
PACIFIC JOURNAL OF MATHEMATICS
Vol. 154, No. 2, 1992

FACE NUMBER INEQUALITIES FOR MATROID
COMPLEXES AND COHEN-MACAULAY TYPES OF

STANLEY-REISNER RINGS OF DISTRIBUTIVE LATTICES

T A K A Y U K I H I B I

We discuss two topics related with combinatorial study of canonical
modules of Stanley-Reisner rings, viz., (i) some linear inequalities
on the number of faces of a matroid complex and (ii) a formula to
compute the Cohen-Macaulay type of the Stanley-Reisner ring of a
finite distributive lattice.

Introduction. We study the following two problems in the field of
commutative algebra and combinatorics:

(i) What can be said about the number of faces of a matroid com-
plex?

(ii) How can we calculate the Cohen-Macaulay type of the Stanley-
Reisner ring of the order complex of a finite distributive lattice?

Recently, some topics on Hubert functions of noetherian graded
algebras have been studied by several authors, e.g., [Sta3], [Sta7],
[G-M-R], [R-R] and [H5] from viewpoints of commutative algebra,
algebraic geometry and combinatorics. In the first half of the present
paper, we are concerned with Hubert functions of Stanley-Reisner
rings of matroid complexes. Via well-known facts [H-K], [Sta3] on
canonical modules of Cohen-Macaulay graded integral domains, Stan-
ley [Sta7] found certain linear inequalities for the Hubert function of
a Cohen-Macaulay graded integral domain. Based on an idea of J.
Herzog (cf. Corollary (1.5)), we see that the same linear inequalities
as in [Sta7] hold for the Hubert function of the Stanley-Reisner ring
of a matroid complex (cf. Theorem (1.8)).

On the other hand, it would be of interest to find a combinatorial
formula to compute the Cohen-Macaulay type (i.e., the minimal num-
ber of generators of the canonical module) of the Stanley-Reisner ring
of a Cohen-Macaulay complex, e.g., [H7]. In the latter half of this
paper, we find a formula for the computation of the Cohen-Macaulay
type of the Stanley-Reisner ring of the order complex of a finite dis-
tributive lattice. In fact, our main result (cf. Theorem (2.10)) guaran-
tees that the Cohen-Macaulay type of the Stanley-Reisner ring of the
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order complex of a finite distributive lattice is equal to the number
of distinct equivalence classes of a certain equivalence relation (cf.
(2.8)) on the set of linear extensions of a finite partially ordered set
associated with the distributive lattice.

1. Level rings and matroid complexes.
(1.1) Let k be a field and A a semi-standard fc-algebra, that is,

A is a commutative graded ring 0 W > O An satisfying (i) AQ = k, (ii)
A is finitely generated as a Λ -algebra, and (iii) A is integral over the
subalgebra k[A\] of A generated by A\. The Hilbert function of A
is defined to be

H(A, n) := dim^ An for n = 0, 1, . . . ,

while the Hilbert series of A is given by

n=0

Since A is finitely generated as a fc[^i]-algebra and is integral over
k[Aχ], it follows that A is finitely generated as a k[Ai]-module.
Hence, well-known properties on Hilbert series, e.g., [Mat, pp. 94-
95], guarantee that

F(A,λ) = (ho + hιλ+ + hsλ
s)/( 1 - λ)d

for some integers ho, h\, ... , hs with hs φ 0. Here d is the Krull
dimension of A. We say that the vector h(A) := (AQ, Ai,. . . , A5) is
the h-vector of yl.

(1.2) Suppose that a semi-standard k-algebra A = @n>0An is
Cohen-Macaulay. Let KA be the canonical module [H-K] of A. It
is known [H-K, Corollary (6.7)] that there exists a graded ideal / of
A with I = KA (as graded modules over A, up to shift in grading)
if and only if A is generically Gorenstein, i.e., the localization Aq is
Gorenstein for every minimal prime ideal q of A. Also, see [H3,
Lemma (1.7)].

