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A GENERALIZATION OF MAXIMAL FUNCTIONS
ON COMPACT SEMISIMPLE LIE GROUPS

HENDRA GUNAWAN

Let G be a compact semisimple Lie group with finite centre. For
each positive number 5, let μsπ denote the Ad (G)-invariant prob-
ability measure carried on the conjugacy class of exp(sH) in G.
With this one-parameter family of measures, we define the maximal
operator J^H on W(G). We then estimate the Fourier transform
of μSH and of some derived distributions. Our result leads to the
boundedness of J?H on LP(G), for all p greater than some index
Po in ( 1 , 2 ) . This generalizes a recent result of M. Cowling and C.
Meaney [2].

Introduction. Let G be a compact semisimple Lie group of rank /
with finite centre, and with its Haar measure normalized to have total
mass 1. Let g denote its Lie algebra, and let ίj be a maximal toral
subalgebra of g. We denote by Φ the root system of (gc, \f), and fix
Δ = {α/: j G /}, where / = {1, . . . ,/}, to be a base of Φ (as in [3,
§10.1]). With respect to Δ, we write Φ + for the set of positive roots,
whose members are of the form

with Πj{a) E Z + U {0} for all e / , and Λ+ for the set of dominant
weights, which parametrizes the dual object of G.

We equip the Lie algebra g with the positive definite inner product
( , •) derived from the Killing form. For each v G ί)*, we define
Hv e ί) by

We also transfer the inner product to ί)* via

The norm on fj* and f), induced by these inner products, will then be
denoted by | | .

We choose a regular element H e fj, for which a(H) Φ 0 for all
a G Φ + , and fix R > 0 such that exp(sH) is regular in G for any
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s G (0, R). For a continuous function / o n (?, the maximal function
J^ii f is defined by

^Hf(x) = sup \μSH * / M l Vx G (?,
JG(0,Λ)

where //y# is the Ad(G)-invariant probability measure carried on the
conjugacy class of exp(sH) in G. This definition generalizes one in
the paper of Cowling and Meaney [2], in which H was a particular
regular element of ί). Our main results are the following.

T H E O R E M A. For all k = 0,1,2, ... , there exist positive constants

Ck = Ck(H) such that

d χ k

ds :(i+s\λ\)y

where γ = min7€/ |{α G Φ + : rtj{a) > 1}|.

It is clear that Theorem A, together with the arguments of [2], imply
the boundedness of ^u on LP(G) for all p > 1 + (2γ)~ι. So we state

THEOREM B. For all p > 1 + (2γ)~ι, with γ as above, there exist
positive constants Cp = CP(H) such that

\\<*Hf\\p<Cp\\f\\p Vfe&(G).

We prove Theorem A by handling first the case when G is sim-
ple, and then extend the result to the semisimple case. Our method
is based on arguments of representation theory, involving formulae
for characters and dimensions, a study of root systems, the theory of
weights, and properties of the Weyl group, all developed in the first
part of this note. The proof of Theorem A will be given in the second
part. It is clear that Theorem A is sharp since the explicit expres-
sion used in [2] for the particular case in which H = Hp shows no
improvement is possible. In the third part of this note, we give an
example which shows that Theorem B too is sharp at least in the case
where G = SU(2).

Some related results can be found in M. Christ [1] and C. D. Sogge
and E. M. Stein [5].

Throughout this note, the expressions C, Ck , and Ck ^ k denote
various positive constants which possibly vary from line to line. These
constants may depend on G, and some may also depend on the choice
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of H. When a constant, C say, depends on 77, we write C{H) in
place of C.

We are grateful to Professor M. Cowling for his valuable suggestions
during the preparation and the writing of this note. In particular,
we would like to thank him for helpful discussions concerning the
sharpness of the //-estimate.

