UNIVERSAL CLASSES OF ORLICZ FUNCTION SPACES

Francisco L. Hernández and César Ruiz

It is shown that for each $0 the space <math>L^p(0, \infty) + L^q(0, \infty)$, defined as in Interpoliation Theory, is universal for the class of all Orlicz function spaces L^{ψ} with Boyd indices strictly between p and q (i.e. every Orlicz function space L^{ψ} is order-isomorphically embedded into $L^p(0, \infty) + L^q(0, \infty)$). The extreme case of spaces having Boyd indices equal to p or q is also studied. In particular every space $L^r(0, \infty) + L^s(0, \infty)$ embeds isomorphically into the sum $L^p(0, \infty) + L^q(0, \infty)$ for any 0 .

0. Introduction. It is a well-known fact from Interpolation Theory (cf. [L-T II] Proposition 2.b.3) that given $1 \le p < q \le \infty$, every rearrangement invariant (r.i.) Banach function space X on the interval $(0, \infty)$ with Boyd indices between p and q, is an intermediate space between the spaces $L^p(0, \infty) \cap L^q(0, \infty)$ and $L^p(0, \infty) + L^q(0, \infty)$. This means that $L^p(0, \infty) \cap L^q(0, \infty) \subset X \subset L^p(0, \infty) + L^q(0, \infty)$ with continuous inclusions.

One of the purposes of this paper is to study the universality of the spaces $L^p(0, \infty) + L^q(0, \infty)$ with respect to classes of intermediate r.i. function spaces X, in the sense of whether the above inclusion $X \subset L^p(0, \infty) + L^q(0, \infty)$ can be replaced by suitable isomorphic embeddings of X into $L^p(0, \infty) + L^q(0, \infty)$. At the same time, these spaces $L^p(0, \infty) + L^q(0, \infty)$ can be regarded as Orlicz function spaces $L^{\varphi}(0, \infty)$, taking the Orlicz function $\varphi(x) = x^p \wedge x^q = \min(x^p, x^q)$, and, consequently, we are also interested in finding universal Orlicz function spaces for classes of quasi-Banach Orlicz function spaces $L^{\psi}(0, \infty)$.

These questions are motived in part by the existence of positive results of universality in the context of Orlicz sequence spaces: J. Lindenstrauss and L. Tzafriri (cf. [L-T I] Theorem 4.b.12) proved that there exist universal Orlicz sequence spaces l^{φ} with arbitrary prefixed indices $1 \le p < q < \infty$ such that every Orlicz sequence space l^{ψ} with indices between p and q is isomorphic to a (complemented) subspace of l^{φ} .

We show here that, in general, for $0 , the spaces <math>L^{p}(0, \infty) + L^{q}(0, \infty)$ are universal for the class of all Orlicz function

spaces $L^{\psi}(0, \infty)$ with Boyd indices strictly between p and q. On the other hand, this universality of the spaces $L^{p}(0, \infty) + L^{q}(0, \infty)$ does not hold for every intermediate r.i. function space X: there are Lorentz function spaces which cannot be embedded into $L^{p}(0, \infty) + L^{q}(0, \infty)$.

These results are deduced from the two main theorems presented in §2 (Theorems 3.A and 3.B), which are obtained through results of representing the Orlicz function ψ , between p and q, in an integral form with respect to the function $x^p \wedge x^q = \varphi(x)$, i.e. there exists a probability measure ν on $(0, \infty)$ such that, up to equivalence,

$$\psi(x) = \int_0^\infty \frac{\varphi(xs)}{\varphi(s)} \, d\nu(s) \, .$$

Several remarkable consequences are given in §3. Thus, in Proposition 6 we obtain sufficient conditions on the embedding of Orlicz function spaces $L^{\psi}(0, \infty)$ into Orlicz spaces over finite measure $L^{\varphi}[0, 1]$, which were obtained by Bretagnolle and Dacunha-Castelle ([**B-DC**]) by using probabilistic tools (see also [**J-M-S-T**]).

Corollary 8 extends a recent result of S. J. Dilworth ([D]) about the scale of spaces $L^2(0, \infty) + L^q(0, \infty)$ for $2 < q < \infty$. We show that for any $0 the spaces <math>L^r(0, \infty) + L^s(0, \infty)$ are order-isomorphic to sublattices of the space $L^p(0, \infty) + L^q(0, \infty)$.

