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ON MEANS OF DISTANCES
ON THE SURFACE OF A SPHERE. II
(UPPER BOUNDS)

GEROLD WAGNER !

Given N points x;, ..., xy on the unitsphere S in Euclidean d
space (d > 3), lower bounds for the deviation of the sum 3" |x—Xx;|*,
a>1-d; x € S, from its mean value were established in terms
of L'-norms in the first part of this paper. In the present part it
is shown that these bounds are best possible. Our main tool is a
multidimensional quadrature formula with equal weights.

1. Introduction. On the surface S = S?~! of the unit sphere in d-
dimensional Euclidean space E (d > 3), we consider a certain class
of distance functions and distance functionals, associated with a given
N point set wy = {x;, X2, ..., Xy} on S. Denote by |x — y| the
Euclidean distance between two points x and y in E9. Let x € $9-!
be a variable point. For each value of a parameter a (1-d < a < o0)
consider the distance function U,(x, wy) which we define as follows:

N
Uas(x, a)N)=Z|x—xj|a—N-m(a, d) fora#0,
j=1

and N
Us(x, wn) =Y loglx —x;| = N-m(0, d).
j=1
Here m(a, d) denotes the mean value of |x — x;/* on S9!, ie.

m(a,d)=&%§/g|x—xj|ada(x) for a # 0,

m(0,d) = —&—(IT)/Sloglx - Xj|do(x),

where ¢ is the (d — 1)-dimensional area measure on S9~!.

In the first part [4] we proved certain lower bounds for the L!-norms
of the functions U,(x, wy) (see Theorem 1 in [4]). The existence of
such lower bounds is due to the fact that uniform distribution on §¢-!

! The author died on March 10, 1990 in a skiing accident in Austria.

381
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can be approximated by an N point distribution to a certain degree
of accuracy only. In this part we will show that the lower bounds
obtained in [4] are best possible, apart from the values of certain
constants. More precisely, we shall prove:

THEOREM A. For any o > 1 —d and some positive constant ¢ =
c(a, d), there exists, for each N > 1, an N-tuple % of points S%-!
(depending on o) such that the following relations hold:

(a) maxyes|Ua(x, @) < c(a, d)- N~*/E@=D jf0<a<oo; a#
-2,4,...,

(b) minyes Uy(x, @) < c(a, d)-N=*/d=-D) jf 1 -d <a<O0,

(C) maXyes U()(X, w(j)v) < (Oa d) if a=0,

(d) Us(x,0%)=0if a€{2,4,...} and N > Ny(a, d).

In view of the relations [ U,(x, wy)d(a(x)) = 0, the bounds in
(a)-(c) are also upper bounds for the L!-norms

1
a(s)

(The reader should compare Theorem A with Theorem 1 in [4].)

Part (d) of the assertion describes an exceptional case: if a is a pos-
itive even integer, the function U,(x, wy) is a trigonometric polyno-
mial in the spherical coordinates of S?~!. Note that the logarithmic
case a = 0 for dimension d = 3 has already been treated in [3]. In
[4] we also considered, for a given set wy = {x;, X2, ..., Xy} of
points of S9-! distance functionals E,(wy) defined by

/S > |Ua(x, @%)|do(x).

N N
Eo(on) =D > (Ixj—xi|* = m(a,d)) for0<a<2,
j=1lk=1
Eo(wn) =YY (loglx; — x| — m(0, d)),
J#k
and

Eo(on) =YY (xj|*—=m(a,d)) forl-d<a<0.
J#k
For 0<a<2 and N > 2, the sum E,(wy) is known to be negative

(see Theorem 2 in [4]).
An application of Theorem A immediately yields
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THEOREM B. For any a with 0 < a < 2 and some positive constant
c(a, d) there exists, for each N > 2, an N-tuple a)S{, of points on
S9-1 (depending on «) such that the following inequality holds:

Ey (%) > —ci(a, d) - N1=o/(@=D)

Here c\(a, d) is a positive constant, independent of N .

