ON SIX-CONNECTED FINITE H-SPACES

James P. Lin and Frank Williams

In this note we shall prove the following theorem.
Main Theorem. Let X be a 6-connected finite H-space with associative mod 2 homology. Further, suppose that $\operatorname{Sq}^{4} H^{7}\left(X ; Z_{2}\right)=$ 0 and $\operatorname{Sq}^{15} H^{15}\left(X ; Z_{2}\right)=0$. Then X is either contractible or has the homotopy type of a product of seven-spheres.
0. Introduction. It should be noted that there are several results related to this theorem. Lin showed that any finite H-space with associative mod 2 homology has its first nonvanishing homotopy in degrees $1,3,7$, or 15 (or is contractible). A seven-sphere is an H space, but not a mod 2 homotopy-associative one [4, 10]. Further work of Hubbuck [5], Sigrist and Suter [12], and others has shown that spaces whose mod 2 cohomology has the form

$$
\Lambda\left(x_{7}, x_{11}\right) \text { or } \Lambda\left(x_{7}, x_{11}, x_{13}\right)
$$

are not realizable as H-spaces. (Here x_{i} denotes an element of degree i.) One is led to conjecture that

Conjecture 1. Every two-torsion-free 6 -connected finite H-space is homotopy equivalent to a product of seven-spheres (or is acyclic).

Conjecture 2. Every two-torsion-free homotopy-associative 6-connected finite H-space is acyclic.

Conjecture 1 implies Conjecture 2 by $[\mathbf{4}, \mathbf{1 1}]$.
Henceforth, X will denote an H-space that satisfies the hypotheses of the Main Theorem, and $H^{*}(X)$ will denote $H^{*}\left(X ; Z_{2}\right)$. The proof of the Main Theorem will be accomplished in a series of steps, which we record here. Our goal is to show that under the hypotheses, X has mod 2 cohomology an exterior algebra on 7-dimensional generators. This relies heavily on the following theorem.

Steenrod Connections [8]. Let X be a finite simply-connected H space with associative mod 2 homology. Then for $r \geq 0, k>0$,

$$
\begin{aligned}
& Q H^{2^{\prime}+2^{r+1} k-1}\left(X ; Z_{2}\right)=\operatorname{Sq}^{2^{\prime} k} Q H^{2^{\prime}+2^{\prime} k-1}\left(X ; Z_{2}\right), \text { and } \\
& \operatorname{Sq}^{2^{\prime}} Q H^{2^{\prime}+2^{+1} k-1}\left(X ; Z_{2}\right)=0 .
\end{aligned}
$$

(Here $Q H^{*}$ denotes the indecomposable quotient.)

In $\S 1$ we shall use a relation in the Steenrod algebra and the methods of [1] to produce a new factorization of Sq^{16}. We then apply this factorization to show that $H^{23}(X)=0$. This implies that $H^{*}(X)$ is an exterior algebra on generators in degrees of the form $2^{d}-1$, $d \geq 3$, with trivial action of the Steenrod algebra. In $\S 2$ we use the Cartan formula for secondary operations, [7], and a particular factorization of the cube of a certain 8 -dimensional cohomology class, [10], to show that $H^{15}(X)=0$. In $\S 3$ we turn to the c-invariant, [14], to complete our calculations by showing that no algebra generators for $H^{*}(X)$ exist in degrees greater than seven. Once it is shown that the mod 2 cohomology is exterior on 7-dimensional generators, it follows by the Bockstein spectral sequence that the rational cohomology has the same form. But since the rational cohomology is isomorphic to the E_{∞} term of the mod p Bockstein spectral for any prime p, it follows by [2] that $H^{*}(X ; Z)$ has no odd torsion. Thus $H^{*}(X ; Z)$ is torsion-free, and we may use the Hurewicz map together with the multiplication in X to obtain a homotopy equivalence

$$
S^{7} \times \cdots \times S^{7} \rightarrow X
$$

1. $H^{23}(X)$. In this section we prove that there are no 23 -dimensional generators in $H^{*}(X)$. We will also show that $H^{*}(X)$ is an exterior algebra with trivial action of the Steenrod algebra. We shall use the notation $\mathbf{S q}^{i, j}$ to denote $\mathbf{S q}^{i} \mathbf{S q}^{j}$.

Theorem 1.1. Let Y be a space and $x \in H^{k}(Y)$ be the reduction of an integral class. If x is in the intersection of the kernels of $\mathrm{Sq}^{2}, \mathrm{Sq}^{7}, \mathrm{Sq}^{8}$, and $\mathrm{Sq}^{8,4}$, then there exist classes $v_{i} \in H^{k+i}(Y)$, $i=3,7,8,10,12,13,14,15$, such that

$$
\begin{align*}
\mathrm{Sq}^{16} x= & \mathrm{Sq}^{11,2} v_{3}+\left(\mathrm{Sq}^{7,2}+\mathrm{Sq}^{6,3}\right) v_{7} \tag{1.1}\\
& +\left(\mathrm{Sq}^{8}+\mathrm{Sq}^{6,2}\right) v_{8}+\mathrm{Sq}^{4,2} v_{10}+\mathrm{Sq}^{4} v_{12} \\
& +\mathrm{Sq}^{3} v_{13}+\mathrm{Sq}^{2} v_{14}+\mathrm{Sq}^{1} v_{15} .
\end{align*}
$$

