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FACE NUMBER INEQUALITIES FOR MATROID
COMPLEXES AND COHEN-MACAULAY TYPES OF
STANLEY-REISNER RINGS OF DISTRIBUTIVE LATTICES

TAakAaYUKI HiBi

We discuss two topics related with combinatorial study of canonical
modules of Stanley-Reisner rings, viz., (i) some linear inequalities
on the number of faces of a matroid complex and (ii) a formula to
compute the Cohen-Macaulay type of the Stanley-Reisner ring of a
finite distributive lattice.

Introduction. We study the following two problems in the field of
commutative algebra and combinatorics:

(i) What can be said about the number of faces of a matroid com-
plex?

(ii) How can we calculate the Cohen-Macaulay type of the Stanley-
Reisner ring of the order complex of a finite distributive lattice?

Recently, some topics on Hilbert functions of noetherian graded
algebras have been studied by several authors, e.g., [Sta3], [Sta7],
[G-M-R], [R-R] and [H5] from viewpoints of commutative algebra,
algebraic geometry and combinatorics. In the first half of the present
paper, we are concerned with Hilbert functions of Stanley-Reisner
rings of matroid complexes. Via well-known facts [H-K], [Sta3] on
canonical modules of Cohen-Macaulay graded integral domains, Stan-
ley [Sta7] found certain linear inequalities for the Hilbert function of
a Cohen-Macaulay graded integral domain. Based on an idea of J.
Herzog (cf. Corollary (1.5)), we see that the same linear inequalities
as in [Sta7] hold for the Hilbert function of the Stanley-Reisner ring
of a matroid complex (cf. Theorem (1.8)).

On the other hand, it would be of interest to find a combinatorial
formula to compute the Cohen-Macaulay type (i.e., the minimal num-
ber of generators of the canonical module) of the Stanley-Reisner ring
of a Cohen-Macaulay complex, e.g., [H7]. In the latter half of this
paper, we find a formula for the computation of the Cohen-Macaulay
type of the Stanley-Reisner ring of the order complex of a finite dis-
tributive lattice. In fact, our main result (cf. Theorem (2.10)) guaran-
tees that the Cohen-Macaulay type of the Stanley-Reisner ring of the
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order complex of a finite distributive lattice is equal to the number
of distinct equivalence classes of a certain equivalence relation (cf.
(2.8)) on the set of linear extensions of a finite partially ordered set
associated with the distributive lattice.

1. Level rings and matroid complexes.

(1.1) Let k be a field and 4 a semi-standard k-algebra, that is,
A4 is a commutative graded ring @,»(4» satisfying (i) 4o = k, (ii)
A is finitely generated as a k-algebra, and (iii) 4 is integral over the
subalgebra k[A4;] of A generated by A,. The Hilbert function of A
is defined to be :

H(A, n):=dimg 4, forn=0,1,...,
while the Hilbert series of A is given by

F(A4,)):= iH(A, n)A".
=0

Since A is finitely generated as a k[A;]-algebra and is integral over
k[A.], it follows that A is finitely generated as a k[A;]-module.
Hence, well-known properties on Hilbert series, e.g., [Mat, pp. 94—
95], guarantee that

F(A,A) = (hy+mA+-+hd5)/(1 - 2)?
for some integers hg, Ay, ..., h; with Ay # 0. Here d is the Krull

dimension of 4. We say that the vector h(A) := (hg, b1, ..., hs) 18
the h-vector of A.

(1.2) Suppose that a semi-standard k-algebra 4 = @,.q4n is
Cohen-Macaulay. Let K, be the canonical module [H-K] of 4. It
is known [H-K, Corollary (6.7)] that there exists a graded ideal I of
A with I = K, (as graded modules over A4, up to shift in grading)
if and only if A4 is generically Gorenstein, i.e., the localization A, is
Gorenstein for every minimal prime ideal q of 4. Also, see [H3,
Lemma (1.7)].

(1.3) ProrosITION. Let a Cohen-Macaulay semi-standard k-algebra
A = @,504n be generically Gorenstein, and let 1 = @,5,(I N A4n),
INA, # (0), be a graded ideal of A with I = K,. Suppose that
there exists a non-zero divisor © € IN A, on A. Then the h-vector
h(A) = (hg, hy, ..., hs) of A satisfies the linear inequality
(%) ho+h +---+h <hs+hg_ 1+ +hs_;
forevery 0<i<s.
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Proof. Since ® € IN A, is a non-zero divisor on A4, the dimension
of I/8A as an A-module is less than the Krull dimension of A if
94 # I. Thus the proof of [Sta7, Theorem (2.1)] is valid in our
situation without modification. m]

(1.4) We say that a Cohen-Macaulay semi-standard k-algebra 4 =
D,>0A4n is level [Sta2] if the canonical module K = @, ,(K4)n
with (K4), # (0), a € Z, of A is generated by (K,), as an A4-
module. In other words, A is level if and only if the Cohen-Macaulay
type of A coincides with the last component of the A-vector of A.
Consult, e.g., [H2, pp. 343-345].

