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CHARACTERIZATION
OF MODULAR CORRESPONDENCES

BY GEOMETRIC PROPERTIES

ALLAN ADLER

In this paper, we will show how certain Hecke correspondences on
modular curves may be characterized by their geometrical properties.
We introduce the notion of a cuspidal correspondence and of an al-
most unramified correspondence (Definition 5) and prove (Theorem
1) that an irreducible almost unramified cuspidal correspondence on a
modular curve is a modular correspondence. By considering the bide-
gree and the invariance properties of the correspondence we are able
to some extent to identify the correspondences which arise (cf. The-
orem 2 of §4). In §5, we give some simple criteria which sometimes
make it easier to show that a correspondence is cuspidal. It would be
very useful to have similar criteria for a correspondence to be almost
unramified. We illustrate the theory with nontrivial examples on the
curves X(5) and X{1).

0. Introduction. In this paper, we will show how certain Hecke cor-
respondences on modular curves may be characterized by their geo-
metric properties. The study of the equations defining modular cor-
respondences was initiated by Adolf Hurwitz, Felix Klein and Ernst
Wilhelm Fiedler in the last century. In [H], Adolf Hurwitz obtained a
general coincidence formula for correspondences on an algebraic curve
and considered from a general point of view the number of equations
needed to define a correspondence. In Ch. VI, 6 §6 of [K-F], Felix
Klein obtained some explicit equations for modular correspondences
and gave criteria for a correspondence to arise as a Schnittsystem-
Correspondenz. Since then, this aspect of the theory of modular cor-
respondences has been largely neglected in favor of more powerful and
general analytic and number theoretic methods which do not involve
explicit equations. Our methods are essentially different from those
of these classical authors.

In the first section, we discuss correspondences in the category of
covering spaces. While the results of §1 are certainly well known,
it is convenient to include them for easy reference. In §2, we con-
sider the different actions of the group PSL2(Z/7VZ) on the modular
curve X(N) of level N. In §3, we introduce the notion of a cuspidal
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correspondence and of an almost unramified correspondence (Defini-
tion 5) and prove (Theorem 1) that an irreducible almost unramified
cuspidal correspondence on a modular curve is a modular correspon-
dence. This is a very coarse result since it does not allow one to say
which modular correspondence one is dealing with. By considering
the bidegree and the invariance properties of the correspondence we
are able to some extent to remedy this defect with Theorem 2 of §4.
In §5, we give some simple criteria which sometimes make it easier
to show that a correspondence is cuspidal. In §6, we present simple
criteria for a correspondence to be almost unramified. Together with
the criteria of §5, they provide an efficient technique for proving that
a correspondence is a modular correspondence. One lacuna in our
technique is that we have not discussed the precise action of modular
correspondences on the cusps of X(N) in general. Knowledge of this
action in a particular case may allow one to identify a modular cor-
respondence when there is more than one correspondence of a given
bidegree.

We also give nontrivial examples of the above theory in the case
of the modular curves X(5) and X(7). In §7 we show that for
r = 2, 3, the Hecke correspondences Tr are essentially defined by

Σxi = χ>? = Σ*/+ 1 = °> w h e r e Σ*/ = Σxϊ = ° i s identified
with X(5) x X(5). In §8, we recall the geometry of the realizations
of X{Ί) as the plane curve X3Y + Y3Z + Z3X = 0 and as the ja-
cobian curve of a net of quadrics in P 3 (C). To each point of the
space curve there corresponds a trisecant, arising as the intersection
of the polar planes of the point with respect to all of the quadrics
in the net, and there are three trisecants through each point of the
curve. In §9, we show that the Hecke correspondence Tι on X{1) is
essentially the correspondence on the space curve that associates to a
point p the three points where the curve is met by the trisecant associ-
ated to p. The modular correspondence associated to the double coset
ΓC7)1/"1 (o i )Γ(7), for suitable η in SL2(Z), is the correspondence on
the space curve that associates to a point p the six points other than p
where the trisecants through p meet the curve. Working instead with
the plane curve, we also recover the classical result of Klein which says
that this correspondence is the correspondence on the plane which as-
sociates to each point p of the plane curve the six points, other than
p, where the polar conic of the curve with respect to p meets the
curve. An application of the theory to modular correspondences on
X(l 1) will appear in [A]. In the case of X{11), the correspondences
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we obtain cannot arise as Schnittsystem-Correspondenzen and there-
fore are not accessible by the methods of Klein.

At the end of volume 2 of Klein-Fricke (cf. [K-F], [F]) one finds
equations defining modular correspondences on some modular curves,
especially X{1) and the Fermat curves x4 + y4 + z4 = 0 and x 8 +
y% + z 8 = 0. The classical results are impressive and the methods
are apparently different from ours. We hope to study their methods
more closely in a future paper. Another direction which we hope to
investigate is the problem of generalizing the results of this article to
other arithmetic groups.

The author is indebted to W. L. Edge, Steve Kleiman and Israel
Vainsencher for helpful correspondence related to this article.

1. Correspondences in the category of covering spaces.

LEMMA 1. Let X\ and X2 be connected locally path connected
semilocally simply connected spaces and let gf: Z; —• X; be universal
covering spaces for i = 1, 2. Let Y be a subspace of X\ x X2 and for
i = 1, 2 let fi denote the restriction to Y of the projection X\ xX2 ->
Xi. Assume that f\ and f2 are covering projections. Then the map-
ping g: Zx x Z 2 -> Xι x X2 defined by g(zx, z2) = (gι(z{), g2{z2))
is a universal covering projection. Furthermore, there is a homeomor-
phism a of Z\ onto Z2 such that the restriction of g to the graph of
a is a universal covering space of Y.

Proof. By Corollary 2.5.15 of Spanier's book [Sp], the spaces Z\
and Z 2 are simply connected. Therefore Z\ x Z 2 is simply connected.
The map g is obviously a covering projection so by Corollary 2.5.7 of
[Sp], g is a universal covering projection. By the universal properties
of gi and g2, we can find maps Λ/: Zx? —• Y for / = 1, 2 such
that fi o hi = gi. By Lemma 2.5.1 of [Sp], the maps h\ and Λ2 are
themselves covering projections and by Corollary 2.5.7 of [Sp], they
are in fact universal covers. By Corollary 2.5.6 of [Sp], the maps h\
and Λ2 are isomorphic over Y, so there is a homeomorphsim a of
Z\ onto Z 2 such that h2 o a = h\. Denote by Yf the graph of a.
Denote by β\ and /?2 the restrictions to Y' of the projections of
Z\ x Z 2 onto Z\ and Z 2 respectively. We then have that

v = g\Y' = (g{ o βx , g2 o β2) = (/i ohχθβuf2oh2o β2)

= {f\θhχoβu f2ohxoβλ)

since h\ o βx = h2 o β2. Therefore v = 1 o (h\ o βx) where 1 is the
inclusion of Y into X\ x X2. This shows that v maps Y1 onto Y
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and that the mapping Y' -> Y induced by v is h\ o βx. Since /*!
is a universal covering projection and β\ is a homeomorphism, we
conclude that h\o βx is a universal covering projection.

