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CHAOS IN TERMS OF THE MAP x -+ ω(x, /)

A. M. BRUCKNER AND J. CEDER

Let 3? be the class of compact subsets of / = [0, 1], furnished
with the Hausdorf metric. Let f € C(/, / ) . We study the map
ω/ : / -> <X defined as ωf{x) = ω(x, / ) , the ω-limit set of x
under / . This map is rarely continuous, and is always in the second
Baire class. Those / for which co/ is in the first Baire class exhibit
a form of nonchaos that allows scrambled sets but not positive entropy.
This class of functions can be characterized as those which have no
infinite ω-limit sets with isolated points. We also discuss methods of
constructing functions with zero topological entropy exhibiting infinite
ω-limit sets with various properties.

Introduction. One finds a variety of definitions of the notion of
chaos for self-maps of an interval in the mathematical literature. While
these definitions differ they all carry the idea, in some form or other,
that points arbitrarily close together can have orbits or ω-limit sets
(attractors) that spread out or are far apart. The works [D], [LY] and
[BC], for example, provide three such definitions.

In the present paper we address this idea directly. We furnish the
family of ω-limit sets of a continuous function / with the Hausdorίf
metric and ask questions related to the continuity of the map ωf :
x —• ω(x, / ) . While one could phrase the questions in terms of
the size of the set of points of continuity of ωf we found a more
cohesive development is possible if the questions are phrased in terms
of the Baire class of ωf. This allows us to obtain results concerning
continuity as corollaries, to obtain a notion of chaos strictly between
the notions involving scrambled sets [LY] and positive entropy [BC],
and to obtain a complete characterization in terms of the types of
ω-limit set that / possesses.

In §1 we find that ωf is rarely continuous. We obtain several char-
acterizations of continuity for ωy. In particular, we find that ωf is
continuous if and only if each ω-limit set for / has cardinality 1 or
2 and the union of all ω-limit sets is connected.

In §2 we obtain some general theorems relating the Baire class of
ωf to its Borel class and to certain notions of semi-continuity of ωf
as a set valued mapping. In particular, we find that ωf is always in

63



64 A. M. BRUCKNER AND J. CEDER

(at most) the second Baire class and if all ω-limit sets are finite, then
ωf is in the first Baire class.

Our main results are found in §3. There we show that for functions
possessing infinite ω-limit sets, ω/ is Baire 1 if and only if each
infinite ω-limit set is perfect. As corollaries, one finds that a function
/ which is chaotic in the sense of Li and Yorke can have ωf Baire 1,
that functions with zero topological entropy may or may not have ωf
Baire 1, and that functions with positive topological entropy cannot
have ωf Baire 1. Thus the condition that ω/ is Baire 1 is a notion
of nonchaos strictly between the notions that involve scrambled sets
or entropy.

In the final section we reverse a process used in §3 to obtain a
method of constructing functions with zero entropy and infinite ω-
limit sets. The method has the advantage that it shows how certain
variations in the construction lead to examples exhibiting various fea-
tures.

We would like to point out that we could have framed our devel-
opment in terms of the continuity of the map: x -> orb x. It is not
difficult to verify that this notion is equivalent to the one we chose.

NOTATION AND TERMINOLOGY. In the sequel a function is under-
stood to be a continuous function from [0,1] into [0,1] unless
clearly specified otherwise. For x e [0,1] we define f°(x) = x,
f\x) = f(x) and fn+ι(x) = f(fn(x)) in general. By the orbit of a
set / , written orb / we mean \J^Lof

k(I). When / is a singleton we
will often view orb x as a sequence. The ω-limit set, ω(x, / ) , is the
set of all subsequential limits of the sequence {fn(x)}%L0.

We say that x is a periodic (or cyclic) point of order n if fι+n(x) =
fι(x) for all / and no smaller value for n has that property. If x is
periodic of order n we say that the set {f(x), / 2 ( x ) , . . . , fn(x)} is
a periodic orbit of order n or an n-cycle. Let Fix(/) denote the set
of fixed points for / .

