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STABILITY OF NON-SINGULAR GROUP ORBITS

CLARK D. HORTON

Let G be a compact Lie group of isometries acting on a riemann-
ian manifold M. In recent years, there has been a great deal of
interest in minimal submanifolds that arise as orbits of such an ac-
tion. In this paper, we formulate necessary and sufficient conditions
for the stability of minimal codimension two principal orbits. These
conditions are expressed in terms of the eigenvalues of a G-invariant
vector field on the orbit, the eigenvalues of the laplacian of the orbit,
and the eigenvalues of the hessian of the volume function. Next we
use a poincare inequality along with the orthogonality relations on
the group G to find conditions for the stability of exceptional orbits.
These conditions are used to find new examples of stable minimal sub-
manifolds in the generalized lens-spaces and the quaternionic space
forms.

1. Introduction. Let M be a riemannian manifold with a compact
Lie group of isometries G acting on the left. W. Y. Hsiang and H. B.
Lawson [HL] have discovered a very simple condition for an orbit of
G to be a minimal submanifold. They showed that an orbit is minimal
if its first variation is zero under equivariant deformations. It then
follows that a principal orbit P is minimal if the volume function
i>: M —• R is critical on P, where v(p) is defined to be the volume
of the orbit through p. Also, an orbit is minimal if all of the orbits
in a surrounding tubular neighborhood are of a higher type. A natural
question to ask is when are these minimal orbits stable or unstable.

In this direction, J. Brothers [Brl] has produced a second variation
formula that is applicable to the case of a minimal principal orbit.
From this formula, it follows that a necessary condition for the stabil-
ity of a principal orbit is that v have positive semi-definite hessian.
His sufficient conditions for stability involve bounds on the lengths of
certain G-invariant vector fields on the orbit. However, if the normal
distribution to the orbit is involutive, then a positive definite hessian
is sufficient for stability. Although these conditions have led to many
new examples of stable principal orbits, they are not sharp in general.
Through the use of Brothers' second variation formula, we show that
the Jacobi operator can be decomposed into a sum of two commut-
ing self-adjoint operators. This is used to find precise conditions for
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the stability of dimension one and codimension two minimal princi-
pal orbits. These conditions are expressed in terms of the eigenvalues
of the hessian matrix of the volume function, the eigenvalues of the
laplacian on the orbit, and the length and eigenvalues of a G-invariant
vector field. Precise conditions are then given for the stability of equi-
variant minimal embeddings of codimension two spheres. In order to
treat the situation of minimal exceptional orbits, the canonical form
of a tubular neighborhood is studied. A variation of the exceptional
orbit is then lifted to the principal orbit where Brothers' second varia-
tion formula is applied. Special properties of the lift along with some
elementary facts from group representation theory are used to find
conditions for stability. These results are then used to find new exam-
ples of stable minimal submanifolds in the generalized Lens-spaces
and in the quaternionic space forms. It also follows that, RPn is
stable in RPm for m<n.

Finally, I would like to thank John Brothers for his many helpful
discussions and suggestions during the preparation of this work.

2. Preliminaries. Throughout this paper G will denote a compact
connected Lie group of isometries of some riemannian manifold un-
less otherwise stated. The action of G is always assumed to be effec-
tive. If x is a point in the manifold on which G acts, then the orbit
through x is denoted by G{x) and the isotropy group is denoted by
Gx. We may put an equivalence relation on the set of group orbits
by declaring two orbits to be equivalent if their isotropy groups are
conjugate. An equivalence class of orbits is called an orbit type. If
Gx and Gy are isotropy groups with (Gx) and (Gy) denoting their
equivalence classes, we may put a partial ordering on them by saying
that (Gx) > (Gy) if and only if Gx is conjugate to a subgroup of
Gy . There exists a unique orbit type (GXQ) , called the principal orbit
type with the property that (GXQ) > (Gx) for all x e M. An orbit
that belongs to the principal orbit type is said to be a principal orbit.
The union of the set of principal orbits is an open dense subset of
the manifold on which G acts [B]. An orbit with isotropy group Gx

is said to be exceptional if some conjugate of the isotropy group of a
principal orbit has finite index in Gx .

Let H be a closed subgroup of G with a linear action on a vecto?
space V. We may define an action of H on G x V by h(g, v) =
(gh~ι, hv). The orbit of the point (g, v) is denoted by [g, v]. The
orbit space is denoted by G x # V and is called a fiber ed product. Let
G act on a riemannian manifold M, and let x e M with isotropy
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group Gx . Then the orbit of G through x has a tubular neighborhood
equivariantly diffeomorphic to the fibered product GXQXV where V
is the space of vectors normal to the orbit at x and the action of Gx

is the action on TXM [B]. If the orbit is principal, then the action of
Gx on the normal space is trivial so that a principal orbit P has a
trivial normal bundle [B]. A group orbit is said to be isolated if it has
a tubular neighborhood in which every other orbit is of a higher type.