(1.5) CorOLLARY. Suppose that a Cohen-Macaulay semi-standard
k-algebra A =@,y An is both generically Gorenstein and level. Then
the h-vector h(A) = (hy, hy, ..., hs) of A satisfies the linear inequal-
ity () forevery 0<i<s.

Proof. A routine technique enables us to assume that k is an infinite
field. Let I = ,-,(INA4,), INA; # (0), be a graded ideal of 4
with I = K. Thanks to Proposition (1.3), what we must show is the
existence of a non-zero divisor @ € IN A4, on A. Let .#; be the
set of prime ideals of 4 which belong to the ideal (0). Since A4 is
Cohen-Macaulay, we know that the Krull dimension of A/q equals
that of 4 for each q € .7, . We write Z for the (set-theoretic) union
of all prime ideals q € .#}. Recall (e.g., [Mat, p. 38]) that the set
% coincides with the set of zero divisors on 4. If INnA, C Z,
then I N A, C q for some q € .4, since k is infinite (see, e.g., [Her,
Problem 21, p. 136]). Now, A is level, thus I is generated by 1N A4,
as an A-module. Hence, if TN A, C q then I C q, thus the Krull
dimension of A4/I is equal to that of A4, which contradicts [H-K,
Corollary (6.13)]. O

The author is grateful to Professor Jiirgen Herzog for suggesting the
above proof. We remark that Corollary (1.5) is false if we drop the
assumption that A is generically Gorenstein.

(1.6) Let V' be a finite set, called the vertex set, and A a simplicial
complex on V. Thus A is a collection of subsets of ¥ such that (i)
{x} €A forevery x € V and (ii) ¢ €A, T C o imply 7 € A. Each
element of A is called a face of A. Set d := max{#(c); o € A}. Here
#(o) is the cardinality of o as a set. Then the dimension of A is
defined to be dimA :=d — 1. We say that A is pure if every maximal
face has the same cardinality. We write f; = f;(A), 0 < i< d, for
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the number of faces ¢ of A with #(¢) =i+ 1. Thus fy=#(V). We
say that f(A) := (fo, fi, ..., fa—1) is the fvector of A. Define the
h-vector h(A) = (hy, hy, ..., hy) of A by the formula

d d
Y iR =1 =Y bl
i=0 i=0

with f_; = 1. Consult, e.g., [Stad] and [Hoc] for further information.

(1.7) A simplicial complex A on the vertex set V' is called a ma-
troid complex (or G-complex [Sta2]) if the following conditions are
satisfied:

(i) If 0,7 € A and #(0) < #(7), then there exists x € T such
that x ¢ 0 and o U{x} €A.

(ii) dim(A — x) = dimA for every x € V. Here A — x is the

subcomplex {c € A; x ¢} of A on V —{x}.

We remark that the above condition (ii) is required only to avoid
the inessential case; if dim(A — x) < dimA then A is a cone over
A — x with apex x, thus we should study A — x rather than A.

For example, let V' be a finite set of non-zero vectors of a vector
space over a field and suppose that the dimension of the subspace
spanned by ¥V is equal to the dimension of the subspace spanned by
V — {x} for every x € V. Then the set A of linearly independent
subsets of V' is a matroid complex.

Now, what can be said about the A-vector of an arbitrary matroid
complex?

(1.8) THEOREM. Suppose that h(A) = (hy, hy, ..., hy) is the h-
vector of a matroid complex A of dimension d — 1. Then we have the
linear inequality

h0+h1+"'+hiShd+hd_1+"'+hd_i

forevery 0<i<d.

Proof. Let V = {X;, X,, ..., X;} be the vertex set of A and
k[A] = k[X,, X3, ..., X;1/I5 the Stanley-Reisner ring ([Stal], [Rei])
of A over a field k with the standard grading, i.e., each deg(X;) =1.
Then the Krull dimension of k[A] is 4, and the Hilbert series of k[A]
is just

F(K[A], 2) = (ho + hiA+ -+ hgdd) /(1 — A)¢,
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see, e.g., [Stad, pp. 62-68]. It is known (and, in fact, not difficult
to prove) that a matroid complex is “doubly” Cohen-Macaulay in the
sense of [Bac]. In other words, k[A] is a level ring with A; # 0. See
also [Sta2]. Moreover, k[A] is generically Gorenstein [Stad, p. 80].
Hence Corollary (1.5) enables us to obtain the required inequality. O

(1.9) Conjecture. Work in the same notation as in Theorem (1.8).

