ ^ ( J , Y) =
τ^(X-Y)τM{Y-X). By [Morn, Lemma 13.1.3, lecture 13] (or [Art2,
§2]), we have

(2.26)
MCG
MφG

= lD(vG(a)G)(--iγkW[τM(vA(a) - U) - τM(vA(a) - T)].

The function lD(vG{a)G)τM(vG(a) - T) is the characteristic function
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of ujl(s/A(T)c). From (2.25) and (2.26), we obtain

aev-\s/Λ(U)c)

ya(x,x', v,v')

ya(x,x',v, v') - (-

Plugging these into (2.24), we obtain the proposition. Note that the
dependence on T in the final expression is fictitious since the left-
hand side depends only on U.

In fact, these sums can be rewritten using Lemma 2.9—see also
(2.13). D

3. Integrating the kernel. The Fourier transform of a truncated or-
bital integral. Let

(3.1) G(T):= U KaK,

and recall

(3.2) Tx{g

= (iG,A(x)(h)iG,A(x)(s)Φκ,χ>X

We wish to calculate, for φ e C£°(G), the Fourier transform

(3.3) IT(X,Φ):= I Tx{h)( φ{g-'hg)dgdh
JG(F) JG(T)

= f Γx(g-ιhg)φ(h)dhdg.
JG(T)xG(F)

The idea is to expand (3.2) into a double series using an orthogonal
basis and, for each term in the expansion, use the computations of the
previous section to evaluate (3.3).
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PROPOSITION 3.4. Let T e X*(A) be as in Proposition 2.14 and let
χ be unramifiedy regular character ofA(F). We have

, φ) = lim Σ QT^ >X'>W>W'> Φ)θ(wχ/w'χTι,

independent of T(\), where θ is as in (2.13), and

Qτ(χ,χf,w,w',φ)

(χ, χf~ι, u;, w')θ{wχlw'χ'),

notation o/(2.14). ΓΛ^ mα/7 ^ H-> /(χ, 0) w an invariant G-
admissible distribution on Gt\\ in the sense of[HC]. Moreover, if w Φ
w' then

lim Qτ(χ,χ',w,w', Φ)θ(wχ/w'χTι = 0.

Proof of 3 A. The operator adjoint to

is
Tw:VB(wχ)-+VB(χ),

so

(3.5) (Twu, Tw,u')G = {u, ΊZTw*t/)G.

Let {ui\i G /} denote an {A(F) n ^Γ)-bi-invariant orthonormal basis
for VB(χ)9{u*i\ieI} its dual basis for VB(χ'1) (so(« f, w*)G = δu).
Expand

and

This and (3.2) give

χ-ι, uj)G.
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Plugging this into the definition of Iτ(χ, φ) gives

πx,x',Φ)= Σ Σ

x /
JG(F)

ijei

x
G(F)

By Proposition 2.14 and (3.5), this is

Σ Σ Cτ(χ9χ-ι

9w,w')
ijei w,w'ew

x (ui9 ΊZTw'U$G(iG9A

Since {w/}5{w*} are orthonormal bases,

(ui9 T^Twlu))G{iGi

Collecting these results gives the first statement of the proposition,
except for the claim that the result is independent of T G X*(A).
Putting together Proposition 3.4 and the evaluation of the coefficients
CT(X> X1 >w > w') i n (2.13), we obtain the last part of the proposi-
tion. The claim that the result is independent of T follows from
Proposition 2.14.

It remains to prove the admissibility. From [HC, §14] it follows
that the distribution φ H+ tr[I£ Tw>iG^a{χ)(φ)] is a meromorphic fam-
ily of admissible distributions. Therefore, φ •-• Qτ(χ, χf ,w ,w', φ)
satisfies the G-admissibility property of [HC, §14], Since I(χ, φ) is
the limit of a linear combination of the Qτ(χ, χf, w , wf, φ), it also
satisfies the G-admissibility property. This proves the proposition
completely. D

Integrating the kernel Let φ e C£°(G) have suppφ c Geii. The
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support of the distribution

(3.7) f^i(f,φ):= ί f(g-ιhg)φ(h)dgdh
JG{F)ιxG{Fγ

•L f(h)Φφ(h)dh
G(F)1

/ Φf(h)φ(h)dh,
G(F)1

for / G C£°(G), is compactly generated by a well-known lemma of
Harish-Chandra. Here, for h G GQ\\,

Φφ(h):= ί Φ{g-ιhg)dh,
JG(Fγ

with respect to ordinary Haar measure on G(F)1. Let / e C£°(G)
and let φ be any locally constant function with compact support in
GeU so that, writing

F(G)ι= U KaK,
aeA'(l)

there are only finitely many cosets KaK which support / and φ.
The following lemma is a corollary of a well-known lemma of

Harish-Chandra.

LEMMA 3.8. Let φ be any locally constant function with compact
support in Gt\\ and let f e β?(G, K). There is a compact set Cf9ψ c
G(F) for which f(g-ιhg)φ(h) φ 0 implies geCfjφ.

For / and φ as above, by Lemma 3.8 we have

(3.9) supp ( I f(g-ιhg)φ(h)dh) c Kv-\tfA{T))K,
\JG(FΫ )

where T is sufficiently large and satisfies the conditions of Proposition
2.14. Fix such a T=T(f,φ) and let

:= ί
JG

ί f(g-ιhg)φ(h)dgdh,
G{T)xG{Fγ

so / Γ ( / , φ) = / ( / , φ). For / G ;T(G, K), the Plancherel formula
(1.16) gives

f(g-lhg) = / Γ(χ)Γχ(g-ιhg) dμ(χ).

From this we obtain the following "spectral expansion":
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THEOREM 3.10. Let f and φ be as in Lemma 3.8, and T =
T(f, φ) as in (3.9). We have

x / Γ(χ)Γχ(g-ιhg)dμ(χ)φ(h)dgdh

J$f

where I(χ, φ) is given by Proposition 3.4.

The Weyl integration formula states that

(3.11) / ψ(h)dh = Σ-±- I
JG(FΫ V \WT\Jτ

G(F)1 7FΓ|JΓ(F)

xί
JT(F)\G(Fγ

where T runs over a complete set of representatives of non-conjugate
Cartans of G(F)1 and Wτ denotes the Weyl group of T. Taking
/ , φ as in Lemma 3.8, we have that Jc φ(c) dc = 0, for any regular
non-elliptic conjugacy class C c G(F)1. Plugging ψ = fΦφ into
(3.11), we obtain the "geometric" expansion:

(3.12) /(/,^) = £ _ L ^ A(t)2Φf(t)Φφ(t)dt,

where Φ^ is the orbital integral of / as above.
The equality between (3.10) and (3.12) may be regarded as a special

case of Arthur's local trace formula.
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