Let M be a riemannian manifold with compact submanifold TV
of dimension n without boundary. Let βfn denote the Hausdorff
^-measure on M induced by the riemannian metric and let W be a
smooth vector field in a neighborhood of N. Denote the flow of W
by φt. For k = 1, 2 the kth variation of the area of N with respect
to the deformation vector field W is defined by

We say that N is minimal if δ^ι\W) = 0 for all vector fields W and
stable if δ^2\W) > 0 for all vector fields W.

If / G C°°(M), has a critical point at x G M, then one defines the
hessian H of / at x to be the symmetric bilinear function on TXM
such that H(υ,w) — V o W(f){x) where V and W are smooth
extensions of v, w G Γ*Λf to a neighborhood of x. Suppose we
have a group action on a riemannian manifold M whose orbits are
principal with dimension d. We define a real valued function v on
M where v(p) = %fd{P) where P is the principal orbit through
p G M. P is minimal if and only if z> is critical at p G P [HL]. If
λi is the first eigenvalue of the laplacian Δ on M and / G C°°(M)
with / M / = 0, then we have the Poincare inequality

/ \\df\\2 > ί f.
JM JM

3. Principal orbits. Let P be a principal orbit arising from the ac-
tion of a group G. We may choose a normal, (/-invariant, orthonor-
mal, frame field W\, . . . , Wn on P where n is the codimension of
P in the manifold on which G acts. Every normal vector field W
on P can be written W = £ ^ = 1 A*Wi where A1: P —• i? for each /.
If we take the projections of the vectors [Wi,Wk] on P we get G-
invariant vector fields Wik for /, /: = 1, . . . , n on P. If the Wik = 0
for i, /c = 1, . . . , n then we say that the normal distribution to P is
involutive. (See [Brl].)
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Brothers [Brl] has derived the following formula for the second
variation of minimal P:

= ί v~x W2v + Σ
-*P ι = l j

We observe that Brothers' formula can be rewritten in a way that is
more illuminating. Notice that

/ \\dAψ = ί (dAl, dAι) = / AAA*
Jp Jp Jp

so that we can write

where

i=\

A= I

and
/Δ \

Δ 0

o ••.

The third term in Brothers' formula can be written as

Δ =

/ A'SA
Jp

where
0 -WX2 -Wl3 ... -WXn\

Wl2 0 -W23 ... -W2n

0 . . . -W-XnS =

\Wln W2n W3n ... 0 J

Finally, since v has a critical point on the orbit P, we can thus write
the first term as

/ A'HA
Jp

where H is the n by n matrix with constant entries Hij = u~lWiWjP.
Thus

δf\\V) = I A'JA
Jp
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where / = S + H + Δ is the well-known Jacobi operator. The ma-
trices / , S, H, and Δ may be regarded as linear operators on the
space 0 * = 1 C°°{P). Clearly HA = AH since H is constant and Δ is
diagonal with equal entries.

LEMMA 3.1. Let M be a compact riemannian manifold without
boundary and X a smooth vector field on M such that div X = 0.
Then X is a skew-symmetric operator on functions.

Proof. Assume that M is orientable with volume form ω. Let
f,ge C°°(M). If Lx denotes the Lie derivative by X we then
have

Lχ(fgω) = (fXg + gXf)ω + (fg div X)ω

which follows by Leibniz's rule and the identity Lχco = (div X)ω
[P]. We then get

f (fXg + gXf)ω= I Lχ(fgω).
JM JM

We now use the identity Lχco = (d o ιx + ιx o d)ω, where iχω is the
(n- l)-form defined by {ιxω){vu . . . ? vn_x) = ω(X, Ϊ I , . . . , vn_x)
[W], and Stokes' theorem to write the last integral as

/ (do ιx + ιx od)(fgω) = do iχ(fgω) = 0.
JM JM

Hence JM fXg = - JM gXf. If M is not orientable then we pass to
an oriented double cover. D

LEMMA 3.2. Let G be a compact Lie group equipped with a bi-
invariant metric and let H be a closed subgroup of G. Furthermore,
suppose that G/H has a metric such that the canonical projection
π: G —• G/H is a riemannian submersion. Then any G-invariant
vector field X on G/H is Killing.