1. Representation theoretic arguments. We shall assume throughout
this part that the Lie algebra g is simple.

1.1. We start with some formulae for characters and dimensions of
representations of G. To each λ G Λ + , we associate the representa-
tion πλ, the set of weights τuλ, the character χλ, and the dimension
dχ = XλW For all λ e Λ+, we have (see [3, §22])

χλ(«p(fΓ))= Σ mλ{λ')ap(iλ'{H))9

λ'eτuλ

where mλ(λf) G Z + is the multiplicity of λf in πχ . Accordingly,

λ'e<ωλ

Let W be the Weyl group of (gc, ί)c), generated by the reflec-
tions σa corresponding to a e Δ. Introduce the special element
P = i ΣαeΦ+ α F ° r aU A G Λ + , the character and dimension for-
mulae of Weyl read (see [3, §24.3])

α e Φ + 2/ sin

and
(Λ + />, α)

1.2. It is well known that gc has the root space decomposition (see
[7, p. 273])

where g% denotes the root subspace of gc corresponding to a G Φ.
Assuming / > 2, we choose jo G / , and then remove α7o from Δ

to obtain
Δo = {aj: j G 70}, where IQ = I\{jo}.

Set ΦJ = {α G Φ + : /*/ (α) = 0}, and put Φ o = ΦJ U - Φ J . Clearly
φ 0 = - φ 0 and σαΦo = Φo for all σa (a G Δ o ) . This shows that
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Φo is a root system (see [7, p. 370]). Let f)o be the subspace of
spanned by Ha (a G Φo) . Then one may verify that

α€Φ 0

is a semisimple subalgebra of gc, with maximal toral subalgebra f)Q
(see [7, Ex. 30 of Ch. 4]). Evidently Φo is the root system of (g§, ίjg),
Δo is a base of Φo, and ΦJ is the set of positive roots with respect
to Δo.

Write Φo as a disjoint union of irreducible root systems, say

Φ o = ΦOi U U ΦOr.

Let q G {1, . . . , r} . Denote by \)Oq the subspace of f)o spanned by
Ha (a G Φθtf). Then we find that

is a simple ideal of JJQ , with maximal toral subalgebra ψOq . We also
note that

l)θ = f)oi © ' * ' © l)θr

and

00 = 001 © © 0Or

Now denote by ( , )o and ( ? -)oq the inner products of go a n d

goq respectively. Then we have (see [3, Lemma 5.1])

( ? Oolf lOtf X 0 0 ^ = (*? ' ) θ q ,

and so

(JΓ,y)θ = (JΓi,y 1)oi+ + (JΓr,ϊrr)θr
for all X = ^ Ί + + X r, Y = Yx + + Yr e flo, with X^? Yq e βOg -
Further, since g and Q$q are simple, there exists a positive constant
Cq satisfying (see [4, p. 242])

We transfer these inner products to the corresponding dual spaces in
the usual way.

Let ΛJ denote the set of dominant weights with respect to Δ o . We
need to determine the set of fundamental dominant weights in ΛQΪ.
Suppose {cQj•: j G /} is the set of fundamental dominant weights in
Λ + , for which (see [3, §13.1] for definition)

= δ
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If we now set

ώj = cύj - p r o j ω (coj) V/ el,
Jo

then we have the following facts.

Fact 1. For each j e h, cbj e {JQQ whenever α7 e ΪJQQ

Proof. For all j , k e /o , we have

, ak)

= 2 2

(ak, ak) (ωJo, ωJo) (ak, ak)

= 2 - r- - U = djk.
(ak, oik)

Now take j e /o, and let Q e {1, . . . , r} such that aj e f)oβ Clearly

Writing ώj = ώj\-\ h α>7>, with ώjg e ί)^ for all # e {1, . . . ? r} ,
we find that

We therefore have
ώJ = ώJQ e boQ >

as stated. α

Fact 2. {ώj: j e IQ} is the set of fundamental dominant weights in
Λo .

Proof. Take j , k e IQ. Suppose ώj e fjjjL and ak e fjj , for some
q,q' e{\, ... ,r} . If q Φ q', then clearly (ώj, α^)0 = 0 otherwise
we have

=

?

 ak)θ

Using Fact 1, the assertion follows. D

Fact 3. Suppose λ = ΣjeI njWj e Λ+ . Then λ can be rewritten as

A = 2o + Ai

where λo = ΣjeI rijώj e ΛJ (with the same Πj 's) and λ\ =ρroj ω (λ).
ω
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Proof. Noting that ώj

jei

jei0

jei0

jein

HENDRA

= 0, we

-Σ»J
jei

jei

(a

(λ, a

GUNAWAN

have

jei

(ωJ > ωJ0) a

n ω ,ω )

%>°>jj

•>j0)