Proof. Consider the following matrix of relations:

v_{3}
v_{7}
v_{8}
v_{10}
v_{12}
v_{13}
v_{14}
v_{15}

0 \& \mathrm{Sq}^{1} \& 0 \& 0

0 \& \mathrm{Sq}^{2} \& \mathrm{Sq}^{1} \& 0

\mathrm{Sq}^{9} \& \mathrm{Sq}^{4} \& \mathrm{Sq}^{3} \& 0

\mathrm{Sq}^{8,2,1} \& 0 \& 0 \& \mathrm{Sq}^{1}

\mathrm{Sq}^{12} \& 0 \& \mathrm{Sq}^{4,2} \& 0

\mathrm{Sq}^{13}+\mathrm{Sq}^{12,1} \& \mathrm{Sq}^{8} \& 0 \& \mathrm{Sq}^{3}

\mathbf{S q}^{14} \& 0 \& \mathrm{Sq}^{8} \& \mathrm{Sq}^{4}\end{array}\right)\left($$
\begin{array}{c}\mathrm{Sq}^{2} \\
\mathrm{Sq}^{7} \\
\mathrm{Sq}^{8} \\
\mathrm{Sq}^{8,4}\end{array}
$$\right)=0\).

Let

$$
w: K(Z, n) \rightarrow K\left(Z_{2} ; n+2, n+7, n+8, n+12\right)=K_{0}
$$

be defined by

$$
\begin{aligned}
w^{*}\left(l_{n+2}\right) & =\mathrm{Sq}^{2} l_{n} ; w^{*}\left(l_{n+7}\right)=\mathrm{Sq}^{7} l_{n} ; \\
w^{*}\left(l_{n+8}\right) & =\mathrm{Sq}^{8} l_{n} ; w^{*}\left(l_{n+12}\right)=\mathrm{Sq}^{8,4}{ }^{2} l_{n} .
\end{aligned}
$$

If E is the fiber of w, we have the following diagram

$$
\begin{gather*}
\Omega K_{0} \\
\downarrow^{j} \\
E \tag{1.3}\\
\downarrow \\
K(Z, n) \xrightarrow{w} K_{0}
\end{gather*}
$$

and there exist elements $v_{j} \in P H^{n+j}\left(E ; Z_{2}\right)$ defined by the relations (1.2).

A calculation shows that the element

$$
\begin{aligned}
z= & \mathrm{Sq}^{11,2} v_{3}+\left(\mathrm{Sq}^{7,2}+\mathrm{Sq}^{6,3}\right) v_{7}+\left(\mathrm{Sq}^{8}+\mathrm{Sq}^{6,2}\right) v_{8} \\
& +\mathrm{Sq}^{4,2} v_{10}+\mathrm{Sq}^{4} v_{12}+S q^{3} v_{13}+\mathrm{Sq}^{2} v_{14}+\mathrm{Sq}^{1} v_{15}
\end{aligned}
$$

lies in $P H^{16+n}(E) \cap \operatorname{ker}\left(j^{*}\right)=p^{*} P H^{16+n}\left(K\left(Z_{2}, n\right)\right)$. It follows that $z=c p^{*}\left(\mathbf{S q}^{16} l_{n}\right)$, where $c \in Z_{2}$. For $n=16$ there is a commutative
diagram

where $f^{*}\left(l_{16}\right)=l_{2}^{8}$. Now consider $\bar{w}: K\left(Z_{2}, 16\right) \rightarrow K_{0} \times K\left(Z_{2}, 17\right)$ given by the same formulas as w on the fundamental classes in K_{0} and such that $\bar{w}^{*}\left(l_{17}\right)=\operatorname{Sq}^{1} l_{16}$. Let \bar{E} be the fiber of \bar{w}.

There exists a commutative diagram

Further, there is another lifting $\tilde{h}: K(Z, 2) \rightarrow \bar{E}$ of $h f$ that has its H-deviation

$$
D \tilde{h}: K(Z, 2) \times K(Z, 2) \rightarrow K\left(Z_{2}, 16\right)
$$

given by $[D \tilde{h}]=l_{2}^{4} \otimes l_{2}^{4}$. This holds because

$$
B(h f)^{*} B \bar{w}^{*}\left(l_{18}\right)=\mathrm{Sq}^{9,4,2} l_{3}=\left(\mathrm{Sq}^{4,2} l_{3}\right)^{2}
$$

and because $B(h f)^{*} B \bar{w}^{*}$ is zero on the fundamental classes in K_{0}.
In $P H^{*}(\bar{E})$ there exist elements \bar{v}_{j} such that $\bar{h}^{*}\left(\bar{v}_{j}\right)=v_{j}$. The components of \bar{v}_{j} in $H^{*}\left(K\left(Z_{2}, 16\right)\right)$ are:

$$
\begin{gather*}
\bar{v}_{3}: \mathrm{Sq}^{3} l_{16} ; \quad \bar{v}_{7}: 0 ; \quad \bar{v}_{8}: \mathrm{Sq}^{8} l_{16} ; \quad \bar{v}_{10}: 0 \tag{1.5}\\
\bar{v}_{12}: \mathrm{Sq}^{8,4} l_{16} ; \quad \bar{v}_{13}: \mathrm{Sq}^{4,9} l_{16} ; \quad \bar{v}_{14}: 0 ; \quad \bar{v}_{15}: \mathrm{Sq}^{15} l_{16}
\end{gather*}
$$

It follows that $\tilde{h}^{*}\left(\bar{v}_{j}\right)$ is primitive except for $\tilde{h}^{*}\left(\bar{v}_{8}\right)$ which has

$$
\bar{\Delta} \tilde{h}^{*}\left(\bar{v}_{8}\right)=l_{2}^{8} \otimes l_{2}^{4}+l_{2}^{4} \otimes l_{2}^{8}=\bar{\Delta}\left(l_{2}^{12}\right) .
$$