We would like to thank Ives Raynaud for helpful suggestions on this topic.

1. Preliminaries. Let us start with some notations and definitions. By φ we denote an Orlicz function, i.e. a non-decreasing continuous function defined for $x \ge 0$ so that $\varphi(0) = 0$ and $\varphi(1) = 1$. Two Orlicz functions φ and ψ are equivalent at ∞ , denoted by $\psi \stackrel{\infty}{\sim} \psi$ (resp. at 0, $\varphi \stackrel{0}{\sim} \psi$) if there exist a constant $C \ge 1$ and $x_0 > 0$ such that $C^{-1}\varphi(x) \le \psi(x) \le C\varphi(x)$ for every $x \ge x_0$ (resp. $0 < x \le x_0$). When φ and ψ are equivalent at ∞ and at 0 we say that φ and ψ are equivalent, i.e. $\varphi \sim \psi$. Given $0 , an Orlicz function <math>\varphi$ is *p*-concave) if $\varphi(x^{1/p})$ is a convex function of x (resp. a concave function).

 (I, μ) means the Lebesgue measure space for I = [0, 1] or $(0, \infty)$. The Orlicz function space $L^{\varphi}(I)$ is defined as the set of equivalence classes of μ -measurable scalar functions on I such that

$$m(f/u) = \int_I \varphi(|f(t)|/u) \, d\mu(t) < \infty \quad \text{ for some } u > 0.$$

The space $L^{\varphi}(I)$ is an F-space when we consider the F-norm

$$|f|_{\varphi} = \inf\{u > 0: m(f/u) \le u\}.$$

It is well-known ([M-O]) that an Orlicz space $L^{\varphi}(0, \infty)$ is *p*-normable (0 if and only if there exists a*p* $-convex function <math>\psi$ such that $L^{\varphi}(0, \infty) = L^{\psi}(0, \infty)$, where $L^{\psi}(0, \infty)$ is endowed with the *p*-norm,

$$\|f\|_{\psi} = \inf \left\{ u > 0: \int_0^{\infty} \psi(|f(t))| / u^{1/p}) \, d\mu(t) \le 1 \right\} \,,$$

so $(||f||_{\psi})^{1/p}$ is a quasi-norm (in the case p = 1, $|| ||_{\psi}$ is the usual Luxemburg norm). Moreover, recall that if two Orlicz functions φ and ψ are equivalent (resp. $\varphi \stackrel{\infty}{\sim} \psi$), then $L^{\varphi}(0, \infty) = L^{\psi}(0, \infty)$ (resp. $L^{\varphi}[0, 1] = L^{\psi}[0, 1]$) and the identity map is an isomorphism.

An Orlicz function φ satisfies the Δ_2 -condition (resp. at ∞) if there exists a constant M > 0 such that $\varphi(2x) \leq M\varphi(x)$ for x > 0(resp. $x > x_0$ for some $x_0 > 0$). $L^{\varphi}(0, \infty)$ is separable iff φ verifies the Δ_2 -condition.

For basic properties of Orlicz spaces we refer to [Lu] and [Mu]. For Banach structure properties see [L-T II], [J-M-S-T], [H-Ro] and [R].

Following the terminology of Woo ([W]) we have the following:

DEFINITION 1. Let $0 . An Orlicz function <math>\varphi$ is said to be between p and q if $\varphi(x)/x^p$ is non-decreasing on \mathbb{R}^+ and $\varphi(x)/x^q$ is non-increasing on \mathbb{R}^+ . By $\mathscr{K}(p,q)$ is denoted the set of all Orlicz functions φ between p and q.

It is clear that every Orlicz function φ which is *p*-convex and *q*concave belongs to $\mathscr{K}(p, q)$. If $p \leq p_1$ and $q_1 \leq q$, then $\mathscr{K}(p_1, q_1)$ $\subset \mathscr{K}(p, q)$. Also it is very easy to show that a function φ with continuous derivative belongs to $\mathscr{K}(p, q)$ iff

$$p \le x \varphi'(x) / \varphi(x) \le q$$
 for every $x > 0$.

PROPOSITION 2 ([M] and [W]). Let $0 . For every Orlicz function <math>\varphi \in \mathcal{K}(p, q)$ there exists a p-convex and q-concave Orlicz function ψ with continuous second derivative, such that φ and ψ are equivalent.