ω J j h

= Σ nJώJ

as claimed. •

REMARK. It is well known that the special element p is a dominant

weight in Λ+ . Indeed, p — ΣjeI cθj (see [3, Lemma 13.3A]). By Fact

3, we may rewrite p = p0 + p\ where po = Σ 7 G / ώ/ G ΛJ and

/?! = projω (p). But then p0 = \ ΣaeΦt a > g i v i n 6 P\ = \ Σ α G or a

J 0 0 1

where Φ̂ ~ = Φ + \ Φ J . As another consequence, we also have p\ =
cω, for some c > 0. But we know that 2(ω, , α, )/(α/ , α, ) = 1,

y 0 v 7 0 ' J o 7 ' v ^ o ^ o 7

and so we find c = 2(p\, aj)/(aj , aj). Hence we determine ω,o =

i((α 7 o , α7o)/(/?i, Q7o))/>i, with /?! = \ ΣaeΦ+ a - T h i s o f f e r s a m ^thod

of finding the fundamental dominant weight ω7 for any given j$ e / .
Introduce ί)i = {H e f): α(/ί) = 0 Vα e Δ o }. Obviously ίji is

a subalgebra of I), which is spanned by HP{ (by the above remark).
Moreover, we have (like Fact 3)

Fact 4. Every H el) can be written as

H = Ho + Hx

where //Q G f)o and //i e ί)i.

REMARK. HO e l)o means that Ho = //Ί/o, where Z/Q G span(Δ(>i,
while H\ eίji means that H\ — HUχ, where vx — rpx for some r G K.
Thus clearly f)0 -L f)i, and so Fact 4 actually states that f) = f)o Θ f)i.

Suppose we are in (go, ί)o) To each AQ G Λ^, we associate the
representation πλ , the set of weights wλ^, the character χλ , and the
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) have
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dimension dχQ. For all AQ G ΛJ and Ho e fo, we

Q (exρ(//"o)) = y^ m^ (Λ/)exp(/Λ/ι

and

4= Σ
with m^ (A') € Z + being the multiplicity of λ' in π^ .

Let WQ (or W[AQ] if necessary) denote the subgroup of W gen-
erated by σα (a e Δo). The Weyl formulae then read

χΛ (exp(flb)) =

and

We should note that the inner product in the expression above is really
the inner product of g. Indeed, we may calculate

= lim :

s—^0

Y;τP^- det(τ
= hm-

= l im :

r det(τ) exp(iτ(λo + po)(sHPo))

(Po,<*)

(see [8, p. 106] for clarification).
Allowing W to act, one may observe that all the above facts still

hold for the system constituted by σΦo (σ E W), as well as for that
by Φo. Moreover, the two facts below explain the connection between
one system and another.

Fact 5. σW[^]σ-γ = W[σA0] for any σ e W.
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Proof. Obvious (see [3, Lemma 9.2] for justification). α

Fact 6. χσλo(exv(HσUo)) = χλo(cxp(HVo)) for a n y σ e F .

Proof. For any σ EW , we have (by Fact 5)

χσλ(exp(Hσι/)) =

σ-1 d e t ( τ ) exp(/τσ(λ0

det(στσ~ι) exp{iστ{λ0 + po)(Hσt,o))

d e t ( τ ) exp(/τ(Λ0 + Po){HVo))

as stated. α

2. The proof of the theorem. The outline of the proof is as follows.
We first look for an estimate for all s e (0, R), then examine the
decay for large s, and finally combine the results. The result obtained
is valid under the assumption that G is simple, but then it extends to
every semisimple Lie group G.

2.1. For all se(0,R), A e Λ + , w e have (see [2, p. 813])

Using the multiplicity formulae, we write

Σλ'eπ mλ(λ')cxp(iλ'(sH))

Hence, we have

d N / c

<\H\k\λ\k = Ck{H)\λ\k,

for all fc = 0, 1, 2, . . . .
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2.2. By the Weyl formulae, for all se(0,R), λ e Λ + , we have

. m Σσewdet(σ)exp(/(Λ + p)(sH)) π (p,a)

I J |2/ sin iα(j^) J | + (A + p, α) *

In the case / = 1, one can easily obtain

k

s\λ + p \ '

for all k = 0, 1, 2, . . . . So assume, hereafter, that / > 2.
For each A e Λ+, choose JQ G / for which (λ + p, α7o) is maximal.