Because $H^{*}(K(Z, 2))$ is trivial in odd degrees and is Z_{2} in even degrees, we conclude

$$
\begin{aligned}
& \tilde{h}^{*}\left(\bar{v}_{j}\right)=0 \text { if } j \neq 8, \quad \text { and } \\
& \tilde{h}^{*}\left(\bar{v}_{8}\right)=t_{2}^{12} .
\end{aligned}
$$

Therefore if

$$
\begin{aligned}
\bar{z}= & \mathrm{Sq}^{11,2} \bar{v}_{3}+\left(\mathrm{Sq}^{7,2}+\mathrm{Sq}^{6,3}\right) \bar{v}_{7}+\left(\mathrm{Sq}^{8}+\mathrm{Sq}^{6,2}\right) \bar{v}_{8}+\mathrm{Sq}^{4,2} \bar{v}_{10} \\
& +\mathrm{Sq}^{4} \bar{v}_{12}+\mathrm{Sq}^{3} \bar{v}_{13}+\mathrm{Sq}^{2} \bar{v}_{14}+\mathrm{Sq}^{1} \bar{v}_{15},
\end{aligned}
$$

it follows that

$$
\begin{equation*}
\tilde{h}^{*}(\bar{z})=\mathrm{Sq}^{8} \tilde{h}^{*}\left(\bar{v}_{8}\right)=\mathrm{Sq}^{8}\left(l_{2}^{12}\right)=l_{2}^{16}=\mathrm{Sq}^{16}\left(l_{2}^{8}\right) . \tag{1.6}
\end{equation*}
$$

Now \tilde{h} and $\bar{h} \tilde{f}$ both lift $h f$, so

$$
\bar{h} \tilde{f}=\tilde{h}+\bar{j} F,
$$

for some

$$
F=\left(F_{1}, F_{2}\right): K(Z, 2) \rightarrow \Omega K_{0} \times K\left(Z_{2}, 16\right)
$$

But ΩK_{0} is odd-dimensional with the exception of $K\left(Z_{2}, 22\right)$. If \tilde{f} is altered by F_{1}, then

$$
\bar{h} \tilde{f}=\tilde{h}+\bar{j} F_{2},
$$

and $\left[F_{2}\right]=d l_{2}^{8}, d \in Z_{2}$.
Using (1.5) we calculate that for all j

$$
\begin{equation*}
F_{2}^{*} \bar{j}^{*}\left(\bar{v}_{j}\right)=0, \quad \text { and hence } \quad \tilde{h}^{*}\left(\bar{v}_{j}\right)=\tilde{f}^{*}\left(v_{j}\right) . \tag{1.7}
\end{equation*}
$$

Therefore

$$
\tilde{f}^{*}(z)=\tilde{h}^{*}(\bar{z})=\operatorname{Sq}^{16}\left(t_{2}^{8}\right) .
$$

It follows that $c=1$.
Theorem 1.2. $Q H^{23}(X)=0$.
Proof. By the restrictions on the degrees of generators of $H^{*}(X)$, $H^{i}(X \wedge X)=0$ for $i=7,15$, and 31. So by the Steenrod connections, all generators in degrees less than 63 may be chosen to be primitive. Further, in degrees $<40, H^{*}(X)$ is an exterior algebra in which

$$
\begin{equation*}
Q H^{k}(X)=0, \quad k \neq 7,15,23,27,29,31,39 . \tag{1.8}
\end{equation*}
$$

The lowest-dimensional possible non-trivial Steenrod operation is Sq^{8} acting on $H^{15}(X)$. So let $x_{23}=\mathrm{Sq}^{8} x_{15} \neq 0$. By (1.8), $\mathrm{Sq}^{2}, \mathrm{Sq}^{8}$, and $\mathrm{Sq}^{8,4}$ are all zero on x_{23}, and $\mathrm{Sq}^{7} x_{23}=\mathrm{Sq}^{15} x_{15}$, which is zero by hypothesis. Thus the factorization (1.1) applies to $\mathrm{Sq}^{16} x_{23}$. We now construct the universal example.

Let $p_{0}: E_{0} \rightarrow K(Z, 23)$ be the fiber of the map

$$
g: K(Z, 23) \rightarrow K\left(Z_{2} ; 25,30,31,35\right)
$$

given by

$$
\begin{aligned}
& g^{*}\left(l_{25}\right)=\operatorname{Sq}^{2}\left(l_{23}\right), \\
& g^{*}\left(l_{30}\right)=\mathrm{Sq}^{7}\left(l_{23}\right), \\
& g^{*}\left(l_{31}\right)=\mathrm{Sq}^{8}\left(l_{23}\right), \quad \text { and } \\
& g^{*}\left(l_{35}\right)=\mathrm{Sq}^{8,4}\left(l_{23}\right) .
\end{aligned}
$$

Next, define $p_{1}: E_{1} \rightarrow E_{0}$ to be the fiber of the map

$$
g_{0}: E_{0} \rightarrow K_{0}=K\left(Z_{2} ; 26,30,33,35,36,37,38 ; \overline{32}, \overline{33}, \overline{35}\right)
$$

given by

$$
g_{0}^{*}\left(l_{23+m}\right)=v_{m} \quad(m \neq 8),
$$

and

$$
g_{0}^{*}\left(\bar{l}_{31+k}\right)=\mathrm{Sq}^{k} v_{8} \quad(k=1,2,4) .
$$