The following result of universality for Orlicz sequence spaces is given in [L-T I], Theorem 4.b.12: Given $1 \le p < q < \infty$ there exists an Orlicz function $\varphi_{p,q} = \varphi$ which is *p*-convex and *q*-concave at 0, such that for every Orlicz function ψ *p*-convex and *q*-concave

at 0, the Orlicz sequence space l^{ψ} embeds isomorphically into l^{φ} . Moreover l^{φ} has a 1-complemented copy of l^{ψ} .

We analyze here possible results of universality like the above one in the context of Orlicz function spaces $L^{\varphi}(0, \infty)$. In [J-M-S-T], Theorem 7.1, it is proved that if a rearrangement invariant function space X([0, 1]), in particular an Orlicz function space $L^{\psi}[0, 1]$, is isomorphic to a complemented subspace of a reflexive Orlicz function space $L^{\varphi}(0, \infty)$, then $L^{\psi}[0, 1] = L^{\varphi}[0, 1]$ or $L^{\psi}[0, 1] = L^{2}[0, 1]$, up to an equivalent renorming. It follows from this result that there are no Orlicz function spaces $L^{\varphi}(0, \infty)$ which are complementably universal for classes of function spaces $L^{\varphi}(0, \infty)$. This leads us to study the existence of universal spaces $L^{\varphi}(0, \infty)$ just for (non-complemented) isomorphic embedding.

We will make use of the following remarkable result given in [J-M-S-T]: Every reflexive Orlicz function space $L^{\varphi}[0, 1]$ can be represented isomorphically as the Orlicz space $L^{\overline{\varphi}}(0, \infty)$, where $\overline{\varphi}$ is the function defined by x^2 at 0 and by $\varphi(x)$ at ∞ .

2. Main results. Given $0 , let us denote by <math>x^p \wedge x^q$ the Orlicz function defined by $\min\{x^p, x^q\} = \varphi(x)$ for every $x \ge 0$. Obviously the function $x^p \wedge x^q$ belongs to the class $\mathscr{K}(p, q)$.

The main results of this paper are the following:

THEOREM 3.A. Let $0 . For every Orlicz function <math>\psi \in \mathscr{K}(p, q)$, which is non-equivalent to the function x^p and x^q neither at 0 nor at ∞ , the Orlicz space $L^{\psi}(0, \infty)$ is order-isomorphic to a sublattice of $L^{x^p \wedge x^q}(0, \infty)$.

THEOREM 3.B. Let $0 . For every Orlicz function <math>\psi \in \mathscr{H}(p, q)$ such that $\psi(x) = x^p$ at ∞ and ψ is non-equivalent to the function x^p and x^q at 0, the Orlicz space $L^{\psi}(0, \infty)$ is orderisomorphic to a sublattice of $L^{x^p \wedge x^q}(0, \infty)$.

In order to prove these theorems we give some preliminary results. Given a positive function g of an Orlicz space $L^{\varphi}(0, \infty)$ with $||g||_{\varphi} = 1$, we consider the Orlicz function Φ_g defined by

$$\Phi_g(x) = \int_0^\infty \varphi(xg(s)) \, ds \quad \text{for } x \ge 0.$$

It holds that the Orlicz space $L^{\Phi_g}(0,\infty)$ is order-isomorphic (and isometric) to a sublattice of $L^{\varphi}(0,\infty)$. This follows from the fact that the map $T: L^{\Phi_g}(0,\infty) \to L^{\varphi}((0,\infty) \times (0,\infty))$ defined by T(f) =

 $f \otimes g$, where $f \otimes g(t, s) = f(t)g(s)$, is an (isometric) order-isomorphism into $L^{\varphi}((0, \infty) \times (0, \infty))$ (see [J-M-S-T] pp. 189 for the proof in the case of convex functions φ , which also works in the *p*-convex case).

PROPOSITION 4. Let φ be an Orlicz function verifying the Δ_2 -condition and ν be a probability measure on $(0, \infty)$. If ψ is the Orlicz function defined by

(1)
$$\psi(x) = \int_0^\infty \varphi(xs)/\varphi(s) \, d\nu(s) \quad \text{for } x \ge 0$$

then the Orlicz space $L^{\psi}(0, \infty)$ is order-isometric to a sublattice of $L^{\varphi}(0, \infty)$.

Proof. It is similar to the one given in [J-M-S-T], Theorem 7.7, in the case of normed Orlicz spaces over the [0, 1] interval. Let us sketch it for the sake of completeness.

