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ONE-DIMENSIONAL NASH GROUPS

JAMES J. MADDEN AND CHARLES M. STANTON

A Lie group equipped with a compatible real algebraic structure is
called a locally Nash group. We prove some general facts about lo-
cally Nash groups, then we classify the one-dimensional locally Nash
groups, using a theorem of Weierstrass that characterizes the analytic
functions satisfying an algebraic addition theorem. Besides the stan-
dard Nash structure on the additive group of real numbers, there are
locally Nash structures on the additive reals induced by the exponen-
tial function, the sine function, and by any elliptic function that is real
on R. There are no other simply connected one-dimensional locally
Nash groups. Any two quotients of the additive reals with their stan-
dard Nash structure by discrete subgroups are Nash equivalent. For
other locally Nash structures on 1., the quotients R/aZ and R/βZ
are Nash equivalent if and only if a/β is rational. The classification
of the one-dimensional Nash groups is equivalent to the classification
of the one-dimensional semialgebraic groups. It is precisely these
groups that are definable over R, so we have also classified the one-
dimensional groups definable over R.

0. Introduction. The main part of this paper concerns semialge-
braic geometry and complex analysis, and we expect our audience to
be mostly semialgebraic geometers. Nonetheless, our motivation was
a problem that arose in mathematical logic. In recent years, logi-
cians have been much interested in questions of the definability of
one structure within another. For various reasons, questions of defin-
ability within ordered structures have received a lot of attention (see
[PS]), as have questions concerning the definability of groups (see [P]
and [NP]). These two concerns come together in the papers [R] and
[NPR], where groups of low dimension definable in ominimal struc-
tures are classified up to group theoretic equivalence. We offer here
a classification up to definable equivalence of the one-dimensional
groups definable over R.

The results of this paper rest on two important works by others. The
first is a theorem of Pillay [P], which reduces the problem of classi-
fying the groups definable over R to the problem of classifying Nash
groups. In other words, despite the fact that not even continuity is
assumed in posing the original problem, Pillay's paper shows that we
can solve it by working within an analytic category. The second is a
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somewhat neglected theorem of Weierstrass that characterizes the an-
alytic functions on a neighborhood of the origin in the complex plane
that satisfy an algebraic addition theorem. The remaining ingredients
are some formal lemmas on Nash groups in §2 and certain consider-
ations that involve R-rationality in §4. We have organized the paper
in such a way that a reader interested only in Nash groups can begin
reading at §1. The applications to definable groups are described in
§5.

The sets definable over R are exactly the semialgebraic sets. Thus,
our theorem is also a classification of the one-dimensional semial-
gebraic groups up to semialgebraic equivalence. This is merely ter-
minology, but in connection with this there is an important note. In
semialgebraic geometry, the functions one considers are almost always
continuous. In contrast, in this paper, we do not assume continuity for
the group operation and do not assume a semialgebraic group equiv-
alence to be a homeomorphism.

It is worth remarking that although our primary concern is with
definable structures, it has proved natural and useful to work with a
category including objects that are not definable—namely, the locally
Nash groups. These, in general, are definable only locally. Other
semialgebraic geometers have noted the convenience of introducing
such objects; see, e.g., [DK].

Acknowledgments. We would like to thank A. Pillay for suggesting
this problem and for many useful conversations while the paper was
being written, M. Shiota for providing a preprint of his book [S] and
for useful advice about Nash manifolds, M. Knebusch for valuable
comments on an earlier version of the paper, and the referee for a
number of useful suggestions.

1. Nash manifolds. A semialgebraic subset of Rn is a finite union
of sets of the form

{x e Rn : Mx) = •.• = fk{x) = 0, gι(x) > 0 , . . . , gι(x) > 0}

where f\, . . . , fa , g\9 ... 9 gι are polynomial functions on Rn . By
Tarski's theorem on the elimination of quantifiers, the semialgebraic
sets are precisely the sets definable over R in the first order language
of fields.