Proof. Because π: G -» G/H is a submersion, we may lift X to
a left-invariant vector field X on G which is normal to the fibers of
π. Since the metric on G is bi-invariant, the flow φt of X is an
isometry for each t. Since the submersion is riemannian, it follows
that the flow φt of X is an isometry for each t. D

PROPOSITION 3.3. Let P be a principal orbit with a metric for which
the vector fields Wik, /, k = 1, . . . , n are Killing, and let J, H, S,
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and Δ

(a)

(b)

(d)
(e)
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be as above. Then
AS = SA,

Δ*=Δ,

A / C _ι ττ\ / C i Z_JΓ\ A
L\yO "T il ) — ^O "T 11 )£±,
H* = H.

Proof, (a) follows from the fact that the laplacian commutes with
Killing vector fields. For (b) and (c) we make use of the fact that the
adjoint of a matrix of operators is obtained by replacing each entry
by its adjoint and then transposing, along with the facts that Δ is a
self-adjoint operator on C°°(P) and each Wik is a skew-symmetric
operator on C°°{P) (Lemma 3.1). (d) is implied by (a) and the remark
preceding Lemma 3.1. Finally (e) is true since H is a constant times
the restriction to the normal bundle of P of the hessian matrix of the
function v. D

The proposition implies thatj he operator / is the sum of two com-
muting self-adjoint operators Δ and S + H. The eigenvalues of Δ
are ^learly the same as the eigenvalues of Δ. Since the eigenspaces
of Δ are finite dimensional and S + H commutes with Δ, we see
that there exists a basis of 0 " = 1 C°°(P) for which both operators
are diagonal. Let φ\, φi, . . . be a basis for theset of common
eigenvectors for Δ and H + S, and suppose that Άφk = λkφk and
(H + S)φk = pkφk, where 0 < λ0 < λ\ < . Then the eigenval-
ues for / are {λk + ρk: k = 0 , . . . } . Thus we see that in order for
δψ{W) = Jp AιJA to be non-negative for all W, it must be true that
/ has non-negative eigenvalues. Therefore we have

THEOREM 3.4. Let P be a minimal principal orbit for which the
Wik, i,k = 1, . . . , n are Killing. Then P is stable if and only if
λk + ρk > 0 for all k.

REMARKS. The requirement that the Wik be Killing vector fields
seems to be a bit restrictive. However, Lemma 3.2 gives a general
condition for which a G-invariant vector field on an orbit is Killing.
The standard metrics on the rank one symmetric spaces satisfy this
condition, so that the requirement is not a problem in most of tKe
interesting situations. Also because the hessian is symmetric, we may
assume that it is in diagonal form with eigenvalues μ\ , . . . , / / „ .

Suppose P is a one-dimensional orbit. Such an orbit is diffeomor-
phic to Sι. Hence the laplacian is -d2ldθ2 . Let L be the length of
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the orbit. Then the kth eigenspace of Δ is

4 = {asin(2πk/L) + bcos(2πk/L): a, b e R}

and the kth eigenvalue is (2πk/L)2, k = 0, 1, . . . . Each W\j may
be written as Aijd/dθ where Ajj is a scalar and Wij is clearly Killing
for all / and j . Applying Theorem 3.4 we have

COROLLARY 3.5. Let P be a one-dimensional minimal principal
orbit. Then P is stable if

where Rk is the smallest eigenvalue of the 2n x 2n matrix (Kpq),
p,q =1, ... , n, with

VP 0 \ / 0 - ^ ^
0 μp)' Kpq \ψApq 0

^ _ 1 _ n -I- n
PP ~ \ Π ,, ' KP1 ~ \ 2πk A r> I > V ψ O.

EXAMPLE 3.6. Consider the Lie group U{2) whose Lie algebra is
spanned by the matrices

0\ . _ / 0 0\ 1 /0 - 1

oj ' 2~ \0 i) ' 7 ! W 0

which form an orthonormal basis with respect to the inner product
given by {A, B) = \x(AB'). Extend this to a bi-invariant metric on
U(2). Define a left action of Sι on 17(2) by />: Sι x C/(2) -^ ί/(2)
with

/ iθ AΛ ίeiθzxp(ew, A) =
V Z2i

where ί̂ G ί/(2). Each of the orbits is a right coset of the one pa-
rameter subgroup given by / —• exp tD\ . Each orbit is minimal with
constant length 2π hence the hessian of the length function of the
orbit zero. The frame W\, W2, W^ for each of the orbits is given
by the restriction of the left-invariant vector fields represented by D2 ,
/ , and / respectively. A simple computation gives W\2 = W\-$ — 0,
and W23 = —D\. In this case R^ = — k. Hence, by Corollary 3.5 we
have stability if (k2 — k) > 0 for all k . This is clearly the case, so we
conclude that the orbits are stable geodesies.
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If P is a principal orbit of codimension two, then the operator
can be written

'Δ 0\ / μx -WX2

A) V W\Ί UΊ

Now assume that the (/-invariant vector field W\2 is Killing. We write
W\2 = \\Wι2\\Wι2 where W\2 is a unit vector field on P and \W\2\
is constant. Let 0 < λ\ < λ2 < be the eigenvalues of Δ on P and
write C°°(P) ® C°°(P) = φ ^ = 1 Ek where

with dim E^ < 00. Since AWΪ2 = Wi2A we see that W\2 has a finite
number of eigenvalues on E^. Let σ^ be the largest eigenvalue of
-Wx

2

2 onEk.