Let W be a connected simply connected space and let Γi and
Γ2 be two groups of homeomorphisms, each acting properly discon-
tinuously on W. Let Xx =TX\W and X2 = Γ2 \ W denote the
orbit spaces for Γi and Γ2 respectively. For / = 1, 2, denote by gi
the natural mapping of W onto X[. By Theorem 2.6.7 and Corol-
lary 2.5.7 of [Sp], the mappings g\ and g2 are universal covering
projections. Suppose in addition that Y is a subspace of X\ x X2

and denote by f\ and / 2 the restrictions to Y of the projections
of X\ x X2 onto X\ and X2 respectively. Assume that f\ and ^
are covering projections. Then we can apply Lemma 1. In particular,
taking g — (g\, g2): W x W —> X! x X2 as in Lemma 1, we have
that g is a covering projection. Furthermore, there is a homeomor-
phism a of W onto itself such that g maps the graph Y1 of α onto
Y and realizes Y7 as a universal covering space of Y. Denote by
π: Yr —• Y the universal covering projection induced by π. Our goal
in this section is to describe the relation Y in terms of Γi , Γ2 and
a.

LEMMA 2. Let notations and conventions be as above. Let Y# denote
the preimage of Y in WxW under g. Then Y# is the union over all
(V\ > Ύi) in Γi, and Γ2 of the graphs of the homeomorphisms y^^Ύi
of W onto itself. Furthermore, any two of the graphs are either disjoint
or identical.

Proof. Since g maps Yf onto Y, it follows that every point of Y
has a representative of the form (w , aw) with w in W. If (w\, w2)
belongs to Y# then we can find γ\ in Γi and γ2 in Γ2 such that
(y\wι y yiwi) belongs to Y7, that is, such that γ2w2 = aγ\W\. But
then (w\, w2) lies on the graph of γ2

ιoaγχ, which proves the first as-
sertion. In particular, for each (γ\, γ2) in Γj x Γ2 , g maps the graph
of y2

ιaγ\ onto Y and induces on that graph the covering projection
π ° {Vι 9 7i) onto Y. Now suppose that (γ\, γ2) and (γ[, γ'2) belong
to Γ ! x Γ 2 . Then the graphs of γ2

ιaγ\ and γ!fιaγ[ are (γχ9 y2)~xYf

and (γ[, y'2)~xY' respectively. Suppose these graphs meet each other
at a point p. Let q be any point of (71, y2)~ι Yf. Let σ be a path
from p to q lying on (γ\, y2)~1Y/. Since g is a covering projection,
σ is the unique lift of the path goσ . On the other hand, g o σ lies in
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Y and π o (γ[, γ'2) is a covering projection from (γ[, y ^ ) " 1 ^ o n t o

Y. So there is a lift τ of g o σ to a path in (γ[, γ'^^Y1 beginning
at p. Since the covering projection πo(γ'l9γ'2) is the restriction to
(γ[9γ2)~ιY' of g9it follows that σ and τ must coincide. In partic-
ular, q = σ(l) = τ(l) belongs to (γ[, y^)" 1 ^'- Therefore the graph
of y^αyi is contained in the graph of γ'2

ιaγ[. By symmetry of the
above argument, the graphs coincide.

LEMMA 3. Retaining the assumptions and notation of Lemma 2, let
A\ denote the collection of all cosets Γ2α7i with y\ in T\ and let A2

denote the collection of all cosets T\orιγ2 w/ίλ γ2 in Γ 2 . Let w be
any element of W. Define ψ\\ A\-+Y and φ2: A2-+Y by

= (Γxw , Γ2aγxw),

= {Txa-χy2w ,T2w).

Let f\ and f2 denote, as in Lemma 1, the restrictions to Y of the
projections XχxX2-± Xt for i = 1, 2. Then for i = 1, 2 the function
ψi maps Aι bijectively onto the fibre ffι{ΓiW) of f over TiW .

Proof, Since π maps Yr onto Y, every point of f^ι{Γ\w) has a
representative of the form {γ\W, aγ\w) with ^ in Γ i . It follows
that every point of f^ι(Γ\w) is of the form

g{yλw , aγxw) = (ΓiW , Γ2o:7i^) = ^(Γ 2αyi).

This shows that ψ\ is surjective. Similarly, every point of f^ι(Γ2w)
has a representative in Yf of the form (a~ιγ2w, 72^) with ?2 i n

Γ2 . So every point of f2

ι(Γ2w) is of the form

g(a'1γ2w , γ2w) = ( Γ 1 α ' 1 y 2 ^ , Γ 2 ^) = ^ ( Γ ^ " 1 ^ ) .
Thus 9?2 is surjective. We will show that ψ\ is injective. The proof
that φ2 is injective is quite similar and is left to the reader. Suppose
that y\ and γ[ are elements of Γi such that φι(Γ2aγ\) = φι(Γ\aγ[).
Then Γ2aγ\W = Γ2aγ[w and we can find an element γ2 and Γ2

such that γ2aγ\W = αyjiί;. But then the graph of γ2aγ\ meets the
graph of aγ[. By Lemma 2, these two graphs must therefore coincide.
So γ2aγ\ = aγ[ and hence T2aγ\ = T2aγ\. This proves that ψ\ is
injective.

DEFINITION 1. Retain the notation of Lemma 3. The cardinality
of A\ is called the left degree of Y and is denoted d\(Y). Similarly,
the cardinality of A2 is called the right degree of Y and is denoted
d2(Y). The pair (dx{Y), d2{Y)) is called the bidegree of Y.
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LEMMA 4. We retain the notation and assumptions of Lemma 3.
The left degree d\(Y) is equal to the index of a~ιT2θt n T\ in T\.
Similarly, the right degree d2{Y) is equal to the index of aT\oΓι n Γ2
in Γ 2 .

Proof. See Proposition 3.1 of Chapter 3 of Shimura's book [Sh].
The proof given there assumes that d\(Y) and d2{Y) are finite but
doesn't actually use finiteness in any essential way.

REMARK. All of the results of this section remain valid with appro-
priate changes if one works in the category of ^°° covering spaces,
holomorphic covering spaces, covering spaces which are local isome-
tries or covering spaces in any other reasonable category of spaces
whose maps satisfy a condition depending only on local properties.

DEFINITION 2. In the notation of Lemma 3, we say that Y belongs
to the double coset Γ2αΓi and we write Y = [Γ 2αΓi].

PROPOSITION 1. Let W be a simply connected space and let T\ and
Γ2 be groups which act properly discontinuously on W. For i = 1, 2
let Wi denote the orbit space Γf \ W for the action of Γ/. Let V be
a connected subspace of X\ x X2 and for i = 1, 2 let f denote the
restriction to V of the projection of X\ x X2 onto Xf. Assume that f\
and f2 are both covering projections. Then there is a homeomorphism
a of W onto itself such that V belongs to the double coset T\aT\ in
the sense of Definition 2.