Theorem B shows that the inequality proved in [4] (Theorem 2(a))
is best possible, apart from the value of ¢;(a, d). We remark that the
special case a = 1 has already been proved by K. B. Stolarsky [2].

The situation for the sums E,(wy) in the unbounded case 1 —d <
a < 0 is more complicated. The bounds obtained in [4] are thought to
be best possible only for parameters o satisfying 1 —d <a<3-4d.
Unlike as in the preceding case, Theorem A can no longer be used
to derive the existence of “good” point sets w?\,. Instead, we give a
direct construction of such point sets, but only for spheres in three-
dimensional space. We have the following proposition:

THEOREM C. Let d = 3. For any a with -2 < a < 0 and some
positive constant ci(c) there exists, for each N > 2, an N-tuple w%
of points on S?* such that

(1) Ey(0}) < —ci(a) - N172/2,

Similarly, for « =0 and N > 2, there exists an &9, such that
N
() Eo(}) 2 5 - log +O(N).

Note that the logarithmic case has already been handled in the au-
thor’s paper [3]. There the construction of the set w‘}v is described
completely, but the proof of relation (2), due to its highly compu-
tational nature, is only sketched. This unpleasant situation prevails
even more in the case —2 < a < 0, and so again we shall omit the
computational details.

For a physical interpretation of results in the special case o = —1,
d = 3, we refer to the author’s paper [4].

2. Proof of Theorems A and B. The construction of “good” point
sets @}, for the proof of Theorems A and B depends on a result
(“Main Lemma”) on numerical integration with equal weights. As
usual, the spherical coordinates on S?~! are denoted by 6,, 6,, ...,
0> (00, <m and ¢ (0 < ¢ < 2rn). Futhermore, we denote
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by Q, the set of trigonometric polynomials in the variables 6, 6,,
, 05_, and ¢, of degree not exceeding r, i.e. polynomials of the
form

p(61,02,...,04_5,9)
= Z a(jl:jZa'”ajd—Zik)

L I<r, ki<r
d-2
- @Xp (i- (Zj,ﬂ,ntk-(b)) ,
u=1
where j, (0 = 1,2,...,d —2) and k are integers, and the
a(ji, ..., jg_2, k) are arbitrary complex coefficients.

MAIN LEMMA. For all d > 3 and all r € N there exists an ng =
no(r, d) such that, for all domains D C S~ of the form

D= {(013 ey 0d—2a ¢). ﬂl,u < 6/1 < Bz,ua 1 S¢S YZ},
the following is true:

For each (d—1)-tuple of integers (my, m,, ..., mgy_,, n) satisfying
mj 2 ng j=1,...,d—-2) and n > ny, there is a set P of n -
l'[ i mj points (0ﬂl, Ou,> -5 Oy, ¢v) 1<pu;<m;, 1<v<n)
on D with the property that

a(D)
3) card P 2P = | pydow
for each trigonometric polynomzal p(u) =p0y,60y,...,0,_5,0) €

Qr.

Let us make a few remarks.

(1) The mere existence of the number ny(r, d) for a given fixed
domain D follows from a general result of P.D. Seymour and T.
Zaslavsky [1]. However, we need independence of the bound ny(r, d)
from the special choice of the domain D. As the proofs given in [1]
are not constructive, the results of these two authors cannot be used
for our purpose.

(2) We may consider formula (3) as a quadrature formula with equal
weights for the system of functions €2,. A classical negative result for
ordinary polynomials on an interval (due to S. N. Bernstein) shows
that we may not expect the bound ny(r, d) to be of an order as small
as ri-1,
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(3) In order not to interrupt the line of the proof of Theorems A
and B, we shall postpone the proof of the Main Lemma to the end of
the paper.

The proof of Theorem A splits into several cases according to the
value of the parameter «.