Let us define a positive function g by its distribution function:

$$\mu\{s\colon g(s)\in A\} = \int_A 1/\varphi(s)\,d\nu(s)$$

for every measurable set A in $(0, \infty)$. For each positive μ -measurable function h on $(0, \infty)$

$$\int_0^\infty h(s)/\varphi(s)\,d\nu(s) = \int_0^\infty h(g(t))\,d\mu(t)\,d\mu(t)$$

In particular for $h = \varphi$, we get $\int_0^\infty \varphi(g(t)) d\mu(t) = 1$, so $g \in L^{\varphi}(0, \infty)$ and $||g||_{\varphi} = 1$. Now, taking $h(s) = \varphi(xs)$ for $x \ge 0$, we obtain that $\psi(x) = \Phi_g(x)$. Hence we conclude that

$$L^{\psi}(0,\infty) = L^{\Phi_g}(0,\infty) \subseteq L^{\varphi}(0,\infty). \qquad \Box$$

The next results allow us to represent Orlicz functions of the class $\mathcal{K}(p, q)$ in an integral form of type (1):

PROPOSITION 5.A. Given 0 and the Orlicz func $tion <math>\varphi(x) = x^p \wedge x^q$. Every Orlicz function $\psi \in \mathcal{K}(p, q)$, which is nonequivalent to the functions x^p and x^q neither at 0 nor at ∞ , can be represented, up to equivalence, as

$$\psi(x) = \int_0^\infty \varphi(xs)/\varphi(s) \, d\nu(s)$$

for some probability measure ν on $(0, \infty)$.

PROPOSITION 5.B. Given $0 and <math>\varphi(x) = x^p \wedge x^q$. Every Orlicz function $\psi \in \mathcal{K}(p,q)$ such that $\psi(x) = x^p$ at ∞ , and which is non-equivalent to the function x^p and x^q at 0, can be represented, up to equivalence, as

$$\psi(x) = \int_0^\infty \varphi(xs)/\varphi(s) \, d\nu(s)$$

for some probability measure ν on $(0, \infty)$.

Proof (5.A). We will take some ideas of the proof of Theorem 4.5 in [W]. We assume by Proposition 2 that ψ is a continuous second derivative. Consider the function

$$N(x) = \frac{\psi(x^{1/q-p})}{x^{p/q-p}}.$$

It follows easily from the properties of the function ψ that N is a non-decreasing function, N(0) = 0, and satisfies

$$\lim_{x\to 0} x N'(x) = 0 \quad \text{and} \quad \lim_{x\to \infty} N'(x) = 0.$$

We define the function

$$\Phi(x) = \int_0^\infty t^{p-2q-1} N''(t^{p-q})(p-q)\varphi(xt) dt$$

= $x^q \int_0^{1/x} t^{p-2q-1} N''(t^{p-q})(p-q)t^q dt$
+ $x^p \int_{1/x}^\infty t^{p-2q-1} N''(t^{p-q})(p-q)t^p dt$

Making the variable change $u = t^{p-q}$,

$$\begin{split} \Phi(x) &= x^q \int_{\infty}^{(1/x)^{p-q}} N''(u) \, du + x^p \int_{(1/x)^{p-q}}^{0} u N''(u) \, du \\ &= x^q N((1/x)^{p-q}) = \psi(x) \, . \end{split}$$

Now, denoting by \widetilde{N} the function

$$\widetilde{N}(t) = t^{2p-2q-1} N''(t^{p-q})(p-q),$$

we have the expressions

$$1 = \psi(1) = \int_0^1 t^{q-p} \widetilde{N}(t) dt + \int_1^\infty \widetilde{N}(t) dt = \int_0^\infty \frac{t^p \wedge t^q}{t^p} \widetilde{N}(t) dt$$

and in general for x > 0

$$\begin{split} \psi(x) &= x^q \int_0^{1/x} t^q \frac{\widetilde{N}(t)}{t^p} dt + x^p \int_{1/x}^\infty t^p \frac{\widetilde{N}(t)}{t^p} dt \\ &= \int_0^\infty \frac{(xt)^q \wedge (xt)^p}{t^q \wedge t^p} \, \frac{t^q \wedge t^p}{t^p} \widetilde{N}(t) \, dt \,. \end{split}$$

Hence, taking the probability measure ν on $(0, \infty)$ defined by

$$\nu(A) = \int_{A} \frac{t^{q} \wedge t^{p}}{t^{p}} \widetilde{N}(t) dt$$

we are done.