Proof. This follows at once from Definition 2, Lemmas 2 and 3 and
the discussion preceding Lemma 2.

2. Actions of PSL2(Z/NZ) on X(N). In this section, we will prove
some results which will allow us, in later sections, to characterize cer-
tain algebraic correspondences on modular curves by their invariance
properties. In order to establish these results, it is necessary to consider
different actions of the group PSL2(Z/iVZ) on the modular curve of
level N. We will begin this section by describing these actions and
then turn to the study of correspondences. Throughout this section N
will denote an integer > 4 and G will denote the group PSL2(Z/7VZ).
The upper half plane will be denoted %? and Γ will denote the group
SL2(Z).

Let Γ(N) denote the subgroup of SL2(Z) consisting of all matrices
congruent to the identity matrix modulo TV. Then Γ(N) acts properly
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discontinuously on %? and the orbit space for this action is denoted
Y(N). One can compactify Y(N) by adding a finite number of points
in such a way that one obtains a compact Riemann surface X(N).
Furthermore, the action of G on Y(N) extends to an action of G on
X(N).

DEFINITION 3. Denote by p0: G —• Aut(X(N)) the action of G
on X(N) which we have just described. Then p0 will be called the
natural action of G on X(N).

We can obtain actions of G on X(N) by composing po with auto-
morphisms of the group G. In general, these actions are not isomor-
phic to the natural action. In fact, we have the following result.

LEMMA 5. Denote by A the group of automorphisms of G and by
B the subgroup of A consisting of all inner automorphisms. Let σ
belong to A. Then the action po°σ of G on X(N) is isomorphic to
Po if and only if p0 belongs to B.

Proof. If σ belongs to B, let g be an element of G such that
σ{χ) = gxg~ι for all x in G. Then for all x in G we have

Po o σ(x) = po{gxg-χ) = Po(g)po(x)po(g)-1,

which proves that po and po ° σ are isomorphic. Conversely, suppose
that γ is an automorphism of X(N) such that

p0oσ(x) = γop0(χ)γ~ι

for all x in G. Then in particular γ normalizes the image of po.
Therefore γ acts on the orbit G\X(N), which is isomorphic to P 1 .
There are three distinguished points on G\ X{N), namely the three
branch points of the mapping X(N) —• G \ X(N). The orders of
ramification at these points are 2, 3 and N respectively. In particular,
they are all distinct, so the action of γ on G \ X(N) must fix these
points. It follows that γ acts trivially on 6 \ X(N). Therefore γ
belongs to the image of po. Let us say that y = po{g). Then for all
x in G we have

Po o σ(x) = γo po(χ)χy~ι = Po{g*g~ι)

Since po is faithful, we conclude that σ belongs to B. D

From the natural action po of G on X(N), we deduce an action
of G x G on X(N) x X(N) which we call the natural action of G x G
and which we will also denote by po when no confusion can arise.



8 ALLAN ADLER

3. A coarse characterization of modular correspondences. For the

rest of this paper, Ξ will denote an irreducible correspondence from
the curve X(N) to itself. We will assume that Ξ is not of the form
{x} x X(N) or X(N) x {x}, where x is a point of X(N). The alge-
braic surface X(N) x X(N) has an involution i which interchanges
the two factors. If (x, y) is a point of this surface then we have
ι(x ? y) = {y ? x). The image of Ξ under i is called the transpose of
Ξ and is denoted z(Ξ). We say that Ξ is symmetric if Ξ is equal to
its transpose. We will also use the notation *Ξ instead of ι(Ξ).

DEFINITION 4. Let / denote the mapping of Ξ onto X(N) in-
duced by the projection of X(N) x X(N) onto its first factor. By a
branch point of Ξ we mean a branch point of the mapping / . By a
ramification point of Ξ we mean a ramification point of / .

REMARK. A point p is a branch point of a correspondence Ξ if
and only if some coefficient of the divisor Ξ(p) is greater than 1.

Let us recall that a point p of X(N) is called a cusp if and only if
x does not belong to Y(N).

DEFINITION 5. We will say that the correspondence Ξ is almost
unramified if every branch point of Ξ and every branch point of ι(Ξ)
is a cusp. We will say that Ξ is cuspidal if both Ξ and its transpose
ι(Ξ) leave invariant the set of cusps of X(N).

It is easy to see that Ξ is cuspidal if and only if Ξ and z(Ξ) both
leave Y(N) invariant. If Ξ is such, we denote by Ξo the restriction
of Ξ to Y(N). In other words, Ξo = Ξ Π (Y(N) x X(N)) or, what is
the same, Ξo = Ξ n (Y(N) x Y(N)).

Let (a

c

b

d) be a 2 x 2 matrix with entries such that the determi-
nant ad - be of the matrix is positive and such that the greatest
common divisor of the entries of the matrix is 1. Let a be the au-
tomorphism of βf given by a(z) = (az + b)/(cz + d). Denote by
[Γ(iV)αΓ(7V)] the correspondence on X(N) which belongs to the dou-
ble coset Γ(N)aΓ(N) in the sense of Definition 2 of §1. The closure
of [Γ(7V)αΓ(7V)] in X(N) x X(N) is an algebraic correspondence on
X(N) which we denote /#(α) . Any correspondence on X(N) of the
form /τv(α) i s called a modular correspondence. We will often write
J(a

c

b

d) instead of JN(O) when it is convenient to do so.

THEOREM 1. Let Ξ be an irreducible correspondence on X{N) and
suppose that Ξ is unramified and cuspidal Then Ξ is a modular
correspondence.
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Proof. Denote by Ξo the restriction of Ξ to Y(N). Since Ξ is the
closure of ΞQ in X(N) x X(N), we will be done if we can show that
ΞQ is the correspondence [Γ(iV)αΓ(iV)] associated to the double coset
Γ(N)aΓ(N) for a suitable automorphism of %? as above.

Let f\ and f2 be the restrictions to ΞQ of the projections of
Y(N) x Y(N) onto the first and second factors respectively. Let d\
be the degree of f\ and let d2 be the degree of f2 Since Ξ is an al-
gebraic correspondence, the degrees d\ and d2 are both finite. Since
Ξ is both cuspidal and unramified, the maps f\ and f2 are cover-
ing projections and ΞQ is a smooth curve on Y(N) xY(N). We can
therefore apply the results of §1. Taking W = &, Γx = Γ2 = T(N)
and V = Ξo in Proposition 1 of §1, we conclude that there is an ana-
lytic automorphism a of %? such that Ξo belongs to the double coset
Γ(N)aΓ(N) in the sense of Definition 2 of §1. Since d\ and d2 are
finite, we conclude from Lemma 4 of §1 that aT(N)a~ι n Γ(N) and
a-ιΓ{N)aΠΓ(N) both have finite index in Γ(N). Since Γ(N) has
finite index in Γ, we can apply Lemma 3.10 of Shimura's book [Sh]
as well as the discussion of commensurators at the beginning of §3.1
of [Sh] to conclude that a is an automorphism of 21? of the form
α(z) = (az + b)/(cz + d) where (a

c

b

d) is a 2 x 2 integer matrix with
positive determinant and with the greatest divisor of α, b, c and
d equal to 1. Referring to the definition of modular correspondence
given above, we are done.