The case 0 < o< 2. Let a be fixed, and let no =ng (r=d, d) be
the number the existence of which is guaranteed by the Main Lemma.
Let N be sufficiently large, N = k - ng‘l + 1/, where 0 </ < ng‘l
and k = [N/nd~1]. By cutting the coordinate intervals 0 < 6, < =
(u=1,2,...,d-2) and 0 < ¢ < 27 into pieces appropriately,
it is not difficult to see that we may divide the surface §9-! into
subdomains Dy, D, ..., D;, t = t(N), which are “rectangles” in the
system of spherical coordinates, and which possess the following basic

properties:

(a) We have a(D;) = N‘l-ng’l-a(S) fort=1,2,...,t-1,
and for t=¢ if / =0, and a(D,):N"l-l-(l+ng‘1) “1.g(8S) if
0<l<ndt.

(b) Denoting by |D:| = supy yep |x —y| the diameter of D, we
have

(4) ID| <y - N“YE=-D  (1=1,2,...,1),

where ¢, is a positive constant depending on the dimension d only.

We apply the Main Lemma to each of the domains D,. We choose
m; =my = - =my_o =n = ng for the domains D, ..., D,_y,
and for D, if / = 0, and m; = my = - = my_, = (1 +ng*1),
n=101-1+ ng“l for D, if [ > 0. The set of interpolation points,
distributed on each D, according to the Main Lemma, will be denoted
by P, where card P, =n- 1'[‘};12 mj, with m;, n as defined above.

Let ze = (3(Bi+B]), .. s 3(Baa+By_5), 3(y+7')) be the “mid-
point” of the domain D, = {f, <6, < f,, » <$ < y'}. (This choice
of z; on D, is rather arbitrary.)

Fix x € S9!, and denote by D, the convex hull of D, in d-
dimensional space E“. By relation (4), there are at most O(1) do-
mains D; for which the inequality

(5) x —y[ < e NTVED

holds for some point y € D,. (For simiplicity, we use the same
constant ¢, in (4) and (5).) On each of these O(1) domains, the
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following inequality is true:

/ [x —y|*da(y Z [x — ul®

u€ePp,

(6)

< 5757 900 (2ey - NV

+ 3 (20, - N-V@=Dya « N7o/ld=1)
uep,

Let M; (¢g=1,2,...) be the class of domains D; such that

g-c; - N"V@-D <min|x—y| < (g+1)-c- N~/
yeD,

By (4), there are at most < ¢?~2 domains D; in M,. On each D,
of M, , consider the Taylor expansion

(7 |x=yl*=Ix- Zrla
+ Z - z7)grad,)"|x —w(j_. +R(x, )

—Td(xay)+R(xsy)>
where

RGx, ¥) = (0 = 2o erady) e = wli, oy
0<d<l.
The remainder term can be estimated as
(8) IR(x, y)| « N-@+D/(@d=1) (g . N-1/(d=1)ya=d~1
& 41, N—e/d-1)

The main term 7y,(x, y) is a polynomial in the cartesian coordinates
of y of degree < d which, after introducing spherical coordinates,
becomes a trigonometric polynomial in 6y, ..., 8,;_,, ¢ of the class
Q. , again of degree < d . By our choice of the point set P;, we have

S)/ Ty(x,y)do(y) = Zde u)

ueP,

Hence, for each D; in M, noting (8), we have the inequality

'N a
TS)/DrIx—ylada(y)—le—yl

u€eP,

< qa—-d—l . N—a/(d—l) )
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Here, as in the preceding inequalities, the constants implicit in the
Vinogradov symbols <« may depend on a and d, but are indepen-
dent of ¢, 7, x, and N. Summing over all classes M, and noting
(6), we finally obtain:

N t
555 L= de) =30 3 e~

=1 uep,

& N—a/(d—l) + zqd—z . qa—d—l . N—a/(d—l) < N—a/(d—l) .
q=1

This proves Theorem A in the case 0 < a < 2, and Theorem B.