A semialgebraic function is a function (necessarily between semial-
gebraic sets) whose graph is a semialgebraic set.

A Nash function is a real analytic function / = (fγ, . . . , f m ) : U —>
Rm (where U is an open semialgebraic subset of RΛ) such that for
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each of the components fa there is a nontrivial polynomial P such
t h a t P(xχ , . . . , x n , f k ( x χ , . . . , x n ) ) = 0 f o r a l l ( x \ 9 . . . 9 x n ) e U.
Equivalently, a Nash function is a function that is at once analytic
and semialgebraic.

Let M be a manifold of dimension n. A Λfas /z chart is a home-
omorphism ψ: U —• 5 , where £/ is an open subset of M and £
is an open semialgebraic subset of RΛ. Two Nash charts ψi and
ψj with domains £// and £// are Nash compatible if /̂(C// Π Uj) is
semialgebraic and

VO ° Ψf1: V/W n uj) -> Ψj(ui n ^y)

is a Nash diffeomorphism. A locally Nash atlas on M is a set of
Nash compatible charts whose domains cover M. Equipped with a
locally Nash atlas {ψ{\, Λ/ is called a locally Nash manifold. A JVαsA
manifold is a locally Nash manifold whose atlas has finitely many
charts. A Nash manifold is a definable object. Its underlying set
may be taken to be a semialgebraic set, namely the disjoint union of
the images of the charts, modulo the definable equivalence relation
determined by the gluing maps.

The simplest Nash manifold of dimension n is the manifold W1

with the Nash atlas whose only chart is the identity maping of Rn . We
shall say that this manifold is Rn with the standard Nash structure.

If (M, {ψi}) and (TV, {φj}) are locally Nash manifolds, then a
Nash mapping is a continuous map F: M —• N such that for all /
and j

is a Nash function. (Here, of course, Ut and Vj are the domains
of ψi and φj.) A bijective Nash mapping F: M —> JV is a Nash
equivalence if the mapping F~ι: N -+ M is also Nash. If {ψi) and
{0/} are compatible locally Nash atlases for M (i.e., for all / and j ,
ψi and φj are compatible), then clearly the identity map is a Nash
equivalence of (Af, {^ }) with (M, {0/}).

LEMMA. 77ze composite of two Nash maps is Nash.

Proof. In view of the definitions, this reduces to the known fact that
if / : U —• R is an analytic function defined on an open semialgebraic
subset U of Rn and if, for each u e U, there is a neighborhood F
of w on which / is semialgebraic, then / is semialgebraic on U. D



334 JAMES J. MADDEN AND CHARLES M. STANTON

REMARK. The lemma is more delicate than one might assume. For
example, if we were to define locally C°-semialgebraic manifolds in
analogy to the way we defined locally Nash manifolds, then the corre-
sponding lemma would fail. The lemma, and the comment immedi-
ately preceding it, imply that a map which is Nash with respect to one
atlas (on either the domain or codomain) is Nash with respect to any
compatible atlas. This is not true in the C° case. A periodic piecewise
linear function on R is C°-semialgebraic with respect to the domain
atlas whose charts are the identity function on compact intervals and
the codomain atlas with a single chart. It is not C°-semialgebraic
with respect to the compatible domain atlas with but one chart. The
lemma and the sentence preceding it show that there is no need to
introduce the term "locally Nash map". A map between manifolds
which is Nash with respect to given locally Nash atlases on its do-
main and codomain is Nash with respect to any Nash atlases—finite
or not—which are compatible with the given atlases. Another way of
making this point would be to say that the category of Nash manifolds
is a full subcategory of the category of locally Nash manifolds. Note
that the category of semialgebraic spaces and semialgebraic maps is
not a full subcategory of the category of spaces locally modeled in
the classical sense on locally semialgebraic spaces and maps. (This is
slightly different from the category considered in [DK].)