Then we have the following linear inequalities:
(1) h; <hg_; forevery 0<i<|[d/2], and

(i) ho<hy < < hygy.

Consult [H4] for further information on the inequalities in the
above Conjecture (1.9). We easily see the inequality 4; < A, when
d > 3. Also, note that, thanks to [H4], the above conjecture is weaker
than that of [Sta2, p. 59].

On the other hand, a log-concavity conjecture on f-vectors of ma-
troid complexes is presented by Mason [Mas]. Some partial results
on this conjecture are obtained by Dowling [Dew] and by Mahoney
[Mah].

It would, of course, be of great interest to find a combinatorial
characterization of the A-vectors of matroid complexes.

The f-vectors (or h-vectors) of various classes of simplicial com-
plexes have been studied by several combinatorialists. We refer the
reader to, e.g., [B-K] for a survey of the topic.

2. Cohen-Macaulay types of distributive lattices.

(2.1) Given a finite partially ordered set (poset for short) P we
write £ (P) for the poset which consists of all poset ideals (or order
ideals [Sta6, p. 100]) of P, ordered by inclusion. Then _#(P) is a
distributive lattice [Sta6, p. 105]. On the other hand, the fundamental
theorem for finite distributive lattices, e.g., [Staé, Theorem (3.4.1)]
guarantees that, for every finite distributive lattice L, there exists a
unique poset P for which L = _#(P).

(2.2) Let p(P; /) be the number of chains [Sta6, p. 99]
%:Zzlogll ;%'“gl/-H =P

of length / + 1 (cf. [Sta6, p. 99]) in the distributive lattice #(P)
such that
(i) 141 —I; is a clutter [Sta6, p. 100] in P foreach 0 < i</,
and
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(ii) forevery 1 <i</,thereexist yel;;1—1I; and x € ;- I;_;
with x <y in P.
Then p(P;/) =0 if / < rank(P) and p(P; rank(P)) # 0. Here
rank(P) is the rank [Sta6, p. 99] of P.

(2.3) We now study the Stanley-Reisner ring
KIA(L)] = k[Xa; o € L]/Iprx),

with each deg(X,) = 1, of the order complex A(L) (cf. [Staé, p. 120])
of a finite distributive lattice L over a field k. It is well known, e.g.,
[B-G-S] that kK[A(L)] is Cohen-Macaulay. We are interested in the
Cohen-Macaulay type type(k[A(L)]) of k[A(L)], i.e., the minimal
number of generators of the canonical module Kyr) of k[A(L)] as
a k[A(L)]-module. We refer the reader to, e.g., [B-G-S] and [Sta6,
Chap. 4, §5] for the information on the A-vector of the order complex
of a finite distributive lattice. Also, consult [H1], [H3] and [H6] for
some topics on commutative algebra related with distributive lattices.

(2.4) ProprosiTION. The Cohen-Macaulay type type(k[A(L)]) of
the Stanley-Reisner ring k[A(L)] of the order complex A(L) of a finite
distributive lattice L = # (P) is

(*x) type(k[A(L)]) = p(P; rank(P)) + p(P; rank(P) + 1) +---.

Proof. Suppose that #(P) = n, say P = {p,,p2,...,Dn}, and

we write e(I) = (e;, ex, ..., e,) € R* for the incident vector of a
poset ideal I of P, ie., ¢, =1 if p € I and ¢; = 0 otherwise.
Thus in particular e(@) = (0,0,...,0) and e(P) =(1,1,...,1).

If # is achainin L of the form (%) @ Q) G L G- G Iy
(c P) witheach I; € #(P), then we write [.#] for the convex hull of
{e(ly), e(I}), ..., e(l,)} in R*. Thus [#] is an /-simplex in R".
Let € = % (L) be the set of chains in L = #(P) and &£ = L(L)
the convex hull of {e(l);I € #(P)} in R”. Hence & C R” is a
convex polytope of dimension n. We identify {[#]; # € &} with
the order complex A(L) of L. It is known, e.g., [StaS, p. 17] that
{(#);, # € ¥} is a triangulation of & ; hence & is a geometric
realization of A(L).