(1.3) PROPOSITION. Let a Cohen-Macaulay semi-standard k-algebra
A = Φrt>o-4π be generically Gorenstein, and let I = φ n > α ( / Π An),
lΠAaφ (0), be a graded ideal of A with I = KA. Suppose that
there exists a non-zero divisor ϋ e / Γ\Aa on A. Then the h-vector
h(A) = (Ao, h\, . . . , hs) of A satisfies the linear inequality

(*) ho + hi + + hi < hs + hs_ι + + Aj_/

for every 0 < / < s.
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Proof, Since ϋ ElΠAa is a non-zero divisor on A, the dimension
of I/ϋA as an ^4-module is less than the Krull dimension of A if
ϋA φ I. Thus the proof of [Sta7, Theorem (2.1)] is valid in our
situation without modification. D

(1.4) We say that a Cohen-Macaulay semi-standard fc-algebra A =
@n>0An is level [Sta2] if the canonical module KA = (Bn>a(KA)n

with (KA)a ψ (0), a e Z , of A is generated by (KA)a as an A-
module. In other words, A is level if and only if the Cohen-Macaulay
type of A coincides with the last component of the λ-vector of A.
Consult, e.g., [H2, pp. 343-345].

(1.5) COROLLARY. Suppose that a Cohen-Macaulay semi-standard
k-algebra A = 0 W > O An is both generically Gorenstein and level Then
the h-vector h(A) = (ho, h\, . . . , hs) of A satisfies the linear inequal-
ity (*) for every 0 < i <s.

Proof. A routine technique enables us to assume that k is an infinite
field. Let / = 0 n > α ( / Π An), / Π Aa φ (0), be a graded ideal of A
with I = KA. Thanks to Proposition (1.3), what we must show is the
existence of a non-zero divisor ϋ e I Π Aa on A. Let JVA be the
set of prime ideals of A which belong to the ideal (0). Since A is
Cohen-Macaulay, we know that the Krull dimension of A/q equals
that of A for each q e ^ . We write % for the (set-theoretic) union
of all prime ideals q E / ^ . Recall (e.g., [Mat, p. 38]) that the set
^ coincides with the set of zero divisors on A. If / Π Aa c ^ ,
then I Γ\Aa c q for some q e J^A since k is infinite (see, e.g., [Her,
Problem 21, p. 136]). Now, A is level, thus / is generated by IΠAa

as an ^-module. Hence, if / Π Aa C q then / c q, thus the Krull
dimension of A/1 is equal to that of A, which contradicts [H-K,
Corollary (6.13)]. D

The author is grateful to Professor Jurgen Herzog for suggesting the
above proof. We remark that Corollary (1.5) is false if we drop the
assumption that A is generically Gorenstein.

(1.6) Let V be a finite set, called the vertex set, and Δ a simplicial
complex on V. Thus Δ is a collection of subsets of V such that (i)
{x} G Δ for every x e V and (ii) σ e Δ, τ c σ imply τ e Δ. Each
element of Δ is called a face of Δ. Set d := max{#(σ) σ e Δ}. Here
#(σ) is the cardinality of σ as a set. Then the dimension of Δ is
defined to be dimΔ := d — 1. We say that Δ is pure if every maximal
face has the same cardinality. We write f = f(A), 0 < / < d, for
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the number of faces σ of Δ with #(σ) = i + 1. Thus f0 = #(V). We
say that /(Δ) := (fo, fi, ... , fd-ι) is the f vector of Δ. Define the
h-vector h(A) = (h0, h\, ... , hd) of Δ by the formula

i=0 ϊ=0

with /_! = 1. Consult, e.g., [Sta4] and [Hoc] for further information.

(1.7) A simplicial complex Δ on the vertex set V is called a ma-
troid complex (or G-complex [Sta2]) if the following conditions are
satisfied:

(i) If σ, τ G Δ and #{σ) < #(τ), then there exists x e τ such
that x £ σ and σ u {x} e Δ.