4. Characterization of particular modular correspondences.

DEFINITION 6. Let Ξ be a correspondence of X(N) and let po
denote the natural representation of G x G on X(N) x X(N). By
the stabilizer of Ξ we mean the subgroup of G x G consisting of all
(£1 > Si) i n G x G such that the automorphism p(g\, g2) of X(N) x
X(N) leaves Ξ invariant. We will denote the stabilizer of Ξ by S(Ξ).

One can view a correspondence Ξ on X(N) as a multiple-valued
function from X(N) to itself. From that point of view, an element
(£19 82) of G x G belongs to *S(Ξ) if and only if

If Ξ is the modular correspondence /#(α) associated to an auto-
morphism a of %? then (#i, g2) belongs to S(Ξ) if and only if in
PSL2(Q) we have

(1) γ2T{N)aΓ(N) = Γ(N)aΓ(N)γ2

where for / = 1, 2, y, is a representative in PSL2(Z) of gt.
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LEMMA 6. Let Ξ be a modular correspondence of X{N). If the
stabilizer of Ξ contains the graph of an automorphism φ ofG then Ξ
is of the form JN(®) > where the automorphism a of %f is associated
to a 2 x 2 integer matrix {a

c

b

d) with a, b, c and d relatively prime
and with positive determinant relatively prime to N.

Proof. Since Ξ is a modular correspondence, we can write Ξ in
the form /#(α) where a is the automorphism associated to a 2 x 2
matrix ( a

c

b

d ) with integer entries with greatest common divisor 1 and
positive determinant. Let {g\, g2) be an element of the stabilizer of
Ξ and for / = 1, 2 let y, be a representative of gi in PSL 2 (Z) . Then
we have

γ2T{N)aΓ(N) = Γ{N)aΓ(N)γι

in PSL2(Q). We can then lift y\ and γ2 to elements yx and γ2 of
Γ such that in M2(Z) we have

Let p be a prime dividing N. Reducing this identity modulo p, we
have

_ (a b\ (a Λ
y*\c d)-[c

in M2(Fp). Since the elements of SL2(FP) generate M2(Fp) as an ad-
ditive group, the above identity implies that the left ideal j generated
by (a

c

b

d) in Λ/2(F/?) is in fact two sided. Since M2(F^) is a simple
ring and since the greatest common divisor of the entries α, b, c and
d is 1, it follows that j is all of M2(FP) or, what is the same, the
determinant of (a

c

b

d) is prime to p . Since p was an arbitrary prime
divisor of N, it follows that the determinant of (a

c

b

d) is relatively
prime to N.

LEMMA 7. Let ξ = (*%) bea 2x2 matrix whose entries are integers
with greatest common divisor 1 and whose determinant is a positive
integer D. Assume that N and D are relatively prime. Let a denote
the automorphism of %f given by a(z) = (az + b)/(cz + d). Let g
denote the element of PGL2(Z/7VZ) represented by the matrix ξ. Let
φ be the automorphism of G given by φ — gxg~ι for all x in G.
Then the stabilizer of JN(®) is the graph of φ .

Proof. Let x be an element of G and let γ\ and y2 be represen-
tatives in PSL2(Z) of x and φ(x) respectively. Let γ{ be a repre-
sentative of 7i in Γ. We can then choose a representative γ2 of γ2
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in Γ such that

_ fa b\ fa

modulo N. We obviously have

a

so by Lemma 3.29(2) of [Sh], we have

Γ ( i V ) 7 2 ( c d)T{N) = Γ{N){ac d)γιΓ{N)

in M2(Z). Therefore in PSL2(Q) we have

γ2T{N)aΓ(N) = Γ(N)άΓ(N)γι

and therefore
φ(x) o JN(a) = JN{a) o x.

This shows that the stabilizer of •/#(<*) contains the graph of φ. Con-
versely, suppose that (gi, #2) lies in the stabilizer of JN(Q ) and let γ\
and 72 be elements of PSL,2(Z) representing g\ and g2 respectively
such that

γ2T(N)aΓ(N) = Γ(N)aΓ(N)γι.

Reducing modulo Λ̂  we have in PGL2(Z/iVZ) that

b\ fa b
82

fa

and therefore gi = φ(g\).
For every positive integer D, let ψ(D) =-D Π(l + p) where the

product runs over all primes p dividing D.

L E M M A 8. Let ξ = ( ^ ) be a 2 x 2 integer matrix with relatively

prime entries and positive determinant D. Let δ denote the largest

factor of D which is relatively prime to N. Let a be the automorphism

of %? given by a(z) = (az + b)/(cz + d). Then the bidegree of the

modular correspondence JN{OL) is (n9n), where

ψ(ND) D _
n = \ A Γ / = T ψ{δ).

ψ{N) δ

Proof. The double coset Γ£Γ is a disjoint union of double cosets
T{N)ξiT(N) which are permuted by multiplication on the left or right
by elements of Γ and therefore all of the double cosets T(N)ξiT(N)
induce correspondences of the same bidegree (n, ή). On the other
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hand, the double coset Γ£Γ is equal to the double coset Γ ( ^ °)Γ by
the theory of elementary divisors. Therefore, the number n depends
only on the numbers N and D and not on the entries of the matrix
Ξ. In particular, we may assume that ξ is the matrix (^ ? ) . By
Lemma 3 of §1, the right degree of JN{OL) is the number of cosets
Γ(N)aj in the double coset Γ(N)aΓ(N). By Proposition 3.1 of [Sh],
this number is equal to the index of a~ιΓ(N)a Π Γ(N) in T(N). Let
us write H to denote the group a~ιΓ(N)aΠΓ(N). Then H consists
of all matrices (™ *) in T(N) such that x = 0 (mod DN). We want
to compute the index (Γ(N): H) of H in Γ(N). We have

Γ(ND) cHc Γ(N) C Γ

and therefore

in = ( Γ ( Λ° : T(ND)) (Γ : T(ND))
*1) (H : T(ND)) (Γ : Γ(N)). {H : Γ(ND)) '

For every positive integer M, denote by 1Γ(M) the subgroup of
SL2(Z/MZ) consisting of lower triangular matrices. Then £Γ(M) is
a group of order M φ(M), where 0 denotes the Euler φ function.
There is a homomorphism π of &~(ND) onto ZΓ{N) obtained by
reducing the entries of a matrix modulo N and it is easy to see that
this homomorphism is surjective. Furthermore, we have a homomor-
phism v of the group H onto the kernel of π given by reducing the
entries of a matrix in H modulo ND. Evidently the kernel of v is
Γ(ND). Therefore, the index (H : T(ND)) of Γ(ND) in H is equal
to the order of the kernel of π, and since π is surjective we have

f*\ (jj ΠAΓΠU n ^ <^{ND)) ND φ{ND)

(3) (H : Γ(ND)) = o(ker n) = - ^ ^ = N ^ .