Now, let .# be the ideal of the Stanley-Reisner ring k[A(L)] =
k[X.; a € L1/Ipq) which is generated by those square-free monomi-
als [],c o Xo with [#] e A(L)—-0A(L). Here OA(L) is the boundary
of A(L). Then, by virtue of [Stad, Theorem (7.3), p. 81], .# is iso-
morphic to the canonical module Kyar); of A[A(L)]. On the other
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hand, thanks to [Sta5, p. 10], if .# € & is of the form (%), then
[#]1 € A(L) — A(L) if and only if the following conditions are sat-
isfied: (i) Iy = @, (ii)) I, = P, and (iii) each I;;; — I; is a clutter.
Hence, it follows immediately that the minimal number of generators
of & asa k[A(L)]-module is just (xx) as required. ]

We should remark that the ideal .# in the above proof is gener-
ated by {Il,c s Xo; [#] € A(L) — OA(L), #(A#) = rank(P) + 2} as a
k[A(Z)]-module if and only if p(P; /) =0 for every / # rank(P).
In other words,

(2.5) CorOLLARY. The Stanley-Reisner ring k[A(L)] of the order
complex A(L) of a finite distributive lattice L = # (P) is level if and
only if p(P;7) =0 forevery / # rank(P).

(2.6) Let N be the set of non-negative integers and P a finite poset.
We say that a map og: P — N is strictly order-preserving if x <y in P
implies o(x) < o(y) in N. We write Z(P; /) for the set of strictly
order-preserving maps o: P — N such that (i) (P)={0,1,...,/}
and (ii) o~1({i = 1, i}) is not a clutter in P forevery 1 <i</.

(2.7) LEMMA. p(P;/)=#(ZFB(P;/)).

Proof. Given achain # : @ =1y G I G- G I,y = P in the
distributive lattice £ (P) which satisfies the conditions (i) and (ii)
in (2.2), we can define a map 6:P — N in Z(P;/) by a(x) =i
if x € I;; —I;. On the other hand, if 0 € Z(P;/), then @ G
o '({0}) S o7 1({0,1}) & - S 071({0,1,...,/ —1}) S Pisa
chain in _#(P) with the properties (i) and (ii) in (2.2). O

(2.8) We recall that a linear extension [Sta6, p. 110] of a finite poset
P is a strictly order-preserving map o:P — N such that o(P) =
{1,2,...,#(P)}. If o is alinear extension of P, then there exists a
unique sequence 2 (o) = (dy, d,, ..., d,) €2’ ,0</ =/ (0)€Z,
with 1 <dy <d; <---<d, <#(P) such that
(i) o7'{d;+1,d;+2,...,d;;1}) isaclutterin P for each 0 <
i </, where we set dy=0 and d ., = #(P), and
(ii) forevery 1 <i</,thereexists x€o~'({di_1 +1,...,d})
with x <o~ 1(d; +1) in P.
We say that two linear extensions o and 7 of P are equivalent
(written as 0 ~ 1) if (o) = Y(1) (= (dy,d2,...,d,)) and
o '({1,2,...,dip})=7t1{1,2,...,di;}) forevery 0<i</.
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(2.9) Given a linear extension ¢ of a finite poset P with & (g)=(d,,
dy,...,d,), we write I;(c) for the poset ideal o~!({1, 2, ..., d;})
of P foreach 1 < i </ + 1, where d,,; = #(P). Also, set
Iy(o) = @. Then the chain

M(o): 2=1I(0)GL(0) G Glri(0)=P

in the distributive lattice £ (P) possesses the properties (i) and (ii)
in (2.2). :

On the other hand, for each chain .#Z in (2.2), there exists a linear
extension ¢ of P with /#Z = .# (o). Moreover, # (o) = # (1) if
and only if ¢ and 7 are equivalent.

~ We now come to the main result of this section in consequence of
Proposition (2.4) with Lemma (2.7) and (2.9).

(2.10) THEOREM. The following quantities on a finite poset P are
equal:

(a) the Cohen-Macaulay type type(k[A(L)]) of the Stanley-Reisner
ring k[A(L)] of the order complex A(L) of the finite distributive lattice
L=/2(P),

(b) the number of strictly order preserving maps o: P — N such that
o~ '({i -1, i}) is not a clutter in P for every i € a(P) with i > 1,

(c) the number of distinct equivalence classes of the equivalence rela-
tion “~” in (2.8) on the set of linear extensions of the poset P.