As before, we write Δo = Δ\{o;; }, ΦJ = {a e Φ + : Πj (a) = 0}, and
Φ|" = {α G Φ + : njo(a) > 1}. "(Note that Φ^ = Φ+\ΦJ, and that
Φj" depends on the choice of jo, and so depends on λ.) Clearly, if
a e ΦJ, then

(λ + p,a)> (p,a)>C,

and if α e Φ } , then (by the choice of JQ)

(λ + p,a)> njo(a)(λ + p, aJo) > C\λ + p\.

Moreover,
7 = min|{o;€Φ+: «7 (α) > 1}| < | Φ | | .

Recall that WQ is the subgroup of W generated by σa (a e Δo).
For an appropriate 3* c W, we write W = U σ e ^ σ ^ o (disjoint
union). We then obtain

+ p){sH))

For each reflection σα G 3Γ, we know that det(σα) = - 1 , σαo; = - α ,
and σα(Φ+\{α}) = Φ+\{α} (see [3, Lemma 10.2B]). Thus, for any
( 7 e f , w e have

2i sin-a(sH) = det(σ) J J 2isin-σα(ί/ί).

α6Φ+

It follows that
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Now fix u e . ? . We write H = Hσv, with v = VQ + v\, where
u0 € span(Δo) and v\ = rp\ for some r e R . Then put Ho = Hv<j

and H\ = HVχ. Next recall that ΛJ is the set of dominant weights
corresponding to ΦQ . For each λ € Λ + , we write λ = XQ + λ\, where
λo G ΛJ and Ai = cp\ for some c € R + . Hence, for all a e Φ J , we
have (/?, α) = (/?o > α) and (^ + />»«) = (̂ o + Po > α ) Further, for all

σa(H) = (σa, σv) = (a,u)

= (a, VQ + VI) = (α, i/0) (as 1/1 J_ α)

and whenever τ e f ό ,

= {στ{λ + p),

= (τ(A0 +

= (τ(A0 +

It turns out that

π
aeΦ;

\ism\σa(sH)

U+pύisH^)-

(Po,ct)

= exp(/(A! +

λg

= (τ(λ + p),v)

λi + pi), ^o + ^i)

ι+pι),uo + uι) (as τ €

+ {h +P\,v\) (by orthogonality)

d e t ( τ ) exρ(iτ(A0 + Po)(sHo))

mλ(λ')cxp(iλ'(sH0))

orthogonality).

So we have
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1 σa(sH) (p, a)

+ σa(sH) 2/ sin \σa(sH) (λ + p,

For all £ = 0, 1,2,

(1)

(2)

(3)

(4)

V9ί

. , we have the estimates

fhλ (λ')exp(i(λ' + λx +pι)(sH))
< \H\k\λ+p\k,

0 π

dsj Ll2iύnlσa{sH)
(by Leibniz' rule),

π (A + p,a)

(as (λ + p,ά)>C\λ + p\ for all a G Φ^).

Therefore, by Leibniz' rule for the derivatives of products, we obtain

<Σ Σ
d \

— 1 (2nd term)

(lstterm)

- ) (3rd term) |4th term|

^ Σ Σ C
σe<9" k^+k^k^k

<Ck{H){\ + \H\γ rη (provided s\λ + p\ > 1)

for all k = 0, 1, 2, . . . , as desired.
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Combining this with the previous estimate, we obtain the result.

2.3. We shall now extend our result to every semisimple Lie group
G. The key is to prove that Fact 2 in §1.2 is still valid.

Let us write Φ as a disjoint union of irreducible root systems

Φ = φ ( 1 ' u u Φ ( n ) ,

and split Δ into

with Δ(m) = Δ n Φ ( m ) being a base of Φ<m) for each m e {1, . . . , ή) .
The Lie algebra gc is now a direct sum of simple ideals

£jc = fl(1)cΘ Θ 0

W c .

As before, we choose jo e / and remove ajo from Δ to obtain

Δo = Δ\{α,o}.