Proof (5.B). We will keep the above notation. So, reasoning as before, we consider the function

$$\Phi(x) = \frac{1}{K} \int_{1}^{\infty} (p-q) t^{p-2q-1} N''(t^{p-q}) (xt)^{p} \wedge (xt)^{q} dt$$

for every $x \ge 0$, where N is defined as in the above proof, but only on the interval [0, 1]. And the constant K is

$$K = \int_{1}^{\infty} (p-q) t^{p-2q-1} N''(t^{p-q}) t^{p} dt.$$

By integrating, we get

$$\Phi(x) = 1/K(x^p N((1/x)^{p-q}) - x^q N'(1)).$$

Now, from the definition of N, it follows that there exists $0 < x_0 \le 1$ such that

$$\frac{x^p N((1/x)^{p-q}) - x^q N'(1)}{\psi(x)} = 1 - N'(1) \frac{x^q}{\psi(x)} \ge 1/2$$

for every $x \in [0, x_0]$. Therefore $\psi \stackrel{0}{\sim} \Phi$.

Proceeding as in 5.A we consider the function

$$\widetilde{N}(t) = \frac{1}{K} t^{2p - 2q - 1} N''(t^{p - q})(p - q)$$

obtaining that

$$\psi(x) \sim \int_0^\infty \frac{(xt)^p \wedge (xt)^q}{t^p \wedge t^q} \, d\nu(t) \,,$$

where ν is a probability measure on $(0, \infty)$ defined by $\nu([0, 1]) = 0$ and for every measurable set A in $(1, \infty)$

$$\nu(A) = \int_{A} \frac{t^{q} \wedge t^{p}}{t^{p}} \widetilde{N}(t) dt.$$

Proof of Theorems 3.A *and* 3.B. It follows directly from Propositions 5.A and 5.B together with Proposition 4. □

3. Consequences. We start this section giving an embedding result for Orlicz spaces over finite measure space.

PROPOSITION 6. Let φ be a convex Orlicz function at ∞ which is qconcave at ∞ for some q < 2. Then the Orlicz function space $L^{\varphi}[0, 1]$ is universal for the class of all Orlicz function spaces $L^{\psi}(0, \infty)$ with $\psi \in \mathcal{K}(r, s)$ and $q < r \leq s < 2$.

Proof. From $\varphi \in \mathcal{K}(1, q)$, it follows that $\varphi(x)/x^r$ is a decreasing function for $x \ge 1$. So

$$\int_0^1 \varphi((1/t)^{1/r}) \, dt \le \int_0^1 (1/t)^{s/r} \, dt < \infty$$

and, by Proposition 8.9 in [J-M-S-T] (see also [L-T II] Theorem 2.f.4) we obtain that the space $L^r[0, 1]$ is isometrically isomorphic to a subspace of $L^{\emptyset}[0, 1]$. Now, using the important isomorphic representation of $L^r[0, 1]$ as the space $L^{x' \wedge x^2}(0, \infty)$ ([J-M-S-T] Theorem 8.6) together with Theorem 3.A we conclude that

$$L^{\psi}(0,\infty) \subseteq L^{r}[0,1] \subseteq L^{\varphi}[0,1]. \qquad \Box$$

REMARK. The above result was stated implicitly by Bretagnolle and Dacunha-Castelle in [**B-DC**].

Notice that Proposition 6 extends a well-known result of Bretagnolle, Dacunha-Castelle and Krivine ([**B-DC-K**]), obtained by using *p*-stable random variables: If $1 \le p \le r < 2$, then the space $L^r[0, 1]$ is (isometrically) isomorphic to a subspace of $L^p[0, 1]$.

Let us remark that here we have not used probability tools in the proof of Theorems 3.A and 3.B, but when we prove Proposition 6 we do implicitly because we make use of the Theorem 8.6 of [J-M-S-T] which requires Poisson processes. (Also notice that is the reason of losing the isometric property.)

We turn now to give a representation of the universal Orlicz spaces in Theorems 3.A and 3.B as a sum $L^p(0, \infty) + L^q(0, \infty)$, which are well-known spaces in Interpolation Theory (see [L-T II]). As a consequence we will extend a recent result of S. Dilworth ([D]) on the scale of spaces $L^2(0, \infty) + L^q(0, \infty)$.