Thecase 2 <a <oo.Inthecases 2<a<4, 4<a<6,..., we
proceed as before, choosing successively r =d +2, d +4, ..., and
approximating |x —y|* by a Taylor polynomial of degree < r. In the
case « =2h (h=1,2,...), note that |x — y|* is a trigonometric
polynomial of degree 24 in the variables 6, ..., 6;_,, ¢. Choosing
D =S and r = 2Ah in the Main Lemma, the assertion follows.

The case 1 —d < a < 0. We proceed as in the case 0 < a < 2,
choosing r = d in the Main Lemma. The only difference in the
argument concerns the derivation of the estimate (6), which has to be
replaced in the following way: For fixed x on S, consider again those
domains D, for which |x — y| < ¢y - N~!/(@=1) holds for some point
y in the convex hull of D;. Then the following one-sided estimate is
true for a < 0:

O 2 ko= %/B [~ y|*do(y) > —c3(ar, d) - N~/

uek,

In order to prove (9), we simply omit the sum and estimate the integral
from above, using relation (4). In the logarithmic case « = 0, the
corresponding inequality is

(10) Y toglx—ul = o [ loglr—ylds(y) < —cu(d).

uepP,

Here the sum cancels the logarithmic part of the integral, leaving a
remainder which is bounded from above.

From (8), (9), and (10) the assertion follows. This finishes our proof
of Theorem A.
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3. Outline of a proof of Theorem C. The method of constructing
“good” point sets w?v inthecase d = 3, -2 <a<0,isof a
similar type as the one given in §2. The verification of the inequality
in Theorem C, however, requires careful direct estimation.

We begin by describing the construction.

Let « and N > 2 be fixed. Put N = [VN-.b], where B is a
positive constant to be determined later. Denoting the spherical coor-
dinates on S% asusualby 8 (0< 6 <nr) and ¢ (0< ¢ <2m), we
define angles 6, ..., 83, by the conditions

0=0p<b;<---<Oy=m

such that N, := %(cos 6,_1—cosb,) (u=1,2,..., M) are positive
integers, and such that

holds for b < 4 < M — b and certain numerical constants 0 < K; <
K> . Each zone D, := {(0, ¢): 0,1 < 6 < 6,} is divided into N,
subdomains D,;, where

o1
Dﬂ;={<e,¢):0u_lseseu, 2m - N (f‘i)

1

—1{ :

cocam. w3 (1+3))
(u=1,...,M; j=0,...,N,—1).

On each D,;, we choose a point x,; = (&, ¢uj), where ¢,; =

2nj/N, and cosé, = %(cosB,_; +cosf,). Let o = {x,}. By

a heuristic argument we will try to explain why the set w?v can be

expected to satisfy inequality (1).
For fixed x,;, the term |x,; —x,,|* is roughly equal to the integral

N o
in /Dyklx;u‘ - y|*do(y);
hence the whole sum
(11) oY (% — Xkl = m(a, 3))
(. AW, k)
corresponds to the sum of integrals

> g [ (b =yl = mia, 3) do).

(12) -
(&5))
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This latter sum (12) is easily seen to be
(13) < —cs- b7/ N1-(@/2)

What remains to be shown is the fact that the error which we commit
when replacing (11) by (12), is of smaller order than the bound (13).
This turns out to be true if we choose b large enough, and if the
numbers N, satisfy some additional condition of arithmetical nature.
The proof, however, is too laborious to be presented here.

4. On quadrature formulas with equal weights. The Main Lemma
will be derived from the following theorem which may be of indepen-
dent interest in itself.