On the other hand, for every positive integer M we have

(4) (Γ : Γ(M)) = M </>(M)

combining equations (2), (3) and (4) we have

N.φ(N)-ψ(N)
φ(N) _ ψ{ND) = D

ND - ψ(ND) ψ(N) δ
where δ is the largest divisor of D which is prime to N. This proves
that the right degree of Jff(a) is equal to § ψ{δ). A similar ar-
gument, which we leave to the reader, shows that the left degree of
/ΛΓ(Q ) is also equal to j ψ(δ), and the lemma is proved.
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LEMMA 9. Let ζ be as in Lemma 7. Then we can write the double
coset T{N)ξT{N) in the form Γ(ΛΓ)ι/(J})Γ(iV) where η belongs to
Γ.

Proof. By Lemma 7, there is an automorphism φ of G whose graph
in G x G is the stabilizer of /#(£)• F° Γ every g in G, let ~g be a
representative of g in Γ. Then as g runs over G, so does
Therefore

Γ.Γ(N)ξΓ(N)= \J ±gΓ(N)ξΓ(N)
geG

= (J

Hence we have

ΓξΓ = Γ Γ(JV)£Γ = Γ ΓξΓ(N) = TξΓ(N).

We know from the theory of elementary divisors that

so
D 0
0

where η belongs to Γ and λ belongs to Γ(N). We then have

Γ(N)ζT(N)=Γ(N)η

which proves the lemma.

LEMMA 10. Lei £ be as in Lemma 9. If the stabilizer of
is the diagonal of G x G then D is a quadratic residue modulo N.
Furthermore, we can find a solution x of x2D = 1 (mod N) such that

where η is an element Γ congruent to ±(oxZ)) m°dulo N.

Proof. Since the diagonal of G x G stabilizes /#(£), we have mod-
ulo JV that

γa = aγ
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for all γ in G. Therefore a = η (%®) is congruent to a scalar matrix
and η is congruent to a matrix of the form (* ®D). Since η has
determinant 1, we have

x2D ΞΞ 1 (mod N).

In particular, D is a quadratic residue modulo N.

We summarize the results of Theorem 1, Lemma 6, Lemma 8 and
Lemma 10 in the following theorem.

THEOREM 2. Let N > 4 and to Ξ be a correspondence ofbidegree
(n9 n) on X(N). Suppose that Ξ has the following properties:

(1) Ξ is cuspidal and almost unramified.
(2) The stabilizer of Ξ is the diagonal of G x G.
(3) There is one and only one positive integer D relatively prime to

N such that n = ψ{D).

Then we can find a solution x of x2D = 1 (mod N) such that

D >

where η is an element of Γ which is congruent to ± ( Q £D ) modulo
N.

For the more general situation where the stabilizer of Ξ is not neces-
sarily the diagonal of GxG, one can in practice use Lemma 7 instead
of Lemma 10. If the correspondence is not stabilized by the graph of
an automorphism of G, then we can use Lemma 8 and Theorem 1 to
good advantage. We also note that in case condition (3) of Theorem
2 does not hold, one can often distinguish among the possible choices
for D by considering the action of Ξ on the cusps of X(N).

5. Criteria for cuspidal correspondences. In this section we present
some simple criteria for a correspondence to be cuspidal. While they
are not necessary conditions, they are often useful in practice.

LEMMA 11. Let Ξ be a correspondence of X(N) ofbidegree (m, n)
and suppose that the stabilizer of Ξ contains the graph of an automor-
phism φ of G. If N is prime and greater than both m and n then
Ξ is cuspidal

Proof. A point x of X(N) is a cusp if and only if x is fixed by an
element γ of order TV in G. When x and y are such, the divisor
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Ξ(x) of order n on X(N) is fixed by φ(Γ). It is therefore a sum
of the orbits of the cyclic group (φ(γ)) of prime order N. Since the
degree of Ξ(x) is n < N, all of these orbits are singletons. So Ξ(x)
consists of cusps. Replacing Ξ by its transpose i(Ξ) and φ by φ~x,
we have that ι(Ξ) also maps cusps to cusps. Therefore Ξ is cuspidal.

COROLLARY. Let K be a correspondence on X(N) of bidegree
(ra, n). We allow K to be reducible. Suppose that the stabilizer of
K is the graph of an automorphism φ of G. If N is prime and
greater than both m and n, then every irreducible component of K is
stabilized by the graph of φ and is cuspidal

Proof. Let Ξ be an irreducible component of K and suppose that
Ξ has bidegree (α, b). Then a < m and b < n. So TV is greater
than both a and b. Let Λ denote the graph of φ and let H be
the subgroup of Λ which leaves Ξ invariant. If H Φ Λ then H
must have index > N in Λ. Therefore, we can find λ\, . . . , λ^ in
Λ such that the images Ξi, . . . , ΞN of Ξ under λ\9 ... , λx are all
distinct. Since K is invariant under Λ, it follows that each Ξz is
a component of K. Therefore the bidegree of K satisfies m > Na
and n > Nb, contradicting our assumption that m and n are less
than TV. Therefore H = Λ and by Lemma 11 we conclude that Ξ is
cuspidal.

6. Criteria for almost unramified correspondences. In this section,
we give a necessary and sufficient condition for a correspondence to
be almost unramified. It is quite useful in practice.

LEMMA 12. Let Ξ be an irreducible (α, β) correspondence from a
curve ^i to a curve ^> and suppose that Ξ has no component of the
form {x}x%2 with x in Ψ\ or of the form ^\x{y} with y in &2- Let
p be a point of %?\. Then Ξ(p) contains a branch point of the trans-
pose *Ξ ofΞ if and only if p is a fixed point of the correspondence Θ
defined by

(6.1) Θ = tΞoΞ-aΞ.

Proof. We can write

(6.2) Ξ(p)
i=\
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where the #; are distinct points of ^ and where the αz are positive
integers such that

(6.3)
ι = l

For 1 < / < r, we can write

(6.4) 'Ξ(^ ) = C

7 = 1

where Έ denotes the transpose of Ξ, where the Pij are distinct points
of Ψ\ for 1 < j < Si and are different from p , and where Q and the
bij are positive integers such that

(6.5) ci +
7=1

If we compose Ξ and *Ξ at p, we obtain

(6.6) 'Ξ oΞ(p) =
ι = l

Since the Q are positive, equation (6.3) implies that

(6.7) Σ f l / C l" - α*
1=1

Since we have not yet made any assumptions about p, this says that
the correspondence 'ΞoΞ contains the identity correspondence at
least a times. Then p is a fixed point of the correspondence Θ
if and only if the inequality (6.7) is strict. By equation (6.3), the in-
equality (6.7) is strict if and only if one of the ct is greater than 1,
or, what is the same, if and only if one of the <?/ is a branch point of
the transpose *Ξ of Ξ. This proves the lemma.