Given $L^{\varphi}(0,\infty)$ and $L^{\psi}(0,\infty)$ the space sum $L^{\varphi}(0,\infty) + L^{\psi}(0,\infty)$ is the space of all functions f on $(0,\infty)$ which can be written as g + h such that $g \in L^{\varphi}(0,\infty)$ and $h \in L^{\psi}(0,\infty)$, endowed with the norm (or quasi-norm) defined by

$$||f||_{\varphi+\psi} = \inf\{||g||_{\varphi} + ||h||_{\psi} \colon f = g+h\}.$$

PROPOSITION 7. If φ and ψ are Orlicz functions verifying the Δ_2 condition, $\varphi(x) \leq \psi(x)$ for $0 \leq x \leq 1$, and $\psi(x) \leq \varphi(x)$ for $x \geq 1$, then $L^{\varphi}(0, \infty) + L^{\psi}(0, \infty) = L^{\varphi \wedge \psi}(0, \infty)$, the identity being an
isomorphism.

Proof. Given $f \in L^{\varphi \land \psi}(0, \infty)$, we consider the functions $f^1 = f \chi_{A_1}$ and $f^2 = f \chi_{A_2}$ where $A_1 = |f|^{-1}([0, 1])$ and $A_2 = |f|^{-1}(1, \infty)$. Hence $f^1 \in L^{\varphi}(0, \infty)$ and $f^2 \in L^{\psi}(0, \infty)$, so the inclusion $L^{\varphi \land \psi}(0, \infty) \subset L^{\varphi}(0, \infty) + L^{\psi}(0, \infty)$ is continuous. Indeed, if

$$\|f_n\|_{\varphi\wedge\psi}\xrightarrow[n\to\infty]{} 0\,,$$

then

$$||f_n^1||_{\varphi} \xrightarrow[n \to \infty]{} 0 \text{ and } ||f_n^2||_{\psi} \xrightarrow[n \to \infty]{} 0$$

(cf. [Mu], Theorem 1.6). Hence,

$$||f_n||_{\varphi+\psi} \xrightarrow[n\to\infty]{} 0.$$

Now, we show that the above inclusion is also onto, which finishes the proof by the Open Mapping Theorem.

If $f \in L^{\varphi}(0, \infty) + L^{\psi}(0, \infty)$ with f = g + h, $g \in L^{\varphi}(0, \infty)$ and $h \in L^{\psi}(0, \infty)$, consider g^1 , g^2 , h^1 , and h^2 as before. Then $g^2 \in L^{\psi}(0, \infty)$, $h^1 \in L^{\varphi}(0, \infty)$, and $f = g^1 + g^2 + h^1 + h^2$. It is clear that $g^1 + h^1 \in L^{\varphi \wedge \psi}(0, \infty)$, since $\frac{|g^1(t) + h^1(t)|}{2} \leq 1$ for every $t \geq 0$. Let us see that $g^2 + h^2 \in L^{\varphi \wedge \psi}(0, \infty)$. If $A = |g^2 + h^2|^{-1}([0, 1])$, we have $|g^2 + h^2|\chi_A \leq |g^2|\chi_A$; hence

$$\int_{A} \varphi(|g^{2}+h^{2}|) dt \leq \int_{A} \varphi(|g^{2}|) dt < \infty,$$

so $(g^2 + h^2)\chi_A \in L^{\varphi \wedge \psi}(0, \infty)$.

Finally, as $g^2 + h^2 \in L^{\psi}(0, \infty)$, we have

$$(g^2+h^2)\chi_{(0,\infty)\setminus A}\in L^{\varphi\wedge\psi}(0,\infty),$$

and we can conclude that $f \in L^{\varphi \wedge \psi}(0, \infty)$.

A direct consequence of the above proposition and Theorems 3.A and 3.B is the following:

COROLLARY 8. Let $0 . The space <math>L^r(0, \infty) + L^s(0, \infty)$ is order-isomorphic to a sublattice of $L^p(0, \infty) + L^q(0, \infty)$.

The case p = r = s follows from the fact

$$L^p(0,\infty) \approx L^p[0,1] \subseteq L^{x^p \wedge x^q}(0,\infty).$$

REMARK. The above result in the particular case of p = r = 2 has been obtained by S. Dilworth in [D], Theorem 5.7, using a different argument, and giving several structure properties of the scale of spaces $L^2(0, \infty) + L^q(0, \infty)$ for $2 < q < \infty$.