Consider the element in $H^{47}\left(K_{0}\right)$:

$$
\begin{aligned}
& \chi= \mathrm{Sq}^{8}\left[\mathrm{Sq}^{11,2} l_{26}+\left(\mathrm{Sq}^{7,2}+\mathrm{Sq}^{6,3}\right) l_{30}\right. \\
&+\mathrm{Sq}^{4,2}{ }_{l} l_{33}+\mathrm{Sq}^{4} l_{35} \\
&\left.+\mathrm{Sq}^{3} l_{36}+\mathrm{Sq}^{2} l_{37}+\mathrm{Sq}^{1} l_{38}\right] \\
&+\mathrm{Sq}^{15} \bar{l}_{32}+\left(\mathrm{Sq}^{14}+\mathrm{Sq}^{10,4}\right) \bar{\imath}_{33}+\mathrm{Sq}^{12} \bar{l}_{37} .
\end{aligned}
$$

Applying g_{0}^{*} to χ, we get

$$
\begin{aligned}
& g_{0}^{*}(\chi)= \mathrm{Sq}^{8}\left[\mathrm{Sq}^{11,2} v_{3}+\left(\mathrm{Sq}^{7,2}+\mathrm{Sq}^{6,3}\right) v_{7}+\mathrm{Sq}^{4,2} v_{10}+\mathrm{Sq}^{4} v_{12}\right. \\
&\left.+\mathrm{Sq}^{3} v_{13}+\mathrm{Sq}^{2} v_{14}+\mathrm{Sq}^{1} v_{15}\right] \\
&+\left(\mathrm{Sq}^{15,1}+\mathrm{Sq}^{14,2}+\mathrm{Sq}^{12,4}+\mathrm{Sq}^{10,4,2}\right) v_{8} \\
&= \mathrm{Sq}^{8}\left[\mathrm{Sq}^{11,2} v_{3}+\left(\mathrm{Sq}^{7,2}+\mathrm{Sq}^{6,3}\right) v_{7}+\mathrm{Sq}^{4,2} v_{10}+\mathrm{Sq}^{4} v_{12}\right. \\
&\left.+\mathrm{Sq}^{3} v_{13}+\mathrm{Sq}^{2} v_{14}+\mathrm{Sq}^{1} v_{15}+\left(\mathrm{Sq}^{8}+\mathrm{Sq}^{6,2}\right) v_{8}\right] \\
&= \mathrm{Sq}^{8} \mathrm{Sq}^{16} p_{0}^{*}\left(l_{23}\right) \\
&=\left(\mathrm{Sq}^{24}+\mathrm{Sq}^{23,1}+\mathrm{Sq}^{22,2}+\mathrm{Sq}^{20,4}\right) p_{0}^{*}\left(l_{23}\right) .
\end{aligned}
$$

The values of the last three operations on l_{23} are in the kernel of p_{0}^{*}. So

$$
g_{0}^{*}(\chi)=\mathrm{Sq}^{24} p_{0}^{*}\left(l_{23}\right)
$$

Hence there exists an element $v \in H^{46}\left(E_{1}\right)$ such that $\bar{\Delta}(v)=p_{1}^{*} p_{0}^{*}\left(l_{23}\right)$ $\otimes p_{1}^{*} p_{0}^{*}\left(l_{23}\right)$ and $j_{1}^{*}(v)=\sigma^{*}(\chi)$, where j_{1} is the fiber of p_{1}.

We now need to map X into E_{1}. Let $f: X \rightarrow K(Z, 23)$ be such that $f^{*}\left(l_{23}\right)=x_{23}$. We remark that f can be chosen to be an H-map, since $H^{23}(X \wedge X ; Z)=0$. Since the composition $g \circ f$ is nullhomotopic, there exists a lifting $f_{0}: X \rightarrow E_{0}$ of f. The H-deviation of f_{0} factors through j_{0}, the fiber of p_{0}, say $D f_{0}=j_{0} \circ \widetilde{D}_{0}$. The map \widetilde{D}_{0} corresponds to a set of classes in $H^{k}(X \wedge X), k=24,29,30$, and 34.

We shall work in $P_{2} X$, the projection plane of X. Recall that there is an exact triangle [3]

that relates $P_{2} X$ to X. This implies that

$$
\begin{equation*}
H^{k}\left(P_{2} X\right)=0 \quad(17 \leq k \leq 22) . \tag{1.10}
\end{equation*}
$$

Let $u_{16} \in H^{16}\left(P_{2} X\right)$ correspond to x_{15} and set $u_{24}=\mathrm{Sq}^{8} u_{16}$. By (1.10) and the Adem relations, $\mathrm{Sq}^{2}, \mathrm{Sq}^{8}$, and $\mathrm{Sq}^{8,4}$ are all zero on u_{24}. So by [3], the components of \widetilde{D}_{0} in degrees 24,30 , and 34 are all zero. Thus $\widetilde{D}_{0} \in H^{29}(X \wedge X)$, so it is a sum of terms of the form $x_{7} \otimes x_{7}^{\prime} x_{15}, x_{7} x_{7}^{\prime} \otimes x_{15}$, and twists of these terms. Consider the elements $f_{0}^{*} \circ g_{0}^{*}(l)$, where l is one of the fundamental classes of K_{0}. We have

$$
\bar{\Delta}\left(f_{0}^{*} \circ g_{0}^{*}(l)\right)=\left(D f_{0}\right)^{*} g_{0}^{*}(l)=\widetilde{D}_{0}^{*} \circ j_{0}^{*} \circ g_{0}^{*}(l) .
$$

Referring to the matrix relation (1.2), we see that the only possible non-zero values can be when $l=l_{37}$, when

$$
\widetilde{D}_{0}^{*} \circ j_{0}^{*} \circ g_{0}^{*}(l)=\operatorname{Sq}^{8} \widetilde{D}_{0}^{*}\left(l_{29}\right) .
$$

Hence the images under $f_{0}^{*} \circ g_{0}^{*}$ of all the fundamental classes of K_{0}, with the possible exception of l_{37}, are primitive, so for degree reasons they must be zero. We might possibly have

$$
f_{0}^{*} \circ g_{0}^{*}\left(l_{37}\right)=\sum x_{i, 7} x_{i, 7}^{\prime} x_{i, 23} .
$$

But since $\mathrm{Sq}^{8}: H^{15}(X) \rightarrow H^{23}(X)$ is onto, we may alter the lift f_{0} by the action of the fiber on the map $\tilde{f}: X \rightarrow K\left(Z_{2}, 29\right)$ given by

$$
\tilde{f}^{*}\left(l_{29}\right)=\sum x_{i, 7} x_{i, 7}^{\prime} x_{i, 15}
$$

so as to make, for the altered $f_{0}, f_{0}^{*} \circ g_{0}^{*}\left(l_{37}\right)=0$. Thus there exists a lifting $f_{1}: X \rightarrow E_{1}$.