(ii) dim(Δ - x) = dimΔ for every x e F . Here Δ - x is the
subcomplex {σ e Δ x £ σ} of Δ on V - {x}.

We remark that the above condition (ii) is required only to avoid
the inessential case; if dim(Δ - x) < dimΔ then Δ is a cone over
Δ - x with apex x, thus we should study Δ - x rather than Δ.

For example, let V be a finite set of non-zero vectors of a vector
space over a field and suppose that the dimension of the subspace
spanned by V is equal to the dimension of the subspace spanned by
V - {x} for every x e V. Then the set Δ of linearly independent
subsets of V is a matroid complex.

Now, what can be said about the h -vector of an arbitrary matroid
complex?

(1.8) THEOREM. Suppose that h(A) = (/*0, h\,..., hd) is the h-
vector of a matroid complex Δ of dimension d - 1. Then we have the
linear inequality

for every 0 < i <d.

Proof. Let V = {XΪ9 X2, ... , Xt} be the vertex set of Δ and
k[A] = k[Xx, X2, . . . , XtVh the Stanley-Reisner ring ([Stal], [Rei])
of Δ over a field k with the standard grading, i.e., each deg(X/) = 1.
Then the Krull dimension of k[A] is d, and the Hubert series of k[A]
is just
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see, e.g., [Sta4, pp. 62-68]. It is known (and, in fact, not difficult
to prove) that a matroid complex is "doubly" Cohen-Macaulay in the
sense of [Bac]. In other words, k[A] is a level ring with hdφ0. See
also [Sta2]. Moreover, k[A] is generically Gorenstein [Sta4, p. 80].
Hence Corollary (1.5) enables us to obtain the required inequality, α

(1.9) Conjecture. Work in the same notation as in Theorem (1.8).
Then we have the following linear inequalities:

(i) hi < hd_t for every 0 < / < [d/2], and
(ϋ) h<hx<'- < h[d/2].

Consult [H4] for further information on the inequalities in the
above Conjecture (1.9). We easily see the inequality h\ < hi when
d > 3 . Also, note that, thanks to [H4], the above conjecture is weaker
than that of [Sta2, p. 59].

On the other hand, a log-concavity conjecture on /-vectors of ma-
troid complexes is presented by Mason [Mas]. Some partial results
on this conjecture are obtained by Dowling [Dow] and by Mahoney
[Mah].

It would, of course, be of great interest to find a combinatorial
characterization of the A-vectors of matroid complexes.

The /-vectors (or h-vectors) of various classes of simplicial com-
plexes have been studied by several combinatorialists. We refer the
reader to, e.g., [B-K] for a survey of the topic.

2. Cohen-Macaulay types of distributive lattices.
(2.1) Given a finite partially ordered set (poset for short) P we

write ^(P) for the poset which consists of all poset ideals (or order
ideals [Sta6, p. 100]) of P , ordered by inclusion. Then ^(P) is a
distributive lattice [Sta6, p. 105]. On the other hand, the fundamental
theorem for finite distributive lattices, e.g., [Sta6, Theorem (3.4.1)]
guarantees that, for every finite distributive lattice L, there exists a
unique poset P for which L =

(2.2) Let ρ{P / ) be the number of chains [Sta6, p. 99]

of length / + 1 (cf. [Sta6, p. 99]) in the distributive lattice f[P)
such that

(i) Ii+Ϊ - Ii is a clutter [Sta6, p. 100] in P for each 0 < / < / ,
and



258 TAKAYUKIHIBI

(ii) for every 1 < / < / , there exist y G / +i - // and x G // - //_!
with x < y in P .

Then />(P; / ) = 0 if / < rank(P) and p{P\ rank(P)) φ 0. Here
rank(P) is the rank [Sta6, p. 99] of P.