We pass now to give more consequences of Theorems 3.A and 3.B, related with the Boyd indices of rearrangement invariant (r.i.) function spaces. Let us recall their definition, following [L-T II], where they are given as the converses of the original Boyd indices in [Bo].

Let X be a r.i. Banach function space. For $0 < s < \infty$, we define the dilation operators D_s on X by $(D_s f)(t) = f(t/s)$ for $0 \le t < \infty$, which are linear and continuous. Now, the Boyd indices p_X and q_X are defined by

$$p_X = \lim_{s \to \infty} \frac{\log(s)}{\log(\|D_s\|_X)} = \sup_{s>1} \frac{\log(s)}{\log(\|D_s\|_X)}$$

and

$$q_X = \lim_{s \to 0^+} \frac{\log(s)}{\log(\|D_s\|_X)} = \inf_{0 < s < 1} \frac{\log(s)}{\log(\|D_s\|_X)}$$

It holds that $1 \le p_X \le q_X \le \infty$.

In Interpolation Theory the following result is known (see [L-T II], Proposition 2.b.3), showing the r.i. Banach spaces are intermediate spaces between the spaces $L^p(0, \infty) \cap L^q(0, \infty)$, with the norm of the maximum, and $L^p(0, \infty) + L^q(0, \infty)$.

PROPOSITION 9. Let X be an r.i. Banach function space on $(0, \infty)$. Then, for every 1 , we have

$$L^p(0,\infty) \cap L^q(0,\infty) \subset X \subset L^p(0,\infty) + L^q(0,\infty)$$

with the inclusion map being continuous.

Let us show here that when we restrict ourselves to considering Orlicz function spaces $L^{\varphi}(0, \infty) = X$, we can substitute the above inclusion $X \subset L^{p}(0, \infty) + L^{q}(0, \infty)$ by an order-isomorphism.

When a r.i. function space X is an Orlicz function space $L^{\varphi}(0, \infty)$, the associated Boyd indices p_X and q_X coincide with the Matuszewska-Orlicz indices σ_{φ}^a and s_{φ}^a respectively (see [**Bo**], also [**Ma**]). Let us recall that these indices σ_{φ}^a and s_{φ}^a , related with the growing behavior of the Orlicz function φ in the positive real line, are defined by

$$\sigma_{\varphi}^{a} = \lim_{\lambda \to \infty} \frac{\log \left(\inf_{u > 0} \{ \varphi(\lambda u) / \varphi(u) \} \right)}{\log(\lambda)}$$

and

$$s_{\varphi}^{a} = \lim_{\lambda \to \infty} \frac{\log\left(\sup_{u>0} \{\varphi(\lambda u)/\varphi(u)\}\right)}{\log(\lambda)}.$$

Hence, given $0 , for any Orlicz function space <math>L^{\varphi}(0, \infty)$ with Boyd indices verifying

$$p < p_X = \sigma_{\varphi}^a \le s_{\varphi}^a = q_X < q \,,$$

we get that the function φ is, up to equivalence, a strictly *p*-convex function and a strict *q*-convex function (see f.i. [Ma] pp. 22-24). Thus, the next proposition follows now from Theorem 3.A.

PROPOSITION 10. Let $0 . If an Orlicz function space <math>L^{\varphi}(0, \infty) = X$ has Boyd indices $p < p_X \leq q_X < q$, then $L^{\varphi}(0, \infty)$ is order-isomorphic to a sublattice of $L^p(0, \infty) + L^q(0, \infty)$.

In the case $1 \le p < q = \infty$, it also holds that the space $L^p(0, \infty) + L^{\infty}(0, \infty)$ is universal for every Orlicz function space $L^{\varphi}(0, \infty) = X$ with Boyd indices $p < p_X \le q_X < \infty$. This follows from the fact that the space $L^p(0, \infty) + L^{\infty}(0, \infty)$ contains an isomorphic copy of l^{∞} and the spaces $L^{\varphi}(0, \infty)$ are separable.

REMARK. In general the continuous inclusion map in Proposition 9, $L^p(0, \infty) \cap L^q(0, \infty) \subset X$, cannot be replaced by an isomorphic embedding as in the above proposition. For example, if p = 2 < r < q, then the space $L^2(0, \infty) \cap L^q(0, \infty)$ which is isomorphic to $L^q(0, \infty)$ cannot be embedded into the space $L^r(0, \infty)$.