If / has zero topological entropy we write h(f) = 0. The reader
may refer to the literature for the definition. A list of useful char-
acterizations of zero topological entropy is found in [FShS]. For our
purposes we find it convenient to use the terminology of entropy and
we mention only the following characterization: h(f) = 0 if and only
if each periodic point has order a power of 2 [FShS].

We say that / is a 2°°-function if / has cycles of order equal to
each power of 2 and no others. We say that / is a 2n-function if /
has cycles of order equal to each 2k for k < n and no others. Then,
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as is well known, h(f) = 0 if and only if f is a 2σc-function or a
2n-function for some n.

A function / is chaotic (in the sense of Li and Yorke) if there exists
an uncountable set S such that

\imsup\fn(x)-fn(y)\>0
n—>oo

and

\immϊ\fn(x)-fn{y)\ = O

for each distinct x and y in S. In [FShS] there appears a list of
useful characterizations of non-chaotic functions. In particular, any
non-chaotic function has zero topological entropy.

By int A and A or cl A we mean the interior and closure of A
respectively. Let X denote the class of non-empty compact subsets
of [0, 1]. Let H be the Hausdorff metric in X. Then (X, H)
becomes a compact metric space.

A function f:X—> Y is a Baire 1 function if it is a pointwise
limit of a sequence of continuous functions from X to Y. Denote
the class of Baire 1 functions by 3S\. Continuing inductively 3&n+\ is
the set of pointwise limits from 3§n , the class of Baire n functions.

A function f\X-*Y is Borel 1 , 2 , 3 , etc., if the inverse image
of an open set is an Fσ , Gδσ , Fσδσ , etc., respectively.

A function f:X—*Y is a Baire* 1 function if for each nonempty
perfect subset P of X there exists an open V such that P ΠV Φ 0
and / restricted to P ΠV is continuous. Each Baire* 1 function is
Baire 1 since 38\ can be characterized as those / whose restriction to
any nonempty perfect set P has a point of continuity. In particular,
if / is Baire 1, then / is continuous on a dense Gδ. On the other
hand if / is Baire* 1, then / is continuous on a dense open set.

If Φ is a function from X into the class of non-empty subsets of
Y, then we say that Φ is lower semi-continuous or 1. s. c. (upper semi-
continuous or u.s.c.) if for each closed (resp. open) subset V of Y
the set {x : Φ(x) c V} is closed (resp. open) in X. If we impose the
condition that this set is a Gδ (resp. Fσ), then we say that Φ is lower
semi-continuous of class 1 or 1. s.c. (1) (resp. upper semi-continuous
of class 1 or u.s.c. (1)).

When X and Y are metric then each of 1. s. c. (1) and u.s.c. (1)
is implied by 1.s.c. or u.s.c. Otherwise there are no general relation-
ships between these semi-continuous functions and Baire 1 or Borel 1
functions.
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1. Continuity of ωy. The desirable situation that Of be continuous
puts considerable restrictions on / . Theorem 1.2 provides characteri-
zations of cχ>f being continuous in several forms. In terms of possible
ω-limit sets condition (5) is the most relevant.

We begin with a lemma.

LEMMA 1.1. If cog is continuous, then Fix(#) is connected.

Proof. Suppose Fix(g) is not connected. Pick a, b e Fix(g) such
that g(x) Φ x for x e (a, b). Without loss of generality we may
assume g(x) > x for a < x < b. Then we have 2 cases:

Case 1. x e ( a , b) i m p l i e s g(x) < b. T h e n f o r a n y x e ( a 9 b ) ,
{gn(x)}%L{ is an increasing sequence converging to b. Hence ω(x, g)
= {b}. Since ω(a, g) = {a}, ωg is discontinuous at a.

Case 2. There exists c e {a, b) such that g(c) = b. Choose xx e
(a, b) such that g(x\) = b. Choose XΊ e (α, Xi) such that g(x2) =
Xi. Continuing in this way we obtain a decreasing sequence {xn}^Li
converging to a for which g(xn+χ) = xn for each n. Since gn{xn) =
6, ω(;cw, g) = {6} for each n. Since ω(α, g) = {α}, ωg will then
be discontinuous at a.