T H E O R E M 3.7. Let P be a minimal, codimension two, principal orbit
for which W\2 is a Killing vector field. Then P is stable if and only if

Proof. Consider the eigenvalue problem

βι -\\Wn\\W12\ (ΦΛ _ n (Φ

We have

—— I .. I (7/1

V
and

Applying W\2 to both sides and combining we get

and

~Wn

Hence we see that (a - μ\)(a - μ2)/\\ Wγ2\\2 is an eigenvalue of —

on Ek. If we let 0 < fii < < e w be the eigenvalues of —f2

on Ek 9 then we may write (α— μ\)(a - μ2)/ll W12II2 = £r for some r
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and hence a2 - (μ\ + μ2)a + μ\μ2 - l l^nl l 2 ^ = 0. By the quadratic
formula

2a = (μ{ + μi) ± y/(μι + μ2)
2 - 4(μιμ2 - \\Wl2fεr).

It is a necessary condition for stability that μ\, μ2 > 0. If we take
the plus sign in the quadratic formula along with the condition that
μi > βi > 0 then a > 0. Consider the case with the minus sign. By
Theorem 3.4, in order to have stability we must have

2λk + {μλ+μ2) - ^(μi+μ2)
2-4(μiμ2-\\Wl2\\2εr) > 0,

which implies that

If er = 0 this condition is clearly satisfied, so suppose εr > 0. Then
we have

Conversely, suppose that for some k the operator —W^2\E has an
eigenvalue er such that

Let φ e C°°(P) be such that Aφ = λkφ and -W2

2φ = \\Wl2\\2εrφ
with Jp9?2 = 1. Observe that for any W = AXWX + A2W2 with
W € Eh we have

/ ( / ^ , JF) = l(λk + μx){Aλ)2 - 2AιWl2A
2 + (λk +μ2)(A2)2.

Jp Jpp Jp

Let A1 = (Λ/t + μ2)1/2?> and

+Mι - m f ) φ -
λk+β )

Then μ 1 ) 2 = (λk + μ2)φ2 and

(λk + μ2)-χ{Wnφ)2 - 2AιWl2A
2

= -2 (λk + μ ι - ψ^Pj (λk + μ2γl2φWnφ + 2φW2

2φ.
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By Lemma 3.1 W\2 is a skew-symmetric operator, so it follows that

f(W12φ)2 = - I φW2

2φ = I εr\\Wn\\2φ2 = εr\\Wι2\\2

Jp Jp Jp

and Jp φWl2φ = 0. Therefore, fP(A1)2 =λk+μ2, JP(A2)2 = λk+μx,
and -2JpA

ιWl2A
2 = -2\\Wl2\\2εr so

[(JW, W) = 2 ( 4 +μι)(λk + μ2) - 2\\Wl2\\2εr < 0.
Jp

Hence P is unstable. Ώ

EXAMPLE. Consider the case where the orbits of G are isometric
to constant curvature spheres. In the case where the dimension of the
orbit is even, W\2 — 0 since even dimensional spheres do not admit
non-vanishing vector fields. This implies that a minimal codimension
two orbit is stable if and only if μ\, μ2 > 0.

Now consider the case where G is the unitary group U(n) and
the codimension two minimal orbit P is equivariantly isometric to
£2n-i c Qπ embedded in the standard way. The flow of an invariant
Killing vector field X on S2n~ι, n > 1, must commute with the
action of U(n)9 and hence must be the restriction to S 2 "" 1 of the
action of Sι on Cn by scalar multiplication. The trajectories of X
are geodesies of length 2π.