We now consider the element $f_{1}^{*}(v) \in H^{46}(X)$. We have

$$
\bar{\Delta}\left(f_{1}^{*}(v)\right)=\left(f_{1}^{*} \otimes f_{1}^{*}\right)(\bar{\Delta} v)+\left(D f_{1}\right)^{*}(v)=x_{23} \otimes x_{23}+\left(D f_{1}\right)^{*}(v) .
$$

There is no term in $H^{*}(X)$ whose coproduct has $x_{23} \otimes x_{23}$ as a summand. Now

$$
D f_{1}=\theta+j_{1} \circ \widetilde{D}_{1}
$$

where $\theta: X \wedge X \rightarrow E_{1}$ is a map given by applying the Cartan formula, Theorem 3.1 of [7], to $D f_{0}$. The map θ factors through cohomology classes in $H^{*}(X \wedge X)$ of which one factor is a primary or secondary operation applied to a decomposable element, and, by the Cartan formulae for primary and secondary operations, such operations cannot hit x_{23}. Also, $\left(j_{1} \circ \widetilde{D}_{1}\right)^{*}(v)$ lies in the image of Steenrod operations applied to elements of degrees $\neq 30$ or 38 , so $x_{23} \otimes x_{23}$ cannot be in this image. Thus Sq^{8} is identically zero on $H^{15}(X)$ and hence $Q H^{23}(X)=0$.

Corollary 1.3. $H^{*}(X)$ is an exterior algebra on generators concentrated in degrees of the form $2^{d}-1$ for $d \geq 3$. Further, the action of the Steenrod algebra on $H^{*}(X)$ is trivial.

Proof. By the Steenrod connections, any element of $Q H^{*}(X)$ not in a degree of the form $2^{d}-1$ lies in the image of Steenrod operations applied to generators in degrees of the form $2^{d}-1$. By Theorem 1.2 and the Steenrod Connections, it follows that

$$
\mathrm{Sq}^{2^{2}} Q H^{2^{d}-1}(X)=0 \text { for } i=0,1,2,3 .
$$

$\mathrm{By}[\mathbf{1}], \mathrm{Sq}^{2^{2}}$ factors through secondary operations for $i \geq 4$ if $x_{2^{d}-1}$ lies in the kernel of $\mathrm{Sq}^{2^{j}}$ for $0 \leq j \leq i-1$.

So consider the first nontrivial Steenrod operation, say $\mathrm{Sq}^{2^{2}} x_{2^{d}-1}$. By the Cartan formula, $\mathrm{Sq}^{2^{i}} x_{2^{d}-1}$ is primitive, so it must be a generator. By the Steenrod connections we must have $i=d-1$. By Theorem 1.2 we must have $d \geq 5$, so $i \geq 4$. But this implies $\mathrm{Sq}^{2^{d-1}} x_{2^{d}-1}$ is in the image of Steenrod operations of lower degree, which cannot happen. Thus the action of the Steenrod algebra on $H^{*}(X)$ is trivial. Hence $H^{*}(X)$ is an exterior algebra on generators in degrees of the form $2^{d}-1, d \geq 3$.
2. $H^{15}(X)$.

Theorem 2.1. $H^{15}(X)=0$.
Proof. Let x_{15} be a nonzero element of $H^{15}(X)$. We define a cohomology operation as follows. Consider the diagram:

which is associated with a factorization of Sq^{16} as

$$
\mathrm{Sq}^{16}=\sum \alpha_{i j} \varphi_{i j}
$$

in which the $\alpha_{i j}$ are Steenrod operations and the $\varphi_{i j}$ are the secondary operations of Adams, [1], and is constructed as follows.

The map g_{1} is given by the formulas

$$
g_{1}^{*}\left(l_{15+2^{k}}\right)=\operatorname{Sq}^{2^{k}}\left(l_{15}\right), \quad k=1,2,3
$$

The map g_{2} is given by the formulas

$$
g_{2}^{*}\left(l_{14+2^{i}+2^{j}}\right)=v_{i j}
$$

where $v_{i j}$ is an element in $H^{*}\left(E_{1}\right)$ that represents the secondary operation $\varphi_{i j}$.

The map f represents the element x_{15}. The lift f_{1} exists since all Steenrod operations are zero on x_{15}, by Corollary 1.3. Now the H-deviation of f_{1} factors through the fiber of p_{1}, namely $K\left(Z_{2} ; 16,18,22\right)$. Hence the reduced coproducts of the $f_{1}^{*}\left(v_{i j}\right)$ are in the image of Steenrod operations, which are all zero. Hence the $f_{1}^{*}\left(v_{i j}\right)$ are primitive, so they are all zero. Therefore the lift f_{2} exists.