THEOREM 1.2. The following conditions are equivalent

(1) Of is continuous.
(2) {/"}£!! w equicontinuous.
(3) Cθy2 w continuous.

(5) Fix(/2) is connected and for all x y {f2n(x)}™=ι converges to
a point of Fix(/ 2 ).

(6) Fix(/2) is connected.
(7) (βf is lower semi-continuous.
(8) (Of is upper semi-continuous.

(1)=>(2): Let / = Π^Li/π( 7) τ h e n ^ is a compact interval
and / ( / ) = / . Suppose (Of is continuous and that {fn}™=ι is not
equicontinuous. If J = {y} for some y, then {y} = Fix(/) andίor
each x fn(x) —• y . By Theorem 11 of [BH] this implies equicoriti-
nuity. Hence, / is a non-degenerate closed interval.

By corollary 12 of [BH], / is not Fix(/ 2 ). Since Fix(/2) c J
this means f2(z) Φ z for some z € / . Since / ( / ) = / and Fix(/)
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is connected by Lemma 1.1 it is easy to see that f2 has more than
one fixed point in / . Hence, there exist α, b e / Π Fix(/2) such
that (a, b) Γ\ Fix(/2) = 0 . Without loss of generality we may as-
sume f2(x) > x for all x e (a,b). According to the proof of
Lemma 1.1 there exists a sequence {xn}%L\ approaching a for which
ω(α, f2) = {a} and ω(xn, / 2 ) = {6}. Hence ω(α, /) = {α, /(fl)}

and ω ( x π , / ) = {*,/(*)}•
Since ω^ is continuous {a9 f(a)} = {b, f(b)} so that a = /(/>)

and 6 = / ( α ) . Therefore / , and f2 too, has a fixed point in (a, b),
a contradiction.

(2) => (1): Let ε > 0. Choose δ > 0 such that |x - y| < δ implies
\fn(x) - fn{y)\ < ε/3 for all n. Let x0 e ω(x, / ) . There exists
{nk}f=l such that \fn*(x)-x0\<ε/3 for all k. Then | / ^ ( y ) - x o | <
2ε/3 for all A:. Thus ω(y, /) contains a point within ε of Xo.
Likewise if yo € ω(y» /) then ω(x 9 f) contains a point within ε of
y0. Thus H(ω(x, / ) , ω(y, /)) < ε whenever |x - y | < £ and Of is
continuous.

(3) => (1): For all y we have ω(y, /) = ω(f(y), / 2)Uω(/ 2(j;), / 2 ) .
But in the Hausdorίf metric Aa -+ A and Ba —• J3 imply 4 u ΰ α - ^
4̂ U 5 . It follows that ω^ is continuous when α y is continuous.

(2) =>(3): By (2) {Z 2 "}^! is equicontinuous and by (1) ωfi is
continuous.

(2) o (4): This is Corollary 12 of [BH].
(2) => (5): By (4) Fix(/2) is connected. Now applying Corollary 10

of[BH] {f2n{x)}™=ι converges to some point of Fix(/2) for each x.
(5)=>(4): Let / = (X^XP{I)9 E = Fix(/ 2 ). It is clear that

E c J. Suppose E φ J. Let E = [a, b] and / = [c, d ] . If c = a
or 6 = d we have an immediate contradiction since f{J) — J and
/(x) < x on (b, d], (f(x) > x on [c, α), respectively). Thus, sup-
pose c < a < b < d. Now / 2 (x) < d for x e [b, d] and / ( / ) = / .
Thus / 2 ([c,α]) D \a,d\. Since / 2 (α) = α, there exists a\ with
c < d\ < a such that / 2 ([c, ^i]) = [Z>, rf]. Similarly there exists b\
with b<bx<d such that /2([Z>i, d}) D [cx, α] . Thus / 4 ( [c , αi]) D
f2([b, J]) D / 2 ([6i, d]) D [c, ax] and the interval [c, α^ has a peri-
odic point. But [c, a\] is disjoint from E, a contradiction. If α = Z>
the same argument applies unless f2([c, a]) = [c, a], but in that case
there is x £ [c, α) such that / 2 (x) = x , again a contradiction.