THEOREM. Let w(x) > 0 be an integral weight function on the in-
terval [—1, 1], satisfying the relations f_ll w(x)dx =1 and

(14) Ly > w(x) > Ly (1 - |x])”,

with constants Ly >0, Ly >0,and f>0. Let ®={¢y, ..., ¢s} be
a system of three times continuously differentiable functions on [—1, 1],
with the additional property that the derivatives ¢\, ¢, ..., ¢, form
an orthonormal system with respect to the weight function w(x). Let
(15) K, = max #erllﬁf’s(lqﬁ;tl, |l 1841)

Then there exists a number ny, depending only on Ly, L,, K{, B,
and s, such that for each n > ng, there exist points t;, tp, ..., t,
with —1<ti<t,<---<t, <1 and

n 1
(16) S tut) = [ dutewix)dx
j=1 -

for all ¢, € ® simultaneously.

Proof. 1. In the sequel we will have to deal with the functions ¢/, ,
b, (u,v =1,2,...,5), and their derivatives up to the second
order. By our assumption (15), all these functions are bounded in
absolute value by

K = max(K,, 4K}?).
For the construction of the point set {f;}, we use Newton’s method.
We begin by defining intervals I; = [x;_;, x;] by the relation

Xj ]
/ w(x)dx=; (j=0,1,...,n).
-1
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By assumption (14), we have (|I;| = length of I;)
(17) (Li-n)"' < <2-(Lyey-m)77,

where we write y := 1/(f + 1) for the sake of brevity.
In the interior of each interval 7;, choose the (uniquely determined)
point ¢; with the property that

(18) /I(x—éj)w(x)dx=0.

By the assumption w(x) < L; in (14), the following inequality holds:
(19) min(x; — &, & —xj_1) > (2L, - n)~!

We use the point set {{;} as the starting point of a Newton itera-
tion process. By changing the values of &; successively, we obtain a
sequence of n-point sets on [—1, 1], converging to a set —1 < ¢; <
-+ <ty < 1 with the desired property (16), provided that the number
n is chosen large enough. We remark here that if not otherwise stated,
all the constants that appear in the following parts of the proof are
assumed to dependon L, L,, K;, B, s, butnoton n.
2. Let f be any function on [—1, 1], twice continuously differen-
tiable and satisfying the relation

(20) [Ipf)li](lf'(X)l, /() < K.

By Taylor’s theorem, using (18), we have the following basic estimate:

n /, St e 1E)| = n /, (706) = FENw) d
=5 [ arremmwema <5 1P

Summing over all intervals /;, and noting (17), we obtain:

1) Zf(é, —n/ F(x)w(x) dx <_Z|1| <eion.

Now assume that —1 < 7y < --- < 1, < 1 is a new set of points,
satisfying |; —n;| <6 for j=1,2,...,n, and some real 6 > 0.
By (20) and (21) we have the estimate

(22) <c-1-n"+6-n-K.

n 1
S fln) —n / Fx)w(x) dx
J=1 -1
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3. Without loss of generality we may assume that fjl Pu(x)w(x)dx
= 0 holds for all ¢, in ®. Suppose that after the rth step of the
iteration procedure we arrive at a point set —1 <7 < --- < 1, < 1
(r = 0 describes the initial situation n; = £;) with the following two
properties:

n 1
(23) S fm)=n [ fGxpolde| < Coon
j=1 -
for each f satisfying relation (20), and
(24) Yobump)=pu  (m=1,....9),
j=1

where |p,| < o, for all values of x, and C,, o, are positive constants
which may depend on .