(2.3) We now study the Stanley-Reisner ring

k[A(L)] = k[Xa;aeL]/IA{L),

with each deg(Xα) = 1, of the order complex Δ(L) (cf. [Sta6, p. 120])
of a finite distributive lattice L over a field k. It is well known, e.g.,
[B-G-S] that k[A(L)] is Cohen-Macaulay. We are interested in the
Cohen-Macaulay type type(/c[Δ(L)]) of k[A(L)], i.e., the minimal
number of generators of the canonical module A^[Δ(L)] of k[A(L)] as
a /c[Δ(L)]-module. We refer the reader to, e.g., [B-G-S] and [Sta6,
Chap. 4, §5] for the information on the λ-vector of the order complex
of a finite distributive lattice. Also, consult [HI], [H3] and [H6] for
some topics on commutative algebra related with distributive lattices.

(2.4) PROPOSITION. The Cohen-Macaulay type tyρe(A:[Δ(L)]) of
the Stanley-Reisner ring k[A(L)] of the order complex A(L) of a finite
distributive lattice L = f{P) is

(**) type(fc[A(L)]) = p(P rank(P)) + p(P rank(P) + 1) + .

Proof. S u p p o s e t h a t #(P) = n , s a y P = {p\, p 2 , •-- > Pn}> a n d
we write e(I) = (e\, eι, . . . , en) e Rn for the incident vector of a
poset ideal / of P , i.e., e\ = 1 if Pi € / and e\ = 0 otherwise.
Thus in particular e(0) = (0, 0, . . . , 0) and e(P) = (1 , 1, . . . , 1).
If Jt is a chain in L of the form (*) (0 c ) / 0 £ h § § / /
(C P) with each // e ^ ( P ) , then we write \^\ for the convex hull of
\e(I0), e(/ i) , . . . , e(//)} in Rw . Thus [Jt] is an /-simplex in Rn .
Let g7 = ^ (L) be the set of chains in L = / ' ( P ) and & = ^ ( L )
the convex hull of {e(I) / e f{P)) in RM. Hence & c Rw is a
convex polytope of dimension n . We identify { [ ^ ] ^# G ^ } with
the order complex Δ(L) of L. It is known, e.g., [Sta5, p. 17] that
{[^] J£ G ^} is a triangulation of ^ hence & is a geometric
realization of Δ(L).

Now, let J ^ be the ideal of the Stanley-Reisner ring k[A(L)] =
k[Xa α G -L]//Δ(L) which is generated by those square-free monomi-
als X[aeJ?Xa with [Λf]eΔ(L)-#Δ(L). Here 9Δ(L) is the boundary
of Δ(L). Then, by virtue of [Sta4, Theorem (7.3), p. 81], J is iso-
morphic to the canonical module Kk^L^ of k[A(L)]. On the other
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hand, thanks to [Sta5, p. 10], if Jt e & is of the form (•), then
\y£\ G Δ(L) - <9Δ(L) if and only if the following conditions are sat-
isfied: (i) /Q = 0 , (ii) // = P, and (iii) each 7/+i - // is a clutter.
Hence, it follows immediately that the minimal number of generators
of J^ as a fc[Δ(L)]-module is just (**) as required. D

We should remark that the ideal *f in the above proof is gener-
ated by {naeJ?Xa μ f ] e Δ(L) - <9Δ(L), #(Jt) = rank(P) + 2} as a
fc[Δ(.S*)]-module if and only if p(P / ) = 0 for every / φ rank(P).
In other words,

(2.5) COROLLARY. The Stanley-Reisner ring k[A(L)] of the order
complex Δ(L) of a finite distributive lattice L = ^{P) is level if and
only if p(P / ) = 0 for every / φ rank(P).

(2.6) Let N be the set of non-negative integers and P a finite poset.
We say that a map σ: P —• N is strictly order-preserving if x < y in P
implies σ(x)<σ(y) in N . W e write 3&{P\/) for the set of strictly
order-preserving maps σ: P —• N such that (i) σ(P) = {0, 1,...,/}
and (ii) σ~ι({i - 1, /}) is not a clutter in P for every 1 < / < / .

(2.7) LEMMA. p(P / ) = # ( ^ ( P / ) ) .