(6) => (5): If Fix(/2) = {α}, then by Propostion 6 of [BH] applied
to f2 we have {fln}^Lχ is equicontinuous. Hence, by the equivalence
of (1), (2) and (3) aif is continuous.
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So let Fix(/ 2 ) = [a, b] where a < b. We will first show that
co(x, / ) c [a, b] for all x. We have two cases: ( l ) 0 < α < Z ? < l
and (2) a — 0 or b — 1. We will carry out the proof when 0 <
a < b < 1 the other case will require a simple modification. Let
E = {x: ω(x 9f)Q[a9 b]}. Then f(E) = E. By Lemma 2 of [BH]
there exist a a n d β such t h a t 0<a<a<b<β<l a n d for all
x G ( α , /?), {/ 2 "(^)}^L! converges t o some p o i n t in [ α , b]. Hence,
( α , β) C JE1. Let ( c , rf) be t h e u n i o n of all open intervals / such
t h a t [a9b]CJ CE.

We will show c = 0 and d = I. Suppose c Φ 0. Then /(c) > c
since /(0) > 0 and there are no fixed points of / i n (0, c). If f(c) <
d, then some neighborhood of c maps into E, contradicting the
maximality of (c, d). Hence, /(c) > ύf. On the other hand if f(c) >
d, then [δ, f(c)] c /([c, 6]) since / has a fixed point in [a, b]. But
rf is interior to [b, f(c)] so that there is a z e [6, /(c)] — 2? with
z G f(E) = E, a contradiction. Therefore we conclude /(c) = d.
Likewise /(rf) = c. Hence, / 2(c) = c contradicting the fact that
c £ [a, b]. Hence, c = 0 and d = 1. From this it follows that
ω(x9f)c[a9b] for all j c e [ 0 , 1].

This implies that for a given x9 co(x 9 f
2) is a singleton set or

ω(x 9f) = {a9b}.
(5) =φ. (6): obvious
(5) =>. (7): Since (5) —»- (1) <-> (2) has already been established there

exists a continuous λ such that ω(x, /) = {λ(x), /(A(x))} for each
x . If i 7 is closed we need to show that {x : ω(x, /) c F} is closed.
Let xa ~> x where (A(xα), /(A(jcα))} c F. By continuity of / and
λ we have {λ(x), /(A(x))} c F .

(5) =φ> (8): As above we need to show {x : {/l(x), /(/l(x))} c G} is
open whenever G is open. This is immediate from the continuity of
λ and / .

(8)=>(6): Suppose Fix(/2) is not connected. Choose α, 6 G F I X ( / 2 )

such that (a9 b) n Fix(/2) = 0 . We may assume that f2(x) > x
for <z < x < b. Then as in the proof of Lemma 1.1 there exists a
sequence {xn}™=\ such that xn —> α and ω(xw, / 2 ) = {&}. Conse-
quently ω{a9f) = {fl,/(fl)} and ω(xn9f) = {b9 f(b)}. Since /
has no fixed point in (a, 6) we must have {a, /(α)} Φ {b, /(6)}

Let G be an open set such that {a, f(a)} c G and {&, /(&)} ^
G. Then ω(a9f) c G and for each n, ω(xn9f) % G. Hence,
{x : ω(x , / ) C ( ? } is not open and ω^ is not M.^.C.

(7)=»(6): Suppose Fix(/2) is not connected. Then we have the
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information in the first paragraph of the proof of (8) =» (6).
Let F = {b, f(b)}. Then {x: ω(x, f) c F} contains the sequence

{xn}^L\ but not its limit point a. Therefore {x : co(x, f) c F} is
not closed and (Of is not 1. s. c.

COROLLARY 1.3. If co/ is continuous, then f is a 2°-function or a
21-function and in particular cardω(x, /) < 2 for all x.

This is an immediate consequence of (5) of Theorem 1.2. The
converse is not true as shown by the squaring function on [0, 1].