COROLLARY 1. Let Ξ be an irreducible cuspidal (a, β) correspon-
dence on the modular curve X(N) and let Θ denote the correspon-
dence ιΈ oΞ — αΔ. If every fixed point of Θ is a cusp then every
branch point of ιΞ is a cusp.

Proof. Let q be a branch point of *Ξ and let p be a point of
X{N) such that Ξ(p) contains q. By Lemma 12, the point p is a
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fixed point of θ and therefore by hypothesis p is a cusp. Since the
correspondence Ξ is cuspidal, it follows that every point of Ξ(p) is
a cusp as well. In particular, q is a cusp.

COROLLARY 2. Let Ξ be an irreducible cuspidal symmetric (α, a)
correspondence on X{N) and let θ denote the correspondence Ξ o
Ξ - αΔ. If every fixed point of θ is a cusp then Ξ is a modular
correspondence.

Proof. This follows at once from Corollary 1, from the symmetry
of Ξ and from Lemma 12.

REMARK. Sometimes one can also prove that a correspondence is
almost unramified by using the Riemann-Hurwitz relation.

7. Some modular correspondence on 1 ( 5 ) . In this, we apply the the-
ory we have developed to obtain geometric characterizations of certain
modular correspondences on the modular curve X(5). In particular,
we are able to obtain descriptions of the Hecke correspondences Tι
and Γ3 in Theorem 3 and Theorem 4 respectively. The relevant ge-
ometry was certainly considered by Klein [K] but he apparently never
considered its application to modular correspondences on X(5).

We begin with the following well-known result.

LEMMA 13. The groups S5 and PGL2(F5) are isomorphic. Any
isomorphism between them carries A5 onto PSL2(F5).

Proof. The second assertion is an easy consequence of the first. On
the other hand, it is well known that A5 and PSL2(F5) are isomorphic
since both are simple groups of order 60. The group of automorphisms
of A5 is S5 and there is a faithful homomorphism of PGL2(F5)
into the automorphism group of PSL2(F5). It follows that S5 is
isomorphic to PGL2(F5) since both groups have the same order.

Using Lemma 1, we can view As as a group of automorphisms
of X(5). If γ e A5 and x e X{5), the image of x under γ will be
denoted γ -x. We can also view A5 xA5 as a group of automorphisms
of X(5) x X(5). Let σ be an element of *S5 which does not lie in A5

and for γ in A5, let us write γσ to denote σγσ~ι. Let G c A5 x A5

denote the graph of the automorphism γ *-+yσ of A5.
Let A C 1(5) x 1(5) denote the graph of the identity mapping

of X(5). Although Δ is not invariant under G, the sheaf ^(Δ) is
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invariant under G. The group G therefore acts on the four dimen-
sional space V of sections of ^(Δ) and we have a G-equivariant
embedding of G into the projective space P(F*) . The image will be
a (j-invariant quadric which we will denote by Q. In the proof of
Theorem 3, we will show how to choose σ appropriately.

In order to carry out explicit computations, it is convenient to in-
troduce some coordinates in F * .

LEMMA 14. Let S be a five element set on which G acts transitively.
Then F* is G-equivariantly isomorphic to the space of all functions
f: S —> C such that Σf(s) = 0, where the summation runs over all
elements s of S.

Proof. This is easily proved by referring to the character table for
A 5. The details are left to the reader.

Henceforth we identify F* with the space of all functions / : £ —•
C such that Σ f(s) = 0, as in the lemma. If / is a nonzero element
of F * , the point of P(F*) corresponding to / will be denoted by

LEMMA 15. The quadric Q consists of all [/] in P(F*) such that
Σf(s)2 = 0, where the summation runs over all of the elements s of
S.

Proof. The representation of G on F* is irreducible, so by Schur's
lemma there can be at most one invariant quadric. On the other hand,
Σf(s)2 = 0 is certainly an invariant quadric. So that quadric is Q.

To go further, we need more precise information about the invari-
ants of G in F * . The following result is well known and follows at
once from the known structure of the ring of invariants of the permu-
tation representation of S$ of degree 5 by reducing modulo the ideal
generated by Σ f(s) -

LEMMA 16. For n > 0 and for all f in F*, let

Also let

where (dsj) is the S x 5 matrix whose (s, j)th entry, for s e S
and 0 < j < 4, is given by dsj — f(s)J. Then the ring of all G-
invariant polynomials on F* is generated by a2, α 3 , α 4 , a5 and
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D. Furthermore, the invariants c*2, a^, a4, a5 form a homogeneous
system of parameters for the ring of invariants and D2 is a polynomial
in oil, 0:3, α 4 , a5 with integer coefficients.

The following corollary follows at once from Lemma 16.

COROLLARY. For every integer n > 0, denote by Rn the space of
homogeneous invariants of degree n for G. Then we have

R2 =

R 5 = COL2OL?>

R6 = Qa\ +

We can now prove our results. We will identify X(5) x l ( 5 ) with
the quadric Q given by a^ = 0 (cf. Lemma 15).

THEOREM 3. The curve Ξ on Q defined by a-i = a^ = 0 is a
modular correspondence on X(5). In fact, if we choose the element σ
appropriately, Ξ is the modular correspondence / ( Q ?) •

Proof. First we will show that Ξ satisfies the hypothesis of Theo-
rem 1 of §3. It is easy to see that Ξ is irreducible. Otherwise every
component is A$ invariant and, since Ξ has bidegree (3, 3), some
component would be an ^45-invariant rational function / from X(5)
to itself of degree < 2. But then / would have < 3 fixed points
forming a set invariant under A$, which contradicts the fact that the
minimal A5 orbit has 12 points. Therefore Ξ is irreducible. If we
denote by φ the automorphism of G determined by σ, we have that
the stabilizer of Ξ contains the graph of φ . Also, Ξ maps any cusp
to a divisor of degree 3 invariant under a cyclic subgroup of degree 5.
Such a divisor must be supported on cusps. The same reasoning also
applies to the transpose ι(Ξ) of Ξ. So Ξ is cuspidal. Let Λ denote
the correspondence ι(Ξ) o Ξ - 3Δ. Then Λ has bidegree (6, 6) and
therefore has 12 fixed points. This set of 12 points must be a union
of G-orbits. Since the cusps of X(5) form the only orbit with < 12
elements, the fixed points of Λ must all be cusps. It now follows
from Corollary 1 of Lemma 12 and Theorem 1 that Ξ is a modular
correspondence. Since the stabilizer of Ξ contains the graph of φ , by
Lemma 6 of §4, the correspondence Ξ is of the form J(a

c

b

d), where
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(a

c

b

d) has relatively prime integer entries and positive determinant
prime to 5. It is convenient for us to choose σ to be the element of
S5 = PGL2(F5) represented by (J }) . By Lemma 7 of §4, both (« J)
and ( Q J ) induce the same automorphism φ of G. So we have

( a b\ (2 O
c j ^

By Lemma 8 of §4, we have ψ(ad -be) = 3, which implies that
ad - be = 2. By Lemma 9 of §4, we have

where η belongs to Γ. Therefore we have

Ho i j s ί ( o ij ( m o d 5 )

Taking determinants, we have t = ±1 (mod 5) and therefore ±η
belongs to Γ(5). Therefore

THEOREM 4. Let θ be the curve on Q defined by a^ = OCA = 0.
Then θ is a modular correspondence of X{5). In fact, if we choose
the element a as in Theorem 1, then

2 ?))
where η is any element of Γ congruent to ( ^ ) modulo 5.