The /cth eigenspace of the laplacian on S2n~x consists of the restric-
tions to S2n~ι of homogeneous harmonic polynomials of degree k in
z\, . . . , zn , ~zχ, . . . , ~zn . Simultaneous eigenfunctions of X2 and Δ
are restrictions to S2n~ι of linear combinations of the same degree
a in z\, . . . , zn and same degree β in ~z\, . . . , ~zn with a + β = k .
Clearly the largest eigenvalue of -X2 on the fcth eigenspace of Δ is
k2. The fcth eigenvalue of Δ on S2n'1 is λk = k(k + 2/i - 2). By
Theorem 3.7 P is stable if and only if

,2 _ k(2n - 2) + μx][k2 + k(2n - 2) + μ2]

Define λ = min{μi, μ2}. Then the right-hand side of the above for-
mula is at least

2

k>o \ k

Because the function f(x) = (x2 + (2n - \)x + λ)/x achieves its
absolute minimum over [0, oc) at x = y/λ9 we see that P is stable
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if IIWϊ2\\ < 2y/λ + 2n-2. Next define μ = %(μι + μ2). Then

[k2 + {In - 2)k + μι][k2 + (In - 2)k + μ2]
k2

_{k2 + {2n-2)k + μ)2 -\{μx- μ2)

k2

If we let k = 1, then we see that P is unstable if

\\Wι2\\2>{2n-\+μ)2 -\{μx -μ)2.

We note that according to Brothers' results [Br2], P is unstable if
\\Wn\\2>{2n-\+μ)2.

REMARKS. In the case where the integral curves of WX2 are circles
of length L, the eigenvalues of —Wf 2 must be of the form 2πk/L
for some integer k.

Brothers' condition for stability [Brl] requires that the hessian of
the volume function have no non-negative eigenvalues along with the
condition HW12II2 < 2π/L for codimension two principal orbits. In
order to compare this result with ours, we make use of the fact λk > σk

for all k [Bl]. Observe that

(λk + μι)(λk + μ2) {σk + μx){σk + μ2) μxμ2

> = 0k + f*i+t*2 + ——*
σk σk σk

By the above remark, we see that σk > 2π/L for all k, so we conclude
that

(λk + μx)(λk + μ2) y2π | βΦi
σk L σk

Hence, our theorem gives stability for larger \\W\2\\.

4. Exceptional orbits. Let E be an exceptional orbit with isotropy
group GXQ . E has a tubular neighborhood N which is equivariantly
diffeomorphic to G Xg V where V is a real vector with dimen-

xo

sion equal to the codimension of E in N. There exists a subgroup
HXQ c GXQ with a finite index in GXQ such that HXQ is conjugate to the
isotropy group of every principal orbit. HXQ is normal in GXQ and is
precisely the non-effective part of GXQ on V [B].

Consider the space N = G/Hx x V and the map π: N —• N de-
fined by π(gHXo ,v) = [g,v] where [g, v] is the equivalence class of
(g9v) under the action of HXQ given by h(g, υ) = (^Λ"1, Λv). This
map is well defined because hV = V and hence [g/z, v] = [g, ^] for
h E Hx . It also follows easily that π is equivariant.
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Observe that π~ι{[g, υ]} = {(gyHXo, y~ιv): y e GXQ}. This ob-
servation combined with the fact that Hx acts trivially on V im-
plies that π~ι{x} has the same cardinality as GXJHXQ for all x e N.
GXJHXQ is a finite group since HXQ is normal in GXQ . We define a right
action of GXJHXQ on TV by (gHXo, v ) * ' ^ = tei'/f^, ( g ' Γ M for
(£//*0 9υ)eN and £'iίκ0 e GXJHXQ . The action of this group is tran-
sitive on the fibers of π and the cardinality of each fiber is the same
as GXQ/HXQ . Hence GXQ/HXQ acts freely and discontinuously, which
implies that π is a covering map whose group of deck transformations
is Gx IHX .

Equip N with the metric such that π is a local isometry. There is
an action of G on N given by g(g'HXo, v) = (gg'HXo 9v). All of the
orbits of JV are principal and the orbit P = {(gHX(j ,0):geG} is an
m-fold covering of E under the map π, where m = caτd(GxJHXo).

EXAMPLE. Consider the Mόbius strip M = Sι *z2R, where Z2 =
{1, -1} acts on R by multiplication. The action of Sι on M is
given by F:Sι xM -+ M with F(έ? ία, [έ?1"*, r]) = [^ϊ"(α+β), r ] . The
center circle has length π and is given by E = {[e/6>, 0]: 0 < θ < 2π},
and it is an exceptional orbit with Gx = Z2 for all x. All of the other
orbits have length 2π and are principal with isotropy group given by
{1} . In this case N = Sι x R which is a cylinder that is the oriented
double cover of M.

Suppose that W is a^smooth vector field defined on the orbit E
and normal to E. Let W be the lift of W to P = n~l(E) in N.