2. Nash groups. If G is a (locally) Nash manifold, then G x G is
a (locally) Nash manifold in a natural way. If G is equipped with
group operations

G X G - > G ; ( X J ) H X . J ; and G—+ G; x t-+ x~ι

that are given by Nash mappings, then G is called a (locally) Nash
group. There is an obvious forgetful functor from (locally) Nash
groups to real analytic groups.

We want to consider what data are required in order to determine
a locally Nash group atlas on a given real analytic group G. Any
coordinate chart must be an analytic map. Also, if a locally Nash group
atlas on G is given, then an equivalent atlas can be manufactured
from any one chart and the group operation, since the translates of
any single chart form a locally Nash group atlas.

If G is a real analytic group, then a chart on a neighborhood of the
identity that satisfies algebraic compatibility conditions with the group
operation in G actually determines a locally Nash group structure on
G. The following lemma makes this precise. Let M be the graph of
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the group operation (M = {(g, h, gh): g, h e G}), and for each g e
G, let Kg be the graph of conjugation by g (Kg = {{h, g~ιhg): /z G
G}). Then we have

LEMMA 1. Suppose U c G is an open neighborhood of the identity
and ψ is an analytic homeomorphism of U with an open semialge-
braic subset ofW. Ifψxψx ψ(M Π{U x U x U)) is semialgebraic
and for all g G G there is a neighborhood of the identity Ug c U such
that ψ x ψ(Kg Γ\(UgxUg)) is semialgebraic, then ψ and its translates
determine a locally Nash group atlas on G.

Proof. Let Ψ* be the set of all neighborhoods V of the identity
such that V = V~ι, V2 c U, and î (K) is semialgebraic. The sets
gV, where g e G, and K E ^ , cover G. We show that the maps

define a locally Nash group atlas.
If gVγ Π hV2 = W φ 0 , then the graph of the transition function

ΨgiW) "^ Ψh{W) is the projection of the following subset of
onto the last 2n coordinates:

ψ x ψ x ^(Mn(C/ x c/ x
x^(F0 x l n n { ^ Λ ) } x f x ψ{V2).

Therefore the function is semialgebraic. As it is analytic, it is Nash,
and so we have a locally Nash atlas.

To show that inversion (= inv) is Nash, it suffices to show that

is Nash on ψ(V) for sufficiently small V e "V. This function is equal
to the following composition:

Ψg(gv) = ψ{v) H+ ψ(gvg~ι) *-+ ψ(gv~ιg-1) = Ψg-ι(v-ιg~ι).

By assumption this composition is Nash when V e "V is sufficiently
small and υ G V.

To show that multiplication is locally Nash, it suffices to show that
each (gγ, g2) G G x G has a neighborhood on which multiplication
is Nash. Pick V2 e *V so small that Vx = g^g^1 c U. Then
the following functions are defined and are Nash whenever z; G ^ ,
/ = 1, 2, and h e g\ Vxg1V1:

•



336 JAMES J. MADDEN AND CHARLES M. STANTON

LEMMA 2. If G is abelian or G is connected, then the hypotheses
about the conjugation may be dropped from Lemma 1.

Proof. This is obvious if G is abelian. If G is connected, then any
neighborhood of the origin generates G. The existence of Ug for all
g eG follows from the fact that conjugation by any element of U is
Nash on a sufficiently small neighborhood of the identity. D

If G, U, and ψ are as in the lemma, then G endowed with the
locally Nash structure described above is denoted (G, ψ). If we wish
to emphasize the group operation, we write instead (G, , ψ). For
example, the additive group of real numbers with the standard Nash
structure is denoted by (R, + , id), where id: R -* R is the identity
function. Suppose an analytic homeomorphism φ: U —> Rn satisfies
a semialgebraic relation with ψ (i.e., (ψ, φ)(U) c R2" is semialge-
braic). From the properties of semialgebraic sets, it follows that φ also
satisfies the hypotheses of the lemma and that the identity function on
G induces an equivalence of locally Nash groups: (G, ψ) = (G, φ).
A very simple case of this is used below, namely, if (R, ψ) is a lo-
cally Nash group and φ is algebraic over R[ψ], then (R, φ) is an
equivalent locally Nash group.