By Lemma 1.1 and Theorem 1.2 it follows that Fix(/) is connected
whenever Fix(/2) is connected. However, Fix(/) can be connected
with Fix(/2) not connected. For example put f(x) = 2(x - \)2 + \ ,
if 0 < x < \ and = - 2 ( x - ± ) 2 + ± if \ < x < 1. Then Fix(/) = {i}
and Fix(/2) = {0? \, 1}. This example also shows the converse of
Lemma 1.1 is false.

We end this section by noting that equicontinuity of the sequence
{/w}£Li implies that orbits of nearby points x and y stay close to-
gether, while the continuity of Of implies only that the sets ω(x, /)
and ω(y, /) are close. Theorem 1.2 shows these notions are equiva-
lent. However equicontinuity of {fn}^Lx on a set S may be a stronger
condition than continuity of (Of restricted to S. For example, for
the hat function,

, A) = [0,1]}

is a dense set of type G$ . The function ω^ restricted to S is constant,
but the sequence [hn]^L{ is not equicontinuous on S.

2. Baire classes and semi-continuity of a*/. We have seen that cθf
is continuous only under very restrictive circumstances. One might
seek less restrictive conditions that would imply that cθf possesses
large sets of continuity points. One might expect results such as the
following:

(1) Of is continuous on a dense open set if / has only finitely
many ω-limit sets.

(2) Of is continuous on a dense set if all ω-limit sets are finite.
(3) If A is the hat function, then ω^ is discontinuous everywhere.

In fact cύh takes all of its values in each subinterval.
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Indeed the first two results are true and are corollaries of Theorems
2.9 and 2.8 below. (The second will be improved in Theorem 3.8.)
The third result follows readily from the analysis of the hat function
done in [BCR].

The hypotheses of (1) and (2) actually yield stronger conclusions;
namely, that ωf is Baire* 1 and Baire 1 respectively. Our emphasis
in this section, as well as in §3, is on studying the Baire class of ωy
under various hypotheses on / . We shall see that the Baire class is
closely related to the kinds of ω-limit sets / has. We shall also see
that, although ωf may be discontinuous everywhere, ωf is always
Baire 2. A useful tool involves the notions of semi-continuity.

In this section we obtain some general theorems relating semi-
continuity of ωf to the Baire class of ωf and we obtain some easy
results on 2n-functions. We also show that ωf is not Baire 1 when
h(f) > 0. We defer the somewhat deeper analysis of 2°°-functions to
§3.

We begin with a theorem that allows us to interchange Baire with
Borel.

THEOREM 2.1. For functions from [0, 1] into {X ,H) the Borel
and Baire classes agree for finite ordinals.

Proof. The proof that the Baire and Borel classes agree for finite
ordinals for functions from a metric space X into [0, l ] m , m some
ordinal, which is found in [K2] can be modified to fit the case when
X = [0, 1] and (^Γ, H) is the range space. The only fact needed is
the validity of a Tietze extension theorem namely: if F\, . . . , Fn are
mutually disjoint non-void closed sets in [0, 1] and Y\, . . . , Yn are
in 3£ then there exists a continuous function / : [0, 1] —• (JP, H)
such that f(Ft) = Yt for all i.

To show this suppose (a, b) is a component of (0, 1) - U™=i ^m
with a e Fi and b e Fj. Let & consist of all line segments in R2

from (α, u) to (6, υ) where u e Yj and v e Yj. For x e (α, b)
define

f(x) = {y : there exists Le£? such that (x9y)e L}

If x e Fi, put f{Xi) = Yi. If [0, b) is a component of [0, 1] -
Um=i Fm and b e Ft put f(x) = Ft for x e [0, b). Similarly for
a component of the form (α, 1]. It is easily checked that / is the
desired continuous function.
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THEOREM 2.2. If ωf is Baire 1, then h(f) = 0.

Suppose h(f) > 0. We show there exists a perfect set K
such that ω/ | K is everywhere discontinuous. This will imply that
ω/ is not Baire 1, since a Baire 1 function from [0,1] into a separable
metric space must have points of relative continuity in each perfect
set.