Proof. Since θ has bidegree (4, 4) and is invariant under S$, we
have by Lemma 11 of §5 that θ is cuspidal. Suppose that ΘQ is an
irreducible component of θ and let (a, b) be the bidegree of θ .
Since there is no ^5-equivariant function from X{5) to itself, neither
a nor b can be 1. Therefore there can be no more than 2 components
of θ and if Θ is reducible we must have a — b = 2. Since A5 is
simple, ΘQ must be invariant under As. But then the 4 fixed points
of I(ΘQ) O ΘQ — 2Δ must be invariant under A$, which is impossible
since every orbit of A5 has at least 12 elements. Therefore θ is
irreducible. The correspondence ι(θ)oθ-4A has bidegree (12, 12)
and commutes with the action of G on X(5). Its 24 fixed points
must therefore be a union of G-orbits. Since a G-orbit on X(5) must
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have order 12, 20, 30 or 60 and since the cusps form the unique 12
point orbit, the 24 fixed points must consist of the cusps taken twice.
Therefore, by Corollary 1 of Lemma 12 and by Theorem 1, θ is a
modular correspondence. Letting φ be as in the proof of Theorem 3,
we have by Lemma 6 of §4 that θ is of the form / ( * $ ) where (*J)
has relatively prime integer entries and positive determinant prime to
5. As in Theorem 3, we suppose that a corresponds to the element
(I}) of PGL 2 (F 5 ) . By Lemma 7 of §4, both (« J) and (J }) induce
the same automorphism φ of G. Therefore we have

( a b\ (2 O
c )^[

By Lemma 8 of §4, we have ψ(ad - be) = 4 which implies that
ad - be = 3. By Lemma 9 of §4, we have

where η is an element of Γ. Therefore

H o i j Ξ ί ( o i) ( m o d 5 )

which implies that

(mod 5).
•'(-.'

Taking determinants, we have t2 = - 1 (mod 5). Since we are work-
ing multiplicatively modulo ±1 anyway, we may suppose / = 3.
Therefore η may be taken to be any element of Γ which is congruent
to (JO) (mod 5).

In view of the detailed understanding one has of the relevant ge-
ometry, perhaps it is possible to determine all of the modular corre-
spondences on X(5) which arise as intersections of Q with invariant
hypersurfaces.

8. The Klein curve in three dimensional space. The equation XY3 +
YZ3+ZX3 = 0 defines a plane quatric curve W of genus 3. The curve
W is invariant under a group of collineations isomorphic to PSL2(F7).
On p. 109 of [K2], Felix Klein proved that & is isomorphic to the
modular curve X(Ί). Referring to formula (2.1) on p. 161 of W. L.
Edge's paper [El], we see that the quartic form defining & may be
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expressed

1

~2
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as a symmetric determinant,

rl 3 3
+ YZ +ZX ) =

Y
0
0

—τ~ιX

namely

0
X
0

-τ-ιZ

0
0
Z

-τ~ιY

-τ~ιX
-τ~ιZ
-τ-ιY

0

where τ = Λ/2 . The matrix on the right defines a quadratic form in
four variables which depends linearly on X, Y and Z . Thus we
have a net of quadrics in P 3 . The curve W consists of those points
of the plane which correspond to cones in P 3 . The locus in P 3 of the
vertices of these cones is a twisted sextic curve K in P 3 isomorphic
to £?. The curve K is invariant under a group of collineations of
P 3 isomorphic to PSL2(F7). Denoting by p and pr the projective
representations of PSI^Fγ) on P 2 and P 3 which occur here, we
have for all g in PSL2(F7) that

where y = p(g) x and where for all t in P 2 we denote by Qt the
quadric in P 3 corresponding to t. In Edge's paper ([E2], §12, p. 509)
it is shown that for every point p of K, the polar hyperplanes of p
with respect to all of the quadrics of the net meet in a line which in
turn meets K in three points. Denoting this line by λ(p), we have
that λ(p) is a trisecant of K. Furthermore, every trisecant of K
arises in this way and if p and q are points of K then p is on λ(q)
if and only if q is on A(p). There are three trisecants through every
point of K.

Denote by G the group of collineations of P 3 determined by
PSL2(F7). Since the operation of taking polars is covariant, it follows
that for all g in G and all p in K, the trisecant λ(g -p) associated
to g 'P is the image under g of the trisecant λ(p) associated to p.
Denote by Ξ the correspondence on K which associates to each p on
K the three points where λ(jp) meets K. Then the correspondence
Ξ commutes with all of the collineations in G. Furthermore, since p
lies on λ(q) if and only if q lies on λ(p), the correspondence Ξ has
bidegree (3, 3).

The mapping A induces a rank 2 vector bundle on the modular
curve X{Ί) which is invariant under the action of the group of 168
automorphisms. It would be interesting to study this bundle from the
standpoint of the moduli of vector bundles on the modular curve. A
similar phenomenon occurs in connection with a scroll of quadrise-
cants on the modular curve X{\\) of level 11 (cf. [A]). In view of
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the relation of both bundles to modular correspondences, it would be
interesting to try to find generalizations to modular curves of higher
level.

9. Identification of some modular correspondences on X(7).

LEMMA 17. Every irreducible component of the correspondence Ξ is
fixed by the diagonal of G and is cuspidal

Proof. This follows at once from the corollary of Lemma 11.

LEMMA 18. Let p be a point of K. Then p does not lie on the
trisecant λ(p) associated to p.

Proof. Every orbit of G on K has at least 24 elements, so p cannot
be one of the 8 base points of the net of quadrics. If p belongs to
λ(p), the point p lies on the polar plane of p with respect to each
quadric Qt of the net. But then p lies on Qt for every t in P 2 ,
contradicting the fact that p is not a base point of the net.

COROLLARY 1. The correspondence Ξ is an irreducible correspon-
dence without fixed points. In particular, Ξ is cuspidal.

Proof. By Lemma 18, the correspondence Ξ has no fixed points.
So it is enough to show that it is irreducible. We know that Ξ has no
components of the form {x} x K or K x {y}. Therefore since Ξ has
bidegree (3, 3), it must, if reducible, contain a correspondence T of
bidegree (a, 1) where a < 2. Then T is the graph of a nonconstant
function from the curve K to itself. Since K has genus > 1, it
follows that T is the graph of an automorphism a of K. By Lemma
17, the automorphism a must lie in the center of G. Hence we have
a = 1 and T is the diagonal. But by Lemma 18, the correspondence
Ξ has no fixed points. We conclude that Ξ is irreducible.

COROLLARY 2. The endomorphism of Hι(K, Z) induced by Ξ is
the identity transformation.