In $H^{30}\left(E_{2}\right)$ there is an element v whose reduced coproduct is $p_{2}^{*} p_{1}^{*}\left(l_{15}\right) \otimes p_{2}^{*} p_{1}^{*}\left(l_{15}\right)$. We shall show that the reduced coproduct of $f_{2}^{*}(v)$ contains a term $x_{15} \otimes x_{15}$, which will be a contradiction. Let us write the factorization of the H-deviation $D f_{1}$ of f_{1} as

$$
D f_{1}=\widetilde{D} \circ j_{1} .
$$

The map \widetilde{D} determines elements in degrees 16,18 , and 22 of $X \wedge X$. Checking possibilities, we see that the components in degrees 16 and

18 are zero, while we may express the component in degree 22 as

$$
\widetilde{D}^{*}\left(l_{22}\right)=\sum x_{7, i} \otimes x_{15, i}
$$

for elements $x_{7, i}$ and $x_{15, i}$ in degrees 7 and 15 respectively. Use of the Cartan formula, [7], now enables us to express the H-deviation of f_{2} as the sum of terms in the image of Steenrod operations (which are all zero) together with terms of the form

$$
\psi_{i}\left(x_{7, i}\right) \otimes x_{15, i},
$$

where the ψ_{i} are secondary operations. We need to check that it cannot happen for $x_{15, i}$ and $\psi_{i}\left(x_{7, i}\right)$ both to be x_{15}. To determine the secondary operations involved here, we may consider the diagram

Using either the Serre or the Eilenberg-Moore spectral sequence we see that a basis for $H^{15}(G)$ is given by elements in the image of Steenrod operations together with an element $\tilde{w}_{0,3}$ that restricts to the fiber of π to be $\left(\mathbf{S q}^{5}+\mathbf{S q}^{4,1}\right) l_{10}$. So we need to determine whether $h_{1}^{*}\left(\tilde{w}_{0,3}\right)$ can be x_{15}.

For dimensional reasons, h_{1} is an H-map. Hence it determines a map $\hat{h}_{1}: P_{2} X \rightarrow B G$, where $B G$ denotes the classifying space of G. If $h_{1}^{*}\left(\tilde{w}_{0,3}\right)=x_{15}$, then $y_{16}=\hat{h}_{1}^{*}\left(B \tilde{w}_{0,3}\right)$ is a representative in $H^{*}\left(P_{2} X\right)$ of the primitive class $x_{15} . \operatorname{In}[10]$, Corollary 1.3, we derived the formula (in the cohomology of $B G$)

$$
\left(B \pi^{*}\left(l_{8}\right)\right)^{3} \equiv \mathrm{Sq}^{8}\left(B \tilde{w}_{0,3}\right), \quad \text { modulo } \operatorname{Im}\left(\mathrm{Sq}^{12}, \mathrm{Sq}^{6,3}, \mathrm{Sq}^{4,2,1}\right)
$$

In general, three-fold cup products in $H^{*}\left(P_{2} X\right)$ are all zero. By the hypotheses on X and (1.9), $H^{*}\left(P_{2} X\right)=0$ in degrees 12,15 , and 17. So $\operatorname{Sq}^{8} \hat{h}_{1}^{*}\left(B \tilde{w}_{0,3}\right)=0$. By [13], $\mathrm{Sq}^{8}\left(y_{16}\right)=\sum y_{8, i} y_{16, i}$, where the $y_{8, i}$ and $y_{16, i}$ correspond to $x_{7, i}$ and $x_{15, i}$, respectively. So we obtain that $\psi_{i}\left(x_{7, i}\right)$ cannot contain x_{15} as a summand; hence thẹ reduced coproduct

$$
\bar{\Delta} h_{2}^{*}(v)=x_{15} \otimes x_{15},
$$

which, as stated above, is a contradiction.
3. $Q H^{2^{k}-1}(X)$. By Corollary 1.3 and Theorem $2.1, H^{*}(X)$ is an exterior algebra on generators in degrees 7 and $2^{d}-1$, for $d \geq 5$, and has trivial action of the Steenrod algebra.

Theorem 3.1. $Q H^{*}(X)$ is concentrated in degree 7.

Proof. Let $x=x_{2^{k}-1}, k \geq 5$, be a generator of lowest degree greater than seven. Let $\xi H^{*}(X)$ denote the image of the cup-squaring map $\xi(x)=x^{2}$. Since $H_{*}(X)$ is associative, we may assume by [8] that $\bar{\Delta} x \in \xi H^{*}(X) \otimes H^{*}(X)$, which is trivial since $\xi H^{*}(X)=0$. Hence x may be chosen to be primitive. We shall construct an operation similar to that in the proof of Theorem 1.4. Consider the following diagram:

in which $K_{1}=\prod_{i} K\left(Z_{2} ; 2^{k}-1+2^{n}\right), 1 \leq n \leq k-1$, and

$$
g_{1}^{*}\left(l_{2^{k}-1+2^{n}}\right)=\mathrm{Sq}^{2^{n}} l_{2^{k}-1},
$$

and in which $K_{2}=\prod_{i, j} K\left(Z_{2} ; 2^{k}-2+2^{i}+2^{j}\right)$, and g_{2} represents the secondary operations $\varphi_{i j}$ associated with a factorization of $\mathrm{Sq}^{\mathbf{2}^{k}}$.

By Corollary 1.3, all Steenrod equations vanish on x, so $g_{1} f \simeq *$ and the lift f_{1} exists.

We note that in degrees below $2^{k}-1, H^{*}(X)$ is concentrated in degrees divisible by seven. Since x is primitive, f is an H-map. Therefore $D_{g_{2} f_{1}}$ factors through the fiber of p_{1}. Hence the formula for the H-deviation of a composition yields that $D_{g_{2} f_{1}}$ is in the image of primary operations in $H^{*}(X \wedge X)$, so it is zero by Corollary 1.3. Hence $g_{2} f_{1}$ is represented by primitive elements of $H^{*}(X)$ in degrees not of the form $2^{d}-1$. Since all primitives are concentrated in degrees of the form $2^{d}-1, g_{2} f_{1}$ is nullhomotopic, and the lift f_{2} exists.