3. Weierstrass's theorem. We shall say that a complex function φ
satisfies an algebraic addition theorem on a domain D c C if there
is a non-zero polynomial G(X, Y, Z) with complex coefficients such
that G(φ(x), φ(y), φ(x + y)) = 0 whenever x, y, and x + y belong
to D. We shall denote by C(/) the field of all rational functions in
/ . Then we have

THEOREM (Weierstrass). Let φ(ύ) be holomorphic in a connected
open set containing the origin and satisfy an algebraic addition theorem
there. Let Φ denote the complete analytic function determined by
φ{u). Then one of the following holds.

(1) Φ is algebraic over C(z)
(2) Φ is algebraic over C(exp(αz)) for some a in C;
(3) Φ is algebraic over C(ρ(z)) for some Weierstrass p-function.

Although references to the theorem occur frequently in modern
texts on elliptic functions ([C], [Si]) we have been unable to locate
a source containing a proof that is easily accessible to the modern
reader. Therefore, we have provided a sketch of the proof in an ap-
pendix to this paper.
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Suppose that φ is holomorphic in a disk centered at the origin in
C and that its Taylor series has real coefficients.

We collect for later reference some information about the complete
analytic function Φ determined by φ. Since φ(z) is real for real z ,
it follows that

is a function element of Φ centered at z = a if and only if

n=0

is a function element of Φ centered at z = a. We express this fact by
saying that the function elements of Φ at z = a are obtained from
those at z = a by conjugation. We shall also abuse our language by
saying that the function elements

n(z-a)n and η(z) =
n=0 n=0

centered at z = a and z = b are the same if an = bn for all n.
Suppose that there is a complex number ω such that for all a in a
certain domain Φ has the same sets of function elements at z = α
and z = α + ω. One can then verify that Φ has the same sets of
function elements at z = α and z = α + ω.

4. Results. Let G be a connected locally Nash group. The univer-
sal covering group π: G —• G (think of G as a Lie group) becomes
a locally Nash group if we obtain Nash coordinate neighborhoods on
G by lifting evenly covered Nash coordinate neighborhoods from G.
If two locally Nash groups are Nash isomorphic, then this isomor-
phism lifts to a Nash isomorphism of their simply connected covering
groups. Thus the classification problem for Nash groups breaks into
two parts: (1) determine the isomorphism classes of simply connected
locally Nash groups, and (2) for each simply connected Nash group de-
termine the isomorphism classes of quotients of that group by discrete
subgroups.

We first consider the simply connected case. Up to isomorphism,
the only simply connected one-dimensional Lie group is (R, + ) , the
real numbers with addition and the standard differentiable structure.
Thus our task is to classify the Nash structures on (R, +) that make
+ into a Nash mapping. Using the notation introduced at the end of
§2, we have
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THEOREM 1. Every connected simply connected one-dimensional lo-
cally Nash group is equivalent to one of the following locally Nash
groups: (R, + , id), (R, + , exp), (R, + , sin), or (R, + , p), where
p is the Weierstrass p-function arising from a lattice in C that is
symmetric about R.

REMARK. (R, + , id) is (R, +) with the standard Nash structure,
(R, + , exp) is Nash equivalent to the multiplicative group of positive
reals with its standard Nash structure, and (R, + , sin) is the simply
connected connected cover of the unit circle in C, where the circle
inherits its Nash structure from the standard Nash structure on C.

Proof of Theorem 1. Let a locally Nash structure be given on (R, +)
and let φ: U —• R be a Nash chart containing 0. We can choose a
subset V of U such that φ{V) is semialgebraic and V + V c U.
Since the group operation + is a locally Nash mapping, the graph
of the mapping (φ(x), φ{y)) •-> φ(x + y), where x9y e V, is a
semialgebraic set contained in φ(V) x φ(V) x φ(U). Hence there is a
nontrivial real polynomial G(X, Y, Z) such that

(1) G(φ(x),φ(y),φ(x + y)) = 09. x,yeV.