Proof. Denote by T the endomorphism of Hι (K, Z) induced by
Ξ. Then T commutes with the action of G on H1 (K, Z) . The group
G has a representation p of degree 3 over Q ( v ^ 7 ) . Denote by po
the six dimensional representation of G over Q obtained by viewing
the representation space of p as a rational vector space. Then the
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representation of G on Hι(K, Q) is isomorphic to po. Since p is
irreducible, it follows that the endomorphism ring of Hι(K, Q) as
a G module is isomorphic to Q ( v ^ 7 ) . Therefore we can identify
T with an element β of QCv^T). Since Ξ acts on Hι(K,Z), β
must in fact be an algebraic integer. On the other hand, since Ξ is
symmetric, all of the eigenvalues of T in Hι(K, C) must be real. So
β is a rational integer. By Lemma 18, the correspondence Ξ has no
fixed points. By the Lefschetz formula, we therefore have

2

0 = ]Γ(-l)<>r(/7<(Ξ)) = 3 - tr{T) + 3 = 6 - 6£
ι = l

since Ξ has bidegree (3,3) and Hι(K, Z) has rank 6. Therefore
/? = 1, which proves the corollary.

THEOREM 5. The correspondence Ξ on X(Ί) is a modular corre-
spondence. In fact, Ξ is the correspondence associated to the double
coset

W
where η is any element of Γ congruent to ( 0 4 ) modulo 7.

Proof. By Corollary 1 of Lemma 18, the correspondence Ξ is cus-
pidal. By Corollary 2 of Lemma 18 and the Lefschetz fixed point
formula, the correspondence Ξ o Ξ — 3Δ has exactly 24 fixed points.
Since these must be invariant under the group G, they must coin-
cide with the set of cusps. Applying Corollary 2 of Lemma 12 of §6,
we conclude that Ξ is a modular correspondence. The theorem now
follows from Theorem 2 of §4.

REMARK. In view of Theorem 1, we can regard Corollary 2 of
Lemma 18 as a determination of the eigenvalues of a Hecke operator
acting on a space of automorphic forms using projective geometry. A
more complicated example is given in [A].

THEOREM 6. The correspondence Θ on K which associates to each
point p of K the six points other than p where the three trisecants
through p meet K is a modular correspondence. It is associated to the
double coset

where η is as in Theorem 5.
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Proof. We have
Θ = Ξ 2 - 3 Δ ,

where Δ is the identity correspondence of K. Clearly, θ contains
the correspondence belonging to the double coset

Γ < 7 >(*(o ?
which has the same bidegree (6, 6) as θ . So θ must equal that
modular correspondence.

REMARK. Let X be a ruled surface in P 3 and let Y be the double
curve of X . If p is a point of Y, let Θ'(p) be the set of points,
other than p, in which Y is met by generators of X passing through
p. Then θ ' is a correspondence on Y. If we take X to be the ruled
surface swept out by the trisecants of K, then K is the "double"
curve (which is triple in this case) and the correspondence θ ' reduces
to the correspondence θ of Theorem 5. The first part of the following
theorem is due to Felix Klein [K-F], p. 693). Recall that Ψ is the plane
curve defined by XY3 + YZ3 + ZX3 = 0.

THEOREM 7. Let A denote the correspondence on Ψ which asso-
ciates to each point p of ^ the six points, other than p, where & is
met by the polar conic of p with respect to *&. Then A determines on
X(Ί) the modular correspondence belonging to the double coset

Ά 0^

where η is as in Theorem 1. In particular, Λ concides with the corre-
spondence θ of Theorem 6.

Proof. The correspondence Λ has bidegree (6, 6) and is symmet-
ric, as equation (3) on page 693 of [K-F] shows. Denote by p\, P2
and /?3 the points

Pι = [ 1 , 0 , 0 ] ,

P2 = [0, 1 , 0 ] ,

of &. The polar conic of p\ with respect to %* is XY = 0, which
cuts out the divisor 3p\ + Pι + 4p^ on &. Therefore, A(j>\) = P\ +
Pi + 4/?3. Note that p\, p2 and pi are points of inflection of ^
and therefore cusps of X(7). Since Ξ commutes with the elements
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of G, we conclude that Ξ is cuspidal. Referring to the definition of
valency given on p. 11 of [E3], we see that Λ is a correspondence
of valency 2. Therefore Λ induces scalar multiplication by —2 on
the cohomology group Hι (W, R). Applying the Lefschetz fixed point
formula (or, what is the same in this case, the Cayley-Brill formula
(cf. [E3], p. 12)) to the correspondence Ω = z(Λ) o Λ - 6Δ, we see that
Ω has 72 fixed points.1 Since the (j-orbits on Ψ have order 24, 42,
56, 84 and 168 with the only 24 point orbit being the set of cusps, and
since Ω commutes with G, we see that the fixed points of Λ consist
of the cusps of X(7) taken three times. We can write Λ = ]ΓΛ/
as a sum of irreducible correspondences, where for / = 1, . . . , r the
correspondence Λ, has bidegree (α, , bj). Then the number r of
components of Λ, counted with their multiplicities, is < 6. Since
Λ is cuspidal, so is each Λ;. Let Ω; = Ϊ(Λ/) o Λ; - α/Δ. Then Ωz

is contained in Ω, so all of the fixed points of Ω/ are cusps. By
Corollary 2 of Lemma 12 of §6, each Λ, must therefore be a modular
correspondence. It then follows from Lemma 8 of §4 that αz = bt

for 1 < / < r. Since the numbers 2 and 5 cannot be written in the
form ψ(D), Lemma 8 of §4 implies that none of the α, can be 2 or
5. If for some / we have a\ = 1 then Λ, is the graph of a function
from 2P to itself and since Ψ has genus > 1, that function must be
an automorphism of Ψ. Since Λj is invariant under the diagonal of
G x G, that automorphism must lie in the center of G. Since the
center of G is trivial, we conclude that if at = 1 then Λ, = Δ. Since
A(p\) — p\ + pi + 4/?3 , the identity correspondence Δ cannot occur
more than once among the components of Λ. If Δ does occur in Λ,
let Λ' = Λ - Δ. Then Λ' is a symmetric correspondence of bidegree
(5,5) which is invariant under G and which does not contain Δ.
But that contradicts the fact that none of the CLJ can equal 2 or 5.
Therefore, if Λ is reducible, we must have r = 2 and a\ — #2 = 3.
But then by Theorem 2 the two components Λi and Λ2 coincide,
contradicting the fact that A(p\) = P\ + Pi + 4/?3. Therefore, Λ is
irreducible and we are done by Theorem 2.

REMARK. NOW that we know from a transcendental point of view
that the algebraic correspondences θ of Theorem 2 and Λ of Theo-
rem 3 coincide, it is natural to ask whether one can see how to trans-
form one into the other using projective geometry.

ιΎhis is in effect how one deduces the formula given in [E3], p. 12 for the number of branch
points of a correspondence with valency. It is justified by Lemma 12 of §6. In general, one uses
that Lemma with the Lefschetz fixed point formula.
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