Proof. Given a chain ^# : 0 = l0 C jχ C ... C / / + 1 = p in the
distributive lattice J"{P) which satisfies the conditions (i) and (ii)
in (2.2), we can define a map σ:P —> N in 3S{P\ / ) by σ(x) = /
if x € /|+i - / / . On the other hand, if σ e 3S{P\/), then 0 C

^ C σ - i ( { 0 , l } ) C ... g σ - i ( { 0 , l , . . . , / - l } ) C P i s a

chain in ^(P) with the properties (i) and (ii) in (2.2). D

(2.8) We recall that a linear extension [Sta6, p. 110] of a finite poset
P is a strictly order-preserving map σ:P —• N such that σ(P) =
{ 1 , 2 , . . . , #(P)}. If a is a linear extension of j?, then there exists a
unique sequence 2(a) = (rfi, d2, ... , rf/) G Z / , 0 < / = /(σ) € Z ,
with l<d\<d2<- <d/ < #(P) such that

(i) σ" 1 ({^ + 1 , ^ + 2 , . . . , di+χ}) is a clutter in P for each 0 <
/ < / , where we set do = 0 and d/+ 1 = #(P), and

(ii) for every 1 < / < / , there exists x e σ~1({rf/_i + 1, . . . , di})
with x < σ " 1 ( ί / / + 1) in P .

We say that two linear extensions σ and τ of P are equivalent
(written as σ ~ τ) if 9f(σ) = 3f(τ) (= (dι,d2, ... ,d,)) and
σ- 1 ({l,2,. . . ,έ/ / + 1 }) = τ- 1 ({ l ,2, . . . , r f / + 1 }) for every 0 < / < / .
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(2.9) Given a linear extension σ of a finite poset P with 3f{σ) = {d\,
di 9 - , d/), we write //(σ) for the poset ideal σ~ι({l, 2, . . . , dt})
of /> for each 1 < i < / + 1, where d>+ 1 = #(P). Also, set
/0((j) = 0 . Then the chain

in the distributive lattice ^(P) possesses the properties (i) and (ii)
in (2.2).

On the other hand, for each chain Jt in (2.2), there exists a linear
extension σ of P with Jt = J?(σ). Moreover, Jf(σ) = Jf(τ) if
and only if σ and τ are equivalent.

We now come to the main result of this section in consequence of
Proposition (2.4) with Lemma (2.7) and (2.9).

(2.10) THEOREM. The following quantities on a finite poset P are
equal:

(a) the Cohen-Macaulay type type(fc[Δ(L)]) of the Stanley-Reisner
ring k[A(L)] of the order complex Δ(L) of the finite distributive lattice

(b) the number of strictly order preserving maps σ: P —• N such that
σ~ι{{i - 1, /}) is not a clutter in P for every i e σ(P) with i > 1,

(c) the number of distinct equivalence classes of the equivalence rela-
tion " ~ " in (2.8) on the set of linear extensions of the poset P.

(2.11) EXAMPLE. Let P = {p\, pi, ft, PA > P5> Pβ} be the following
finite poset:

P5t tP6

ft,

Pi]

and we employ the notation, e.g., 214635 for denoting the linear
extension a of P with σ(p2) = 1, σ(/?i) = 2, σ(/?4) = 3, σ(p6) =
4, σ(/?3) = 5 and σ(p5) = 6. Then the equivalence classes of the
equivalence relation " ~ " in (2.8) on the set of linear extensions of
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the poset P are

{123456, 123465, 124356, 124365,

213456, 213465, 214356, 214365},

{123546,213546},

{124635,214635},

{132546, 132456},

{132465},

{241635,241365},

{246135}, and

{241356}.

Hence the Cohen-Macaulay type type(fc[Δ(L)]) of the Stanley-Reisner
ring k[A(L)] of the order complex Δ(L) of the distributive lattice
L = f{P) is equal to eight. Note that the A-vector of k[A(L)] is

It might be of interest to find a "nice" formula to compute the
number of distinct equivalence classes of the equivalence relation " ~ "
in (2.8) on the set of linear extensions of P when P is, e.g., a rooted
tree [Sta6, p. 294]).