(2.11) ExampLE. Let P = {py, p>2, P3, D4, Ps, D¢} be the following
finite poset:

Ds D¢
D3 D4
D1 D2,

and we employ the notation, e.g., 214635 for denoting the linear
extension ¢ of P with ao(p) =1, o(p1) =2, o(pg) =3, o(ps) =
4, g(ps) = 5 and o(ps) = 6. Then the equivalence classes of the
equivalence relation “~” in (2.8) on the set of linear extensions of
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the poset P are

{123456, 123465, 124356, 124365,
213456, 213465, 214356, 214365},

{123546, 213546},

{124635, 214635},

{132546, 132456},

{132465},

{241635, 241365},

{246135}, and

{241356}.

Hence the Cohen-Macaulay type type(k[A(L)]) of the Stanley-Reisner
ring k[A(L)] of the order complex A(L) of the distributive lattice
L = #(P) is equal to eight. Note that the A-vector of k[A(L)] is
h(k[A(L)])=(1,8,9,1).

It might be of interest to find a “nice” formula to compute the
number of distinct equivalence classes of the equivalence relation “ ~ ”
in (2.8) on the set of linear extensions of P when P is, e.g., a rooted
tree [Sta6, p. 294]).

We here turn to the problem of finding a chain condition of P for
the Stanley-Reisner ring k[A(L)] to be level.

(2.12) The altitude of a finite poset P, written as alt(P), is de-
fined to be the maximal number Z > 0 for which there exists a finite
sequence Cy, Cy, ..., C, of chains in P such that

(i) every y € C;j is neither less than nor equal to each x € C; if
0<i<j<r,and
(ii) the sum of the cardinalities of C;’sis Z +r+ 1.
Obviously, we have rank(P) < alt(P).

(2.13) LEMMA. p(P; alt(P)) #0.

Proof. Work in the same notation as in (2.12) with / = alt(P).
We write Q for the subposet Co U Ci U---UC, of P. Then we
have alt(P) = alt(Q). On the other hand, there exists a unique 7 €
F(Q; alt(Q)) such that 7(a) < 7(B) if o € C; and B € C; with
0<i<j<r.Let I, 0<i<alt(P), be the poset ideal of P which
consists of those elements x € P such that x < o for some a € Q
“with 7(a) < i. Inparticular Iy = @. Also, we set Iyyp)+1 = P. Then,
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the chain @ =1y G I; G --- G Lip)+1 = P in the distributive lattice
S (P) satisfies the conditions (i) and (ii) in (2.2). Thus p(P; alt(P)) #
0 as desired. O

Hence, we have p(P; /) =0 if either / < rank(P) or / > alt(P)
and p(P;rank(P)) #0, p(P; alt(P)) # 0. Thus, thanks to Corollary
(2.5), we immediately obtain

(2.14) CorOLLARY. The Stanley-Reisner ring k[A(L)] of the order
complex A(L) of a finite distributive lattice L = ¢ (P) is level if and
only if rank(P) = alt(P).

(2.15) ExampLE. If C, is the following finite poset

ap
a b
a by
b3

an—1
an bn >

then the Stanley-Reisner ring k[A(L)] of the order complex A(L) of
the finite distributive lattice L = _#(C,) is level with the Cohen-
Macaulay type type(k[A(L)]) = n!.

(2.16) Recall that the height (resp. depth) heightp(a) (resp.
depthp(a)) of an element a of a finite poset P is the maximal
number / > 0 for which there exists a chain in P of the form
ay < ay_; < -~ <ay=oa(resp. a =y < a; < - < ay).
Thus we have heightp(a) + depthp(a) < rank(P) for every element
a € P. On the other hand, if « and B are incomparable ele-
ments of P, then heightp(a) + depthp(B) < alt(P). We write P+
for the subposet of P which consists of all elements o € P with
heightp(a) + depthp(a) = rank(P).

(2.17) CorOLLARY. Suppose that the Stanley-Reisner ring k[A(L)]
of the order complex A(L) of a finite distributive lattice L = # (P)
is level. If a and B are incomparable elements of the poset P, then
we have the inequality heightp(a) + depthp(f) < rank(P). Thus, in
particular, the subposet P**) of P is the ordinal sum [Sta6, p. 100]
of clutters.
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(2.18) We say that a finite poset P satisfies the A-chain condition
[Sta6, p. 219] if P = P(+) . It is known, e.g., [Sta6, Corollary (4.5.17)]
that a poset P satisfies the A-chain condition if and only if the last
non-zero component of the A-vector of the order complex A(L) of
the distributive lattice L = _#(P) is equal to one.

(2.19) CoroLLARY. The Stanley-Reisner ring k[A(L)] of the order
complex A(L) of a finite distributive lattice L = £ (P) is Gorenstein,
i.e, type(k[A(L)])) = 1, if and only if the poset P is the ordinal sum

of clutters.
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