Put 173. =1; — h;. Replacing 7; by 7} in (24), and linearizing, we
obtain the following linear system of equations for the corrections #; :

n
(25) Shdun)=pu (u=1,....5).
j=1
We are looking for a solution vector (4, A3, ..., h,) of (25) with all

the h; being small. Here we make essential use of the orthogonor-
mality of the derivatives ¢), with respect to w(x). We interpret the
system (25) as a set of hyperplanes in Euclidean n-space. By (23), we
obtain the following estimates for the scalar products between their

normal vectors (¢},(11), ..., },(1)):

Z¢;;(’71)¢;/(’71) =: IAuV| < Cr'n_y (,u;éll),
j=1
and
(26) > ¢2(n) = Ay zn—Cron.
j=1

An application of Lagrange’s method (with multipliers 4,) to the ex-
pression

Sohi=>"4 (Z h;d, (n)) — ,01/)
=1 v=1 =1
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leads to a minimal solution of (25). For the multipliers 4, we obtain
the following linear system of equations:

v=1

Multiplying both sides of (27) by ¢,(n;) and summing over j, we
obtain, using (26), a new system of equations:

N
(28) 2wy =) Awh,  (H=1,2,...,5).
v=1

The matrix of the system (28) is approximately diagonal in view of
(26). We have the decomposition
Ay, 0 1 *
(Apy) = A . . : . =D.(I+B),
0 4] \s 1
(I = identity matrix) , where the entries of B are
<C-n?/(n-C,-n77)
in absolute value. Let us calculate the inverse matrix (4, )~ !:

(Aw) '=(I-B+B*—+...)-D"'=(I+B)-D!,

where the entries of B; are < C,-n77/(n—(s+1)C,-n~7) in absolute
value. Hence the entries of the inverse (4,,)~! are in absolute value

<Mt —s5.C)- (M- (s+1)C) - (n-C,on7?)7!
in the main diagonal, and by
<C-n’-(n—(s+1)C) (' - C)7!

elsewhere. Inserting these estimates into (28) and (27), we obtain the
following inequalities:

(29) Al <20, 0" - (0" —(s+1)C)T (w=1,...,5)
and

|hj| < sKo,-n? - (n'*7 = (s+ 1)C,)™' (j=1,...,n).
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If we replace #; = n;—h; in (24), the new error terms p,, are bounded
in absolute value by

n
(30) Ori S Y gh? - maxmax |4 (x)
=1

v xel)
< %K3s20,2(n _(s+ 1)Cn )72,
By (29) and (22) the new constant C,,; in (23) can be chosen as small
as

(31) Cri1 < Cr+0,-sK*n'(n - (s + 1)Cn )7L,

Keeping in mind that gy < Cyn~7 by (21), it is not difficult to prove
by induction from (30) and (31) that if we choose the number n of
interpolation points large enough, the following inequalities are true:

or < (COn_y)T > Cr+1 -G Lo 271 CO and G < 262 : CO .

Moreover, it follows from the second half of (29) that the total dis-
placement of the initial points £; does not exceed

o0
c3-n N o, <cqen”
r=0

Hence, in view of (19), all the limit points ¢; of the sequences ¢;, ...,
Nj» 11}, ... are contained in the interval (—1, 1). This finishes the
proof of the theorem.

In order to derive the Main Lemma from the preceding theorem
we have to prove that the bound K; in condition (15) can be chosen
such as to be independent of certain parameters connected with the
choice of the domain D.

LEMMA. Let w(x) be a weight function on [—1, 1], satisfying the
conditions f_llw(x)dx =1 and w(x) > Ly(1 — |x|)#, where B, L,
are positive constants. Let ¥ = {Ty(x), ..., T»,(x)} be the system of
functions on [—1, 1] defined by

1 —cosex

sz(x)=(W)j (J=0,...,71

and )
sinex

Trj1(x) = Thj(x) - .

(j=0,...,r—1).
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Here ¢ denotes a positive real parameter. If the functions T; are or-
thonormalized successively with respect to w(x) by the Gram-Schmidt
process, and if € < gy(Ly, r, B) holds, then the functions of the new
system are bounded on [—1, 1] by a constant which depends on r, L,
and B, but not on ¢.

Proof. Let ¥, = {go =Ty, &1, --- » &} be the orthonormal system
resulting from ¥. Each g; has a unique representation of the form
(32) gi(x)=bjoTo(x) +---+b;;Tj(x).