We here turn to the problem of finding a chain condition of P for
the Stanley-Reisner ring k[A(L)] to be level.

(2.12) The altitude of a finite poset P, written as alt(P), is de-
fined to be the maximal number / > 0 for which there exists a finite
sequence Q , C\, . . . , Cr of chains in P such that

(i) every y e Cj is neither less than nor equal to each x e Cι if
0<i<j<r, and

(ii) the sum of the cardinalities of C, 's is / + r + 1.

Obviously, we have rank(.P) < alt(P).

(2.13) LEMMA. p(P\ alt(P)) φ 0.

Proof, Work in the same notation as in (2.12) with / = alt(P).
We write Q for the subposet Co U Cx U U Cr of P. Then we
have alt(P) = alt(Q). On the other hand, there exists a unique τ e
3B{Q\ alt(β)) such that τ(α) < τ(β) if a e Q and β e Cj with
0 < i < 7 < r. Let //, 0 < i < alt(P), be the poset ideal of P which
consists of those elements x e P such that x < a for some a e Q
with τ(a) < i. In particular 7Q = 0 . Also, we set /ait(i>)+i = P Then,
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the chain 0 = /Q ̂  I\ ^ ^ 4it(/>)+i = P m the distributive lattice
«/"(/>) satisfies the conditions (i) and (ii) in (2.2). Thus p(P alt(P)) ^
0 as desired. D

Hence, we have p(P / ) = 0 if either / < rank(P) or / > alt(P)
and p(P rank(P)) φ 0, p(P alt(P)) ^ 0. Thus, thanks to Corollary
(2.5), we immediately obtain

(2.14) COROLLARY. The Stanley-Reisner ring k[A(L)] of the order
complex Δ(L) of a finite distributive lattice L = ^(P) is level if and
only if rank(P) = alt(P).

(2.15) EXAMPLE. If Cn is the following finite poset

an-\

then the Stanley-Reisner ring k[A(L)] of the order complex Δ(L) of
the finite distributive lattice L = ^{Cn) is level with the Cohen-
Macaulay type type(/:[Δ(L)]) = n\.

(2.16) Recall that the height (resp. depth) heightp(α) (resp.
depthp(o )) of an element α of a finite poset P is the maximal
number / > 0 for which there exists a chain in P of the form
α/ < c*/_i < < αo = a (resp. a = c*o < OL\ < ••• < <*/).
Thus we have heightp(α) + depthp(α) < rank(P) for every element
α G P. On the other hand, if a and β are incomparable ele-
ments of P, then heightP(α) + depthP(β) < alt(P). We write P^
for the subposet of P which consists of all elements a e P with
heightp(α) + depthp(α) = rank(P).

(2.17) COROLLARY. Suppose that the Stanley-Reisner ring k[A(L)]
of the order complex A(L) of a finite distributive lattice L = <f{P)
is level. If a and β are incomparable elements of the poset P, then
we have the inequality heightP(α) + depthp(/?) < rank(P). Thus, in
particular, the subposet P ( + ) of P is the ordinal sum [Sta6, p. 100]
of clutters.
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(2.18) We say that a finite poset P satisfies the λ-chain condition
[Sta6, p. 219] if P = p(+) . It is known, e.g., [Sta6, Corollary (4.5.17)]
that a poset P satisfies the λ-chain condition if and only if the last
non-zero component of the Λ-vector of the order complex Δ(L) of
the distributive lattice L = ̂ (P) is equal to one.

(2.19) COROLLARY. The Stanley-Reisner ring k[A(L)] of the order
complex Δ(L) of a finite distributive lattice L = ̂ (P) is Gorenstein,
i.e., type(Λ:[Δ(L)]) = 1, if and only if the poset P is the ordinal sum
of clutters.
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