But aJQ e A(MΪ for some M e {1, . . . , n), and so

with Δ[>M) = Δ(M)\{α io} . The Lie algebra g0 (as in §1.2) then decom-
poses into

where 0QM^C is the Lie subalgebra corresponding to ΔQM^ . Now let

K, Kθ9 K^m\ and K{

0

M) denote the Killing forms of g, g 0 ? 9(mK

and Q^ respectively. Then, for each W G { 1 , . . . , « } , m ^ Λ f , w e

have
Aolfl(*)Xfl(*) — A — Al0

(w)xβ

(/M)'

while for m = M, the connection between K^Mλ> and K^ is ex-
plained in §1.2. We therefore find that Fact 2 still holds, and thus the
extension is clear.

3. An example: The sharpness of the estimate. We shall here con-
sider an example concerning the sharpness of the U -estimate.

Let G = SU(2), the Lie group consisting of 2 x 2 complex matrices
of the form

α β

with | α | 2 + \β\2 = 1. Its Lie algebra g then contains all matrices of
the form

ia b
-b -ia
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with a G R, b € C. Here γ = 1 and the special element is

In 0, one may define the norm | | by

VaeΈL,beC.
-b -ia

For any y eG, X e g, one may observe that

with \X'\ = \X\. Conversely, for any X, X1 e g with \X\ = \Xf\, one
can find y e G such that X1 = yXy~ι.

Denote by B0(π) the ball in g which has centre 0 and radius π. It
is then evident that the map exp: BQ(U) —• G is injective. Indeed, for
each x e G, there exists a unique X € A)(π) for which x = exp(X).
Diagonalizing such an X, one has

x = y exp(ωHp)y~ι, where ω = \X\,

for some y eG. It is seen here that trace(x) = 2cosω .
As suggested in [6], let us consider the function / : G —• R+ given

by

0, otherwise.

One may observe that f eLP{G), whenever 1 < p < \ . On the other
hand, regarding the maximal function ^ # / = J^H f, we claim that

= oo for all x eG.
Before verifying our claim, we remark that

where \X'\ = π-\X\. Moreover, f(yxy~ι) = f(x) for all x, y e G.
In fact, for all x, y e G, we have

f(yxy~ι) = f(ye\p(X)y~ι) (for some Xeg)

= f(txp(yXy-1))

= /(exp(X')) (where \X'\ = \X\)

= /(exp(X)) = f{x).
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Similarly, we observe that ^ f{yxy~ι) = ̂ f(x) for all x, y e G.
To be precise, for all x, y eG, we have

= sup / f{y x y-ιgexp(sHp)g-ι)dg
se(0,π)JG

= sup / f(xy~ι g exp(sHp)g~ιy) d g
se(0,π)JG

= sup f f(xg'exp(sHp)g'-l)dg' =
se(0,π)JG

We shall now verify our claim. First, for x = ± 1 , we have

Jίf{±\) = sup f(±gexp(sHp)g~ι)dg
se(0,π)JG

= sup f(±txp(sHp))dg= sup f(±exp(sHp))
se(0,π)JG se(0,π)

= SUP —r = OO.

^(C^log^-1

Next, for x ψ ± 1 , we may assume that x = exp(^Hp) for some
0 < t < 2π, and hence

1) dg= sup /
se(O,π)JG

> I f(exp(±Hp)gexp(±Hp)g-ι)dg.
JG

Writing each g e G as g = hβkφhθ<, where HQ = exρ(|///?) and kφ

is the matrix of rotation with angle | , we have (see [9, pp. 99-100])

l6π2J_2πJo Jo **
i / 2π pπ

= -Ί- I I f(hthθkφhtk_φh_Θ)smφdφdθ
4π Jo Jo
1 r2π rπ

= -j— / / f(h-βhthβkφhtk_φ) si

= — / / f(htkφhtk_φ) sin φdφdθ

= o / f(htkφhtk-φ) sin φdφ.
£ Jo
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Let us now investigate the integrand. Multiplying out, we get

133

in2 φ_ J .
As seen before, this matrix is similar to exp(ωHp), where

ω = cos"1 f sin2 | + cos2 | c o s t \ .

By observation (thanks to John Cornwall for making it easier), there
exists a constant C = Q € (0, 1) such that

cos(π - φ) < sin2 ^ + cos2 ~ cos t < cos C(π - φ) \/φ e (π - \, π) ,

and accordingly

0 < C(π -φ)<ω<π-φ<\ \lφe{π-\,π).

Hence we find that

f(htkM_t) =

for all φ € (π - \, π). It therefore follows that

> ^
2 7ππ-i/2

s i n

4Λog(2/C) ^

as claimed.
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