LEMMA 4.1. mδf{W) =

. Extend W to a neighborhood of £ and lift to W. Let £,
be the image of E under the flow^of W and JPJ be the image of P
under the flow φt determined by W. If we take t small enough and
use the fact φt = π o φt, we see that P* is a cover oϊEt with covering
map π\p . If we let A{t) be the volume of Et and A(t) be the volume
of Pt, then A{t) = m^4(ί) since /^ is an m-fold cover of £V. Thus
i

COROLLARY 4.2. //Tor ^v^ry normal vector field W on E we have
δ{p\w) > 0, then E is stable. By the above arguments we see that
we have reduced the problem of the stability of an exceptional orbit to
the stability of a principal orbit under a restricted class of vector fields,
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namely the ones that are lifts. We will exploit special properties of the
components of the lift of a vector field, along with the second variation
formula for principal orbits, to find sufficient conditions for stability.

Let GXQ be the isotropy group of an exceptional orbit E and let
HXQ be the conjugate of some isotropy group of a principal orbit such
that HXQ c GXQ . Consider the linear action of the isotropy group on
the normal space Vx to E at XQ . This gives a linear representation
of Gx on Vx and the kernel of this representation is Hx . For an
arbitrary point x e E, the representation of Gx on Vx is clearly
equivalent to the representation of GXQ on VXQ . Hence we may speak
of the representation of an isotropy group of E without reference to
a point.

PROPOSITION 4.3. Let G{y) be an orbit in N. Then π~ι{G(y)}
consists of ny disjoint orbits where ny = card(GxJGy). If P is one
of these orbits then π\P: P —> G(y) is an my-fold covering map where
my = caτd(Gy/HXo).

Proof. Without loss of generality we may assume that y = [e, v].
For g e Gy we have [e, v] = g[e, υ] = [g, v]. Hence there must
be a g' e GXQ such that ggf = e and (g')~ιv = υ . Consequently,
Gy c Gx and g'v = v for g1 e Gy. Consider the action of Gx

on V and let (Gx)v be the isotropy of v . For g e (Gx )υ we have
gy = g[e,υ] = [g,υ] = [e,gυ] = [e,υ] = y . S o (GXQ)V C Gy

and as was seen above, Gy fixes v . We conclude that Gy — (GXQ)V .
Let {?;i, , vr} be the orbit of υ under the action of GXQ where
r = c3τd(GχQ/Gy). Let C\, . . . , Cr denote the left cosets of Gy in GXQ

and observe that π " 1 ^ } = π~ι{[e, υ]} = {(g~ιHXo, gv): ge GXQ} =
Ui^iig-'H^tVi): g e Q}. The sets {(g-ιHXo,Vi): g e Q}, / =
1, . . . , r lie on distinct orbits which means that there are r = ny

orbits in π~ι{G(y)} . The principal orbit P = {(gHXo, Vι): g eG} is
then a cover of the orbit G(y). n

REMARK. This proposition may be illustrated by considering the
previous example of the Mόbius strip. The inverse image under π of
the exceptional orbit (center circle) of the Mόbius strip is a circle that
is a two-fold cover and the inverse image under π of any principal
orbit is two disjoint circles each of which is a one-fold cover.

We have assumed that N = G XQ V where Gx is the isotropy
x0 0

group of an exceptional orbit E. It follows that all orbits in N are
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principal or exceptional. We now define a volume function v on N
that is related to the volume function v on N. Define v: N —• R by
v{x) = m x ^ r ( G ( x ) ) , where %?r is the Hausdorίf r-measure induced
by the metric and r is the dimension of a principal orbit. We have

LEMMA 4.4. v = v o π.

Proof. ΐ>(z) is the volume of the principal orbit P through z E N.
By Proposition 4.3 P is an mπ(z)-fold cover of the orbit n{P). Since
π is a local isometry, we see that the volume of P must be mπ(zj
times the volume of G(π(z)). D

It is now clear that if v is critical on the orbit E, then v has a
critical point on P . Hence the hessian of v is defined.

We now develop some of the properties of the components of the
lift of a vector field. Suppose that { W\, . . . , Wn} is an orthonormal
G-invariant frame field for the normal bundle of P and π(p) = x with
p G P and x eE. Then {π* Wί (p), . . . , π*Wn{p)} is an orthonormal
frame field for the normal space V at x. We denote by {7}/}, /, j =
1, . . . , « , the matrices of the linear representation of Gx with respect
to the basis {π*W\{p), ... , π*Wn(p)}.

LEMMA 4.5. Let W be a normal vector field on E with lift W =
ΣkA

kWk to P and let π(pf) = π(p)=x. Then

j

with p1 = gp, g €GX and x e E.

Proof. Since Gx acts transitively on π~ι{x}, there exists g G Gx

such that p' = gp^ and W{p') = g*Wk(p), k = 1, ... , n. By defi-
nition A^p') = (W(pf), ^ ( p ; ) ) . The result thenfollows by applying
the facts that π is an equivariant isometry and W is a lift. D

LEMMA 4.6. Let E be an isolated exceptional orbit with isotropy
group GXQ . Then GXQ does not fix any vector normal to E at x.