The Taylor series defining φ gives an extension of φ to a holomorphic
function in a disk D centered at the origin in C. The equation (1)
continues to hold in D. That is, φ satisfies an algebraic addition
theorem, and so we may appeal to the Weierstrass theorem.

If Φ is algebraic over C(z) then the locally Nash structure φ in-
duces is equivalent to (R, + , id). In the other cases, the fact that φ
is real restricts the exponentials or p-functions with which Φ may
have an algebraic relation.

Suppose Φ is algebraic over C(exp(αz)). By the remarks in §3
the periods of exp(αz) must be either real or purely imaginary, so a
must be either real or purely imaginary. If a is real, the locally Nash
structure induced by φ is equivalent to (R, + , exp). (Note that if
a is a nonzero real number, the mapping x \-+ ax is a Nash equiva-
lence between (R, + , exp(αz)) and (R, + , exp(z)). If a is purely
imaginary, the locally Nash structure induced by φ is equivalent to
(R, + , sin).

Suppose Φ is algebraic over C(ρ) for some Weierstrass p-function
p. Then Φ is a root of the equation

(2) F(X) = 0
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where F{X) is a polynomial whose coefficients are rational functions
of p and ρf. Let Σ be the set of all points in C at which some
coefficient of F(X) has a pole or at which the equation (2) has a
multiple root. Let Λ be the lattice of periods of the coefficients of
F. This lattice contains as a sublattice the lattice associated with p.
We shall show that Λ is symmetric with respect to the real axis. If
a <fc Σ and ω e A then the coefficients of F(X) have the same values
at a and a + ω. Thus Φ has the same sets of function elements at
a and a + ω. By our remarks in §3, Φ has the same sets of function
elements at a and a+ω. The coefficients of F at any point outside Σ
are the elementary symmetric functions of the values of the function
elements of Φ there. Thus the coefficients at a and a + ω are the
same. Hence ω belongs to Λ and so Λ is symmetric with respect
to the real axis, and Φ is algebraic over the corresponding field of
elliptic functions. We have proved Theorem 1. D

We next want to determine the Nash isomorphism classes of ex-
amples of simply connected locally Nash groups of elliptic type. Ob-
serve first that each isomorphism class contains a locally Nash group
(R, +, p) with p having least real period 1 because the map

( R , + , p ( α x ) ) - * ( R , + , p{x))\ x^ax

is a Nash group isomorphism.
If the least real period of p is 1 and Λ is symmetric about R

then the lattice for p is either of the form Λo = Z + iaL, a e
R (Λo "rectangular"), or of the form Λi = Z + {\ + ia)Z9 a e
R (Λi "diamond-shaped"). In the latter case 2Λi is contained in
the rectangular lattice Z + iaL, and so the Weierstrass function p\
corresponding to Λi satisfies an algebraic relation with a Weierstrass
function having a rectangular lattice.

THEOREM 2. Each Nash equivalence class of locally Nash groups of
type (R, +, p) is represented by a locally Nash group whose charts
are determined by a p-function whose lattice is of the form Λ = Z +
iaL, a G R. Two such groups are Nash equivalent if and only if the
ratio of their imaginary periods is rational

Proof. Only the second statement remains to be shown. Let p\
and p2 be associated with the lattices L+ia{L and Z + / α 2 Z , where
a\, α 2 G R. If a\ja2 is rational, then p\ and p2 satisfy an algebraic
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relation so the map

(R, + , pi) ->(R, + , Pi); x^x

is a Nash group isomorphism. On the other hand, suppose (R, + , p\)
and (R, + , ρ2) are isomorphic. The isomorphism is given by a dila-
tion x h-> px with p ER. Since the real periods of p\ and p2 are
the same, p E Q. To see this we argue as follows. In terms of the
coordinates given by p\ and p2 the isomorphism is a Nash mapping,
thus there is a real polynomial F(X, Y) such that

(3) F(Pl(x),p2(x)) = 0.