One finds in [SS] that there exists a perfect ω-limit set K for /
such that (i) the set of periodic points in K is dense in K and (ii) if
L c K is an ω-limit set for / , then {x e K : ω(x, /) = L] is dense
in K.

Thus the function ωf \ K takes each of its infinitely many val-
ues on a dense subset of K. It follows that ωf \ K is everywhere
discontinuous, completing the proof of the theorem.

T H E O R E M 2.3. For all f, ωf is u.s.c. (1).

Proof. Let W be open. Without loss of generality we may as-
sume that there exists a sequence of mutually disjoint open intervals

{{di, *, )>Si s u c h t h a t w = U£i(*i > */) L e t ̂  b e t h e family of all
finite subsets of N. Then

{x:ω(x,f)QW}
O O O O O O

= u u u n
5GFn=lm=U=m

which is an Fσ set.

THEOREM 2.4. For all f, ωf is Baire 2.

Proof. Let AT be a compact set and {<Z;: / = 1, 2, ...} be a
countable dense subset of K. Let e > 0. It will suffice to show
that {JC: H(ωf(x)9K) < ε} is a G J σ set. For any C let Se(C) =
{y: \z-y\<e for some z e C} . Put ̂ 4 = {x : ωf(x) C ̂ (A")} and
B = {x: K c S^ω/jc))}. By definition H(ωf(x),K) < e if and
only if x G ̂ 4 Π £ . It is easily verified that

OO OO /- x

and
OO OO OO

n=\j=\m=\k=m
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Clearly A is an Fσ set and B is a G#σ set so that A Π B is a Gδσ

set, completing the proof.

LEMMA 2.5. Let I\, . . . , In be open intervals {relative to [0, 1]).
Let B(Iι , . . . , / „ ) fe ίAe set of all K e 3? such that

(1) ί c y ? = 1 / / fl/iέ/
(2) KC\Iiφ0 for each i.

Then B(IX , . . . / „ ) is cjpe/i in

Proof. Let K e B = B{Iλ, ... ,In). It suffices to find ε > 0 such
that if H(K, / ) < ε then J e B. For each / = 1, . . . , n, choose
Xi e Kπ U and let

f d i s t ( { x / } , R - I i ) , i f x i φ θ 9 l ,

\ diam//, if xz = 0 or Xi = 1.

Let
ί
{

if

One verifies directly that if H(K, /) < εf , (/ > 0), then / n /,• ^
0 , and if i f ( # , /) < ε 0, then / c U/Li^ I I follows that ε =
min{εz: 0 < i <n} works.

LEMMA 2.6. LΛ E bethesetofrationalsin [0? 1]. The metric space
(range ωf, Λ") w separable and has a countable basis, 33, consisting
of all sets of the form B(I\, . . . , /„) Π range ω ^ wΛ^r^ ^αc/z /z Λα.y ̂ «ί/
points in E.

Proof. Let AT be an ω-limit set and ε > 0 . Since 38 is countable
it suffices to show there exist 1\, . . . ,/« with end points in E such
that KeB(IΪ9 ...,In)c{J: H(J, ΛΓ) < ε } . We may cover iSΓ with
finitely many intervals I\, . . . , In with end points in E all having
length < ε such that AT c B(I{, . . . , 7Π). Clearly 5(/ i , . . . , / „ ) c

Perhaps the main result of this section is Theorem 2.7 below. It
provides a characterization of our form of nonchaos, namely that ωf
be Baire 1. This characterization will allow us to simplify arguments
in the sequel.

THEOREM 2.7. ωf is Baire 1 if and only if ωf is l.s.c. (1).

Proof. => It suffices to show that {x: ω(x, / ) n / φ 0} is an Fσ

set whenever / is an open interval (relative to [0, 1]) with rational
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end points. Let the countable base 3§ be stipulated by Lemma 2.6
and let s/ consist of all B = B(I\, I2 , ... 9 In), such that J is some
//. Then

{x: ω(x, f)nJ φ 0} = (J{ωjι(B); B E ϊ ) .

This is an Fσ set because si is countable and each ωMB) is an

set since ωy is Baire 1.
(<=) Let B = B(Iχ, ... , /„) Πrange