Proof. Suppose there were a vector VQ such that GXQVQ = VQ . Th©n
we would have a one parameter family of exceptional orbits of the
same type as E in the tubular neighborhood G XQ V given by
{G([e, tυ]): - 1 < t < 1}. But this contradicts the fact that E is
isolated. D
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COROLLARY 4.7. Let E be an isolated exceptional orbit and W =
Σi A1 Wι be the lift of some vector field W. Then j p A

1 = 0 for all i.

Proof. Let x e E and recall that π~ι{x} can be canonically iden-
tified with the set Gx/Hx . Fix p E: π~ι{x} . Then we have

Σ % -̂
A' = > A'(gp).

π~ι{x} seGJHχ

However, by Lemma 4.5 we have Aι(gp) = Σj Tij(g)Aj(p). Observe
that the sum of the linear transformations of the representation of
a finite group must be zero unless there is a vector fixed by all the
transformations of the representation. Hence by Lemma 4.5 we see
that Y^-u^A* = 0. But

~~ Aιdx. D

Let E be a minimal exceptional orbit in N covered by the prin-
cipal orbit P in N. We say that the normal distribution to E is
involutive if there exist orthonormal vector fields V\, . . . , Vn, defined
on a neighborhood U of x e E in N where n is the codimension of
E in N9 such that the projection on E of [Vt\, Vj] is zero for all /, j
for every x . See [Brl]. Note that since a tubular neighborhood of P
is locally isometric to a tubular neighborhood of E, it follows that the
normal distribution to E is involutive if and only if the normal distri-
bution to P is involutive. Because P is locally isometric to E, we can
define π*W\, . . . , π*Wn locally on E. Since v has a critical point
on E, the hessian of v on E satisfies H{π*Wi, π*Wj) = H(Wi, Wj)
where H is the hessian of £ on P. Since the^ hessian of a func-
tion at a critical point p e JV is a map of TP(N) x TP(N), we can
conclude that for t>, w e TP(N), the hessian H oϊ ϋ on P satis-
fies /f (v , u;) = H(π*υ , π*w). In particular, it follows that H and
if have the same eigenvalues which are constant because H is G-
invariant.

THEOREM 4.8. Let E be an isolated exceptional orbit with the nor-
mal distribution to E involutive. If

μk > -v(x)λι

for k = 1, . . . , n, where λ\ is the first eigenvalue of A on P, and
the μk are the eigenvalues of H with x e E, then E is minimal and
stable.
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Proof. E is stable if P is stable under all lifts W. Because the
normal distribution to E is involutive, we conclude that the Wik =
[Wi, Wk] for i, k = 1, ... , n all vanish on P. Then by the second
variation formula for principal orbits we have

where W = ]Γ^=1 A}W\ and μ\, . . . , μn are the eigenvalues of the
hessian H on P and hence the eigenvalues of H on E. But JpA

ι —
0 (Corollary 4.7) so we may apply the Poincare inequality and use the
fact that ί>(p) = u(x) to infer that E is stable if /// > -v{x)λ\ for
/ = 1, . . . , n. D

REMARK. Compare this with the case of a principal orbit where
stability implies μ, > 0 for all /.

LEMMA 4.9. Let G be a finite group with an irreducible orthogonal
representation on an n-dimensional real inner product space V. Let
{U(g): g £ G} be the matrices of this representation and M: V -> V
a symmetric endomorphism. Then

geG

where I is the identity transformation on V.

Proof. This follows from the basic Schurs' lemma in representation
theory [BD]. D

THEOREM 4.10. Let E be an isolated exceptional orbit. Suppose
that the normal distribution to E is involutive and the representation
of the isotropy group on the normal space is irreducible. If XrH > 0,
then E is stable.

Proof. Let W be a normal vector field on E with lift W = Σ"=ι A1 W[

to P. Consider any x e E, and let Hx c Gx be the isotropy group

of some principal orbit. Let p eπ~x{x} with hp = p for all h e Hx .

Then

HijA A = 2 ^ 2_>
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By Lemma 4.5 we infer that the right-hand side is the same as

r,k Jχ

Applying Lemma 4.9, we see that this last sum is

UJ = ί
JE

But

From this computation we see that δ^iW) > 0 if trH > 0.