Assume that for some s, 0 < s < 2r, the following inequality holds:

(33) bl £ K(s, Ly, B) = K
(Gj=0,1,....,5:k=0,1,...,J).

Note that (33) is true for s = 0 with Ky = 1. We proceed by in-
duction on s. We orthogonalize the function 7}, ;(x) with respect to

8o, ..., & by setting

K} s+1

(34) Ss+1(x) = Topa(x) = Z(gja s+1)8j(x) = Za,T(x

j=0

and
&s+1(X) = fsx1(X)/ || fsx1ll2-

Here as usual we define (f, g) = f_ll f(x)g(x)w(x)dx and ||f||3 =

(f, ).
Note that |Tj(x)| <1 on [-1, 1]; hence [(g;, Ts41)| < 1. From

(32) and (33) it follows that
(35) laj] < (s+ 1) K;

for j=0,...,s+1. All we have to prove is that || f;,||> is bounded
from below. From the inequality

|T(x) ~ x| < cis) - €2,

valid from x € [-1,1], j=0,1,...,5s+ 1, and ¢ < 1 it follows
that f,.(x) admits an approximation by a monic polynomial, i.e.

fir1(x) = x4+ dix + - + dy + R(x) = ps(x) + R(x),

where |R(x)| < &%-cy(s, Ly, B). Using expansion of ps(x) into
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Legendre polynomials, we easily obtain:

(1A% |fe41(X)] > c3(s) — 2+ €7,
where c3(s) > 0.

Furthermore, using [f], (x)| < Y lajl - |T' (X)| < ca(s, Ly, B), we
find that | f;,;(x)|> %63 (s) holds on an interval of length >d(s, L,, f)
> 0, provided that ¢ is small enough. From the assumption w(x) >
Ly(1—|x|)# we obtain the estimate || f;;1]l2 > ¢s(s, Ly, B) > 0, which
proves the assertion in view of the relations (34) and (35).

COROLLARY. As the derivatives T(x) and Tj(x) (j=0,...,2r)
are bounded on [—1, 1], uniformly in € > &g, it follows from (32) that
the assertion of the lemma is also true for the derivatives g; and g

The proof of the Main Lemma is now completed as follows.

Let D={0,,<0,<05,, 1 <¢$ < ¢} CS be the given domain.
First we note that it is sufficient to prove the Main Lemma for do-
mains D for which the differences 6, —0;, (u =1,...,d -2)
and ¢, — ¢; are sufficiently small. In order to obtain the asser-
tion for domains of arbitrary size, we only have to stick together a
bounded number of suitable “small” D’s. Secondly we note that it
is sufficient to prove the existence of the bound ny(r) for each co-
ordinate separately. Without restriction, we choose the coordinate
0., the proof for the other coordinates being essentially the same.
We are hence given the interval of integration 6;; < 6 < 6,;, the
weight function sin?~26;, and the system of functions Q,.(6)) =
{1,cos6,,...,cosrfy,sinf;,...,sinr6;}. By a suitable linear
transformation, replacing the variable 6#; by x, we obtain the interval
—1 < x <1, the weight function

1
w(x) = sin? % e(x — xo)// sind?2e(x — xo) dx,
-1

where & = $(62; — 0;1) and xo = (621 + 6011)/(621 — 611) , and the sys-

tem Q) = {1, cosex, ..., sinrex}. We replace the system Q) by the
equivalent system Q) = {1, Gy, Gy, ..., Gy}, where Gy, ..., Gy,
are arbitrary primitives of the functions gy, g2, ..., &, defined in

the proof of the lemma. By the lemma, the assumptions of the the-
orem are now satisfied with f =d — 2, L; and L, depending on
d only, and Ky <c¢(Lp, B,r) =c(r),assoon as ¢ < &y(Ly, f, 1) =
go(r) . This finishes the proof of the Main Lemma.
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