Finally, let us show that the last proposition does not hold in general for intermediate r.i. Banach spaces different from Orlicz function spaces:

EXAMPLE. Consider the Lorentz function space $X = L_{2,1}(0, \infty)$ defined as the space of all measurable functions f on $(0, \infty)$ such that its decreasing rearrangement f^* verifies

$$\int_0^\infty (f^*(t))t^{-1/2}\,dt < \infty\,.$$

It holds that its associated Boyd indices are $p_X = q_X = 2$; hence by Proposition 9, we have $L_{2,1}(0, \infty) \subset L^p(0, \infty) + L^q(0, \infty)$ for 1 .

However, the space $L_{2,1}(0, \infty)$ does not embed isomorphically into $L^p(0, \infty) + L^q(0, \infty)$. Indeed,

$$L^{p}(0, \infty) + L^{q}(0, \infty) = L^{x^{\nu} \wedge x^{q}}(0, \infty)$$

is a reflexive space, but the space $L_{2,1}(0, \infty)$ is not reflexive (it contains an l^1 -complemented subspace, see [F-J-T]).

REMARK. We do not know whether there are Orlicz function spaces over the [0, 1]-interval universal for intermediate classes of Orlicz function spaces $L^{\psi}[0, 1]$, i.e. similar results to Theorems 3.A and 3.B for Orlicz spaces over finite measurable spaces $L^{\varphi}[0, 1]$. Related to this question, it holds that the universal spaces $L^{p}(0, \infty) + L^{q}(0, \infty)$, for 1 , cannot be represented as a r.i. Banach functionspace on the [0, 1]-interval (see [J-M-S-T] p. 230).

References

[Bo]	D. Boyd, Indices for Orlicz spaces, Pacific J. Math., 38 (1971), 315-323.
[B-DC-K]	J. Bretagnolle, D. Dacunha-Castelle, and J. L. Krivine, Lois stables et
	espaces L ^p , Ann. Inst. Henri Poincaré, Sectión B, 2 (1966), 231-259.
[B-DC]	J. Bretagnolle and D. Dacunha-Castelle, Application de l'etude de cer-
	taines formes linéaries aléatoires au plongement d'espaces de Banach
	dans des espaces L^p , Ann. Scient. Ec. Norm. Sup., 4^e série, 2 (1969),
	437–480.
[D]	S. J. Dilworth, A scale of linear spaces related to the L_p scale, Illinois
	J. Math., 34 (1990), 140–158.
[F-J-T]	T. Figiel, W. B. Johnson, and L. Tzafriri, On Banach lattices and spaces
	having local unconditional structures with applications to Lorentz func-
	tion spaces, J. Approx. Theory, 13 (1975), 395-412.
[H-Ro]	F. L. Hernández and B. Rodriguez-Salinas, On l ^p -complemented copies
	in Orlicz spaces II, Israel J. Math., 68 (1989), 27-55.
[J-M-S-T]	W. B. Johnson, B. Maurey, G. Schechtman, and L. Tzafriri, Symmetric
	structures in Banach spaces, Memoirs Amer. Math. Soc., no. 217, (1979).
[Lu]	W. Luxemburg, Banach function spaces, Thesis Assen. (1955).
[L-T I]	J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-
	Verlag, (1977).
[L-T II]	, Classical Banach Spaces II, Springer-Verlag, (1978).
[M]	W. Matuszewska, Regularly increasing functions in connection with the
	theory of $L^{*\varphi}$ -spaces, Studia Math., 21 (1962), 317–344.
[M-O]	W. Matuszewska and W. Orlicz, A note on the theory of s-normed spaces
	of φ -integrable functions, Studia Math., 61 (1961), 107–115.
[Ma]	L. Maligranda, Indices and interpolation, Dissertationes Math., 234
	(1985).
[Mu]	J. Musielak, Orlicz spaces and modular spaces, Lect. Notes in Math.,
	1034 (1983).
[R]	C. Ruiz, Estructura de Espacios de Orlicz de funciones y de sucesiones
	con pesos. Subespacios distinguidos, Doctoral Thesis, Universidad Com-
	plutense de Madrid, 1990.
[W]	J. Y. T. Woo, On a class of universal modular sequence spaces, Israel J.
	Math., 20 (1975), 193–215.

Received May 18, 1990. Research supported in part by DGICYT PB88/0141.

Universidad Complutense 28040-Madrid, Spain