5. Examples. Consider the standard m-sphere

[ ^ j
P i,j JEπ~'(x)iJ

)

For n < m we have the standard inclusion Sn ^ Sm where Sn =
{(x0 9 - > Xn > 0 9 - J 0) Σk=o xk " ^ Consider a tubular neigh-
borhood of S" in S m given by

N = {(x0 ,...,xm)eSm:(x0,...,Xn)ϊ0}

Suppose G acts on Sm such that the orbits in TV are all principal of
the form

P u = \ ( x 0 > --• , X n ,

where u = (u\, ... , um-n) satisfies ||i?|| < 1. Each P^ is diίfeomor-
phic to Sn and P g is the standard Sn in Sm.

Let D be a finite group which acts freely on Sm on the right and
commutes with the action of G. It follows that G acts on Sm/D
and the canonical map π: Sm —• Sm/D is equivariant. Furthermore,
suppose π(P^) is an exceptional orbit for u = 0 and a prinicpal
orbit u Φ 0. Let x 0 Ξ ^ = π(P$) Since JE1 is exceptional, it has
a tubular neighborhood iV equivariantly diffeomorphic to G XQ V.
We suppose that GxJHX is isomorphic to £> and that the action of
GXQ/HXQ on π~ι(N) is identical to the action of D. E is clearly a
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minimal submanifold since it is isolated. We now have:

PROPOSITION 5.1. E is stable minimal submanifold of Sm/D.

Proof. Clearly, each principal orbit P$ intersects the (m-n)-sphere
of radius 1 given by

= 0}

at the points (±(1 - | M | 2 ) 1 / 2 , 0, . . . , 0, ux, . . . , um-n). Further-
more, this (m — n)-sphere is perpendicular to the orbits. BytheFrobe-
nius integrability condition, we see that the normal distribution to E
is involutive. The first eigenvalue of Δ on Sn is n. Let us now
compute the hessian of the volume function at the principal orbit
Pg = Sn . Note that P is located at the intersection of exactly m - n
mutually orthogonal isometric copies of S"*1. Let θ be the angle
between a radius of Sn+ι and a radius drawn to its north pole. Then
u(θ) = ωnύnn θ where ωn is the volume of the unit ^-sphere. It
easily follows that the hessian has eigenvalue 0 along the orbit P$ and
eigenvalue -nωn for any direction normal to the orbit. Hence E is
stable by Theorem 4.8. α

COROLLARY 5.2. The standard inclusion of RPn in RPm is stable
for n < m.

Proof In Proposition 5.1 let G = SO(/i+1) and D = Z2 . SO(n+1)
acts by matrix multiplication on the first (n +1) coordinates of a point
in Sm considered as a column vector. The action of D identifies
a point with its anitpodal point. Clearly the action of SO(n + 1)
commutes with the action D, Sm/Dπ RPm , and E = RPn . D

REMARK. Actually, RPn is area minimizing in RPm[F].
Next consider S2m~ι respresented by the set

= l ; ( z 1 , . . . , z m ) G C m | .

Let U(n) acton S2m~ι by matrix multiplication on the first n entries
considered as a column vector. Let {q\, . . . , qm) have positive integer
coordinates such that (p, qfi = 1 for / = 1, . . . , m. The lens space
L(p q\, . . . , qm) is S2m~ι modulo the action of D = Zp given by
UΎΛ Ύ \ — (7Λplπiq.lIp Ύ P2πiql/p\ / _ r\ n 1 Tf
H z l ? . * . ? z m ) — \ Z \ Z 1 ? . . ? z m C m ) 5 / — U , . . . , / ; — l . I I

qγ = q2 = ... = qn ? then the action of Zp on S2m~~ι commutes with
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the action of U(n). We also see that π(S2n~ι) is L(p qx, . . . , qn)
which is an exceptional orbit in L(p q\, . . . , qm). Hence by Propo-
sition 5.1 we have

COROLLARY 5.3. Suppose that (p, q{) = 1 for i = 1, . . . , m and
qλ = q2 = = qn with n < m. Then L(p q\, ... , qn) is a stable
minimal submanifold of L(p q\, . . . , qm).

Finally, consider 5 4 m ~ 1 represented by the set

Σ ll^ll2 = 1 ( ί i , - , Qm)
J

There is a natural action of G = Sp(n) on .S 4 ^- 1 by matrix multi-
plication on the first # coordinates considered as a column vector.

Let D be a finite subgroup of the unit quaternions and define a right
action of D on 5' 4 m ~ 1 by (q\,..., qm)q = {Q\Q ? ? qmq), q e D.

We denote S4m~ι/D by SF(D, m) and is known as the quaternionic

space-form defined by the action of D on S4m~ι. The action of
Sp(n) commutes with the action of Z> and π(S4n~ι) = SF(D, n) is
an exceptional orbit in SF(D, m) for n < m . Hence by Proposition
5.1 we have

COROLLARY 5.4. SF(D, ή) is a stable minimal submanifold of
SF(D, m) for n<m.
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