To simplify the situation, we loop the entire diagram to obtain

Note. The c-invariant was introduced in [14] as the obstruction to an H-map between two homotopy-commutative H-spaces preserving the homotopy-commutative structure. There are various choices for this invariant, which depend on the choice of homotopy realizing the H-map. It was observed that if Y and Z are H-spaces and $h: Y \rightarrow Z$ a map, then the composition

$$
\begin{equation*}
\sum \Omega Y \wedge \sum \Omega Y \xrightarrow{\varepsilon \wedge \varepsilon} Y \wedge Y \xrightarrow{D h} Z \tag{3.3}
\end{equation*}
$$

has as its double adjoint $\Omega Y \wedge \Omega Y \rightarrow \Omega Z$ a particular choice for the c-invariant $c(\Omega h)$. In the sequel we shall always make this choice for our c-invariants.

We have a suspension element v in $H^{2^{k+1}-1}\left(\Omega E_{2}\right)$ such that

$$
c(v)=\left(\Omega\left(p_{1} p_{2}\right)\right)^{*} l_{2^{k}-2} \otimes\left(\Omega\left(p_{1} p_{2}\right)\right)^{*} l_{2^{k}-2}
$$

We shall consider the c-invariant of the element

$$
\left(\Omega f_{2}\right)^{*}[v] \in H^{2^{k+1}-1}(\Omega X)=0
$$

Let $u_{2^{k}-2}=\sigma^{*}\left(x_{2^{k}-1}\right)$. Then, applying (3.3) to the formula for the H-deviation for a composition of maps, we obtain

$$
0=c\left(\left(\Omega f_{2}\right)^{*}[v]\right)=u_{2^{k}-2} \otimes u_{2^{k}-2}+c\left(\Omega f_{2}\right)^{*}[v] .
$$

Since $x_{2^{k}-1}$ is primitive, $u_{2^{k}-2}$ is a c-class. Hence $c\left(\Omega f_{1}\right)$ factors as

$$
\Omega X \wedge \Omega X \xrightarrow{\tilde{c}} \Omega^{3} K_{1} \rightarrow \Omega^{2} E_{1} .
$$

We have a commutative diagram

$$
\begin{equation*}
\Omega X \wedge \Omega X \underset{c\left(\Omega f_{1}\right)}{c\left(\Omega f_{2}\right)} \Omega^{2} E_{1}^{\Omega^{2} p_{2}} \tag{3.4}
\end{equation*}
$$

Now $c\left(\Omega f_{1}\right)$ is adjoint to

$$
\sum \Omega X \wedge \sum \Omega x \underset{X}{\rightarrow} \rightarrow \underset{X}{\Omega K_{1}} \rightarrow E_{1},
$$

hence $\left[c\left(\Omega f_{1}\right)\right] \in\left(P H^{*}(\Omega X) \otimes P H^{*}(\Omega X)\right)^{2^{k}+2^{n}-4}$.
According to [6], there is an isomorphism of coalgebras

$$
\operatorname{Tor}_{H^{*}(X)}\left(Z_{2}, Z_{2}\right) \cong H^{*}(\Omega X)
$$

It follows that $H^{*}(\Omega X)$ in degrees less than $2^{k}-2$ is a divided polynomial coalgebra on primitive elements of degree 6 . Therefore

$$
\begin{equation*}
\left.\left[c \Omega f_{1}\right)\right] \in P H^{6}(\Omega X) \otimes P H^{2^{k}-2}(\Omega X)+P H^{2^{k}-2}(\Omega X) \otimes P H^{6}(\Omega X) \tag{3.5}
\end{equation*}
$$

Further, the indecomposables of $H^{*}(\Omega X)$ in degrees less than $2^{k}-2$ are concentrated in degrees of the form $3 \cdot 2^{r}$. But if $k>4$, no Steenrod operation on an element in one of these degrees can hit an indecomposable in degree $2^{k}-2$, so $u_{2^{k}-2}$ is not in the image of the Steenrod algebra.

An analysis of the Cartan formula [7] for secondary operations applied to diagrams 3.4 and 3.5 yields that $u_{2^{k}-2}=\psi\left(u_{6}\right)$, where ψ is a secondary operation defined on 6 -dimensional primitives in the kernel of all Steenrod operations. We proceed to study all such operations. Note that ψ has degree $2^{k}-8$. The possibilities come from the suspension elements in $H^{2^{k}-2}(G)$, where G is the space defined as follows. Let G^{\prime} be defined to be the fiber of the horizontal map g^{\prime} in the diagram

$$
\begin{aligned}
& G^{\prime} \\
& \vdots\left(Z, 2^{k}-1\right) \frac{\mathrm{Sq}^{2}, \mathrm{Sq}^{4}, \ldots, \mathrm{Sq}^{2^{k-1}}}{g^{\prime}} \Pi K\left(Z_{2} ; 2^{k}-1+2^{n}\right)
\end{aligned}
$$

Now set

$$
G=\Omega^{2^{k}-7} G^{\prime} \quad \text { and } \quad g=\Omega^{2^{k}-7} g^{\prime}
$$

So G is fibered as π : $G \rightarrow K(Z, 6)$. We shall see that in $H^{2^{k}-2}(G)$, $\operatorname{im}\left(\sigma^{*}\right) \subset \overline{A(2)} \cdot H^{*}(G)$. For, if an element ψ of $H^{2^{k}-2}(G)$ is a stable operation, then by [1] ψ can be expressed as a sum

$$
\psi=\sum \alpha_{i j} v_{i j}
$$

in which the $v_{i j}$ represent the operations $\psi_{i j}$ applied to $\pi^{*}\left(l_{6}\right)$. We note that none of the $v_{i j}$ occurs in degree $2^{k}-2$.

If $v \in H^{2^{k}-2}(G)$ represents an unstable operation, then it must be in the image of $\left(\sigma^{*}\right)^{N}$ but not in the image of $\left(\sigma^{*}\right)^{N+1}$, for some N. Write $v=\left(\sigma^{*}\right)^{N}[\hat{v}], \hat{v} \in H^{2^{k}-2+N}\left(B^{N} G\right)$. Since \hat{v} is not a suspension, its a_{m}-obstruction [12] must be non-zero for some m. Such an obstruction must arise from having

$$
l_{N+7}^{m} \in \operatorname{Im}\left(B^{N+1} g\right)^{*}
$$

for some m of the form $m=2^{r}$.
If $r>1$, then $l_{N+7}^{m}=\operatorname{Sq}^{2^{r-1}(N+7)} \gamma l_{N+7}$, where

$$
\gamma=\mathrm{Sq}^{2^{r-2}(N+7)} \cdots \mathrm{Sq}^{N+7}
$$

If $r=1$, then $N=2^{k}-14$, so that $l_{N+7}^{2}=\operatorname{Sq}^{1} \gamma l_{N+7}$, where $\gamma=$ $\mathrm{Sq}^{2^{k}-8}$. In either case there is a relation

$$
\gamma=\sum \alpha_{n} \mathrm{Sq}^{2^{n}}, \quad \alpha_{n} \in A(2)
$$

so there exists an element $w \in H^{2^{k}-3}(G)$ that restricts to the fiber to be $\sum \alpha_{n} l_{2^{n}+5}$. Hence a representative of v is given by $\mathrm{Sq}^{1} w$ if $r=1$ and by $\mathrm{Sq}^{2^{r-1}(N+7)} w$ if $r>1$.

Thus $\psi\left(u_{6}\right)$ must be in the image of the Steenrod operations. This implies that $u_{2^{k}-2}$ lies in the image of Steenrod operations which is a contradiction. Since

$$
\sigma^{*}: Q H^{2^{k}-1}(X) \rightarrow P H^{2^{k}-2}(\Omega X)
$$

is monic, we conclude that $Q H^{2^{k}-1}(X)=0$.
Proof of the Main Theorem. We now know that $H^{*}(X)$ is an exterior algebra on seven-dimensional generators. If $H^{*}(X ; Z)$ has odd torsion, then for some odd prime p, there is an even generator of the form $\beta_{1} P^{n} x_{2 n+1}$ by [9]. Applying the Bockstein spectral sequence, this yields an odd generator in the rational cohomology of degree $(2 n p+2) p^{d}-1$ for $d \geq 1$. But

$$
(2 n p+2) p^{d}-1>7
$$

so $H^{*}(X ; Z)$ has no odd torsion. Hence it is torsion-free. Therefore

$$
H^{*}(X ; Z) \cong \Lambda\left(x_{1}, \ldots, x_{r}\right)
$$

where $\operatorname{deg}\left(x_{i}\right)=7$.

We now use the Hurewicz isomorphism to obtain our desired homotopy equivalence

$$
S^{7} \times \cdots \times S^{7} \xrightarrow{f} X .
$$

References

[1] J. F. Adams, On the nonexistence of elements of Hopf invariant one, Ann. of Math., 72 (1960), 20-103.
[2] W. Browder, On differential Hopf algebras, Trans. Amer. Math. Soc., 107 (1963), 153-178.
[3] W. Browder and E. Thomas, On the projective plane of an H-space, Illinois J. Math., 7 (1963), 492-502.
[4] D. Goncalves, Mod 2 homotopy-associative H-spaces, Geometric Applications of Homotopy Theory I, Proceedings Evanston, Springer Lec. Notes 657 (1977), 198-216.
[5] J. Hubbuck, Generalized cohomology operations and H-spaces of low rank, Trans. Amer. Math. Soc., 141 (1969), 335-360.
[6] R. Kane, On loop spaces without p-torsion, Pacific J. Math., 60 (1975), 189-201.
[7] J. Lin, Higher order operations in the mod 2 cohomology of a finite H-space, Amer. J. Math., 105 (1983), 855-937.
[8] _- Steenrod connections and connectivity in H-spaces, Mem. Amer. Math. Soc., 369 (1987), 1-87.
[9] -, Torsion in H-spaces II, Ann. of Math., 107 (1978), 41-88.
[10] J. Lin and F. Williams, Two torsion and homotopy-associative H-spaces, J. Math. Kyoto Univ., 30 (1990), 523-541.
[11] F. Sigrist and U. Suter, Eine Anwendung der K-theorie in der Theorie der H Raume, Comment. Math. Helv., 47 (1972), 36-52.
[12] J. D. Stasheff, Homotopy associativity of H-spaces, I, II, Trans. Amer. Math. Soc., 108 (1963), 275-312.
[13] F. Williams, The H-deviation of a lift, Proc. Amer. Math. Soc., 104 (1988), 1291-1295.
[14] A. Zabrodsky, Cohomology operations and homotopy commutative H-spaces, in The Steenrod Algebra and its Applications, Springer Lecture Notes in Math., 168 (1970), 308-317.

Received January 18, 1990 and in revised form October 30, 1991. The first author was supported in part by a grant from the National Science Foundation.

University of California, San Diego
La Jolla, CA 92043
AND
New Mexico State University
Las Cruces, NM 88003