This equation holds everywhere in C. The equation is unchanged if
we replace x by x + n, n eZ, because p\ has real period 1. Thus
we see that the set {ρ2(px + pn): n e Z} is finite, being contained in
the set of roots of the polynomial F{p\{x), Y). Since p2 also has
real period 1 the set {(px + pn) mod I: n eZ} is finite and thus so
is the set {pn mod I: n eZ}. Therefore p is rational.

Since p is rational there is an algebraic relation between ρ2(x) and

ρ2(px):

for some polynomial F\(X 9 Y). We can eliminate pi(ρx) from this
relation and (3), obtaining an algebraic relation

F2(pι(x), ρ2(x)) = 0

for some polynomial F2(X, Y). An argument similar to the one given
above shows that the set {na\ mod a2: n E Z} is finite, thus the ratio
a\/a2 must be rational. This completes the proof of Theorem 2. D

In order to complete the classification of one-dimensional Nash
groups, we must deal with the quotients of the simply connected
groups. Since these are compact, they are Nash groups. These are
all of the form (R, + , φ)/aZ, with φ as above and a a positive real
number. Let a and β be any positive reals and consider the map

m: (R, + , φ)/aZ —> (R, + , φ)/βZ

induced by x ^ βx/a. Clearly (R, + , φ)/aZ and (R, + , φ)/βZ are
Nash equivalent groups if and only if m is a Nash map. If φ = id,
then m is Nash regardless of a and β. In every other case m is
Nash if and only if a/β is a rational number, since φ o m o φ~ι is
Nash only in this case.
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Chillingworth and Hubbard [CH] have shown that the underlying
Nash manifolds of (K,+,sin)/αZ and ( R , + , sin)//JZ are Nash
equivalent if and only if a/β is a rational number and that when
a is not a rational multiple of π, (R, + , sin)/αZ is not Nash em-
beddable in any Rn. (See [CH] or [S] for a complete discussion
of "embeddable" Nash manifolds. In [S], these are called "afϊine
Nash manifolds".) Their argument applies without modification to
(R, +, ρ)/aZ. As a Nash manifold, this is embeddable in some Rn

if and only if a is a rational multiple of the real period of p. The im-
age will be a component of the set of real points of a real elliptic curve.
Note that the Nash manifolds (R, +, id)/Z and (R, +, exp)/βZ are
not embeddable. For if they were—say in Rn—the covering maps
would induce periodic Nash functions on R. But this is impossible.

We summarize these results in the following:

THEOREM. Every connected one-dimensional Nash group is equiva-
lent, as a Nash group, to one of the following'.

(1) (R,+, id) ;
(2) (R,+,exp);
(3) (R,+,id)/Z;
(4) (R,+,exp)//?Z;
(5) (R,+,sin)/£Z;
(6) (R,+,p β )/j ίZ.

{Here ρa denotes the Weierstrass elliptic function with period lattice
Z+iaZ, α € R . )

If φφ id, then the Nash groups (R, +, φ)/βZ and (R, + , φ)/β'Z
are isomorphic as Nash groups if and only if β/ β1 is rational

The embeddable Nash groups are (R, +, id), (R, +, exp), the
groups of type (5) with β a rational multiple of π, and the groups
of type (6) with a/β rational.

5. Semialgebraic groups and Nash groups. The purpose of this sec-
tion is to describe how our results on Nash groups apply also to semi-
algebraic groups. The main point is that there is an equivalence of
categories between semialgebraic groups and Nash groups. We briefly
sketch the ideas involved.

A semialgebraic group is a semialgebraic set G cRn equipped with
a group operation * : GxG —• G whose graph is a semialgebraic subset
of R3n . In other words, * is a semialgebraic map. It is not required
that * be continuous with respect to the topology that G inherits
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from Rn. For example, G = [0, 1) equipped with the operation
a*b = a + b-[a + b\ is a semialgebraic group.

Pillay has shown [P, Remark 2.6] that if G is a semialgebraic group,
then it is possible to find a finite collection of open semialgebraic
subsets Ui C G and semialgebraic charts ψi\ Ui —> W1 that induce
on G the structure of a Nash group. Following the ideas of that
paper, one readily shows that if θ : G —• G is a semialgebraic group
homomorphism, then θ is a Nash homomorphism with respect to the
induced Nash structures on G and H. In this way one gets a functor
from semialgebraic groups to Nash groups.

On the other hand, if G is a Nash group, then G may be regarded
as a semialgebraic group in the following way: If {ψi\ Ui —> W1} is a
Nash atlas for G, then the underlying set of G may be identified with
U Ψi(Ui) modulo the equivalence relation induced by the overlaps of
the neighborhoods. This is a "semialgebraic space" (see [DK]), and it
is regular because G is a topological group. Therefore, by Robson's
embedding Theorem [Ro], G may be identified, by a semialgebraic
map, with a semialgebraic subset of some Rm . This identification, of
course, will generally fail to be a Nash mapping.

Appendix: The Weierstrass characterization. In this section we de-
scribe Weierstrass's characterization of functions satisfying algebraic
addition theorems. We shall follow the development in [H]. (The au-
thors have written a note containing a detailed version of the proof in
more modern language. This note is available to any reader who de-
sires it.) It is convenient first to describe meromorphic functions in the
complex plane C that satisfy algebraic addition theorems. We shall
denote by C(/ , g, . . .) the field of rational functions in / , g, . . . .
We have

THEOREM (Weierstrass). Let φ(u) be meromorphic in the complex
plane C and satisfy an algebraic addition theorem there. Then one of
the following holds:

(1) φ(u) belongs to C(z), i.e., φ(ύ) is a rational function;
(2) φ(u) belongs to C(exp(αz)) for some a in C, i.e., φ(ύ) is a

rational function of an exponential,
(3) φ(u) belongs to C(ρ(z)9 ρ'{z)) for some Weierstrass p-function,

i.e., φ(ύ) is an elliptic function.

The assumption that φ(u) satisfies an algebraic addition theorem
in a domain D implies that φ(u) satisfies a first order algebraic dif-
ferential equation there. Under the hypotheses of Theorem 1, we can
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apply the Big Picard Theorem to conclude that either φ(u) is a ra-
tional function, or there are infinitely many pairs of points at which
φ(u) and φ'(u) have the same values. Since φ(ύ) satisfies a first order
algebraic differential equation, it follows that the higher derivatives of
φ(ύ) are rational functions of φ(u) and φ'(u). If φ(u) is not ratio-
nal, there are infinitely many pairs of points at which φ(u) and all its
derivatives have the same values, that is, at which the coefficients in
the Taylor expansions of φ(u) are the same. One can now conclude
that either φ(u) is rational or it is periodic. In the latter case a similar
argument applies to the restriction of φ{u) to a period strip to show
that φ{ύ) is either a rational function of an exponential or it is doubly
periodic. This establishes the theorem.

Next we drop the assumption that φ(u) is meromorphic in the
plane. We assume instead only that φ(u) is holomorphic in a neigh-
borhood of the origin and satisfies an algebraic addition theorem there.
Let Φ be the complete analytic function determined by φ(u), let W
be the Riemann surface of Φ , and let τ: W —• C be the natural
projection of W to the complex plane.

One can use the addition formula to show that the Riemann sur-
face W is spread over the entire complex plane, and that the only
singularities of Φ are poles and algebraic branch points. An intricate
argument then shows that φ{u + v) is a root of a polynomial equa-
tion H(φ(u + v)) = 0 whose coefficients are single valued functions
of u + v . One can further prove that the coefficients have algebraic
addition theorems—this turns out to be a matter of eliminating the
right things from a system of algebraic equations. Thus, the lemma
applies to the coefficients. Another argument by elimination shows
that Φ is an algebraic function of an appropriately chosen coefficient
of H, and this establishes the version of Weierstrass's theorem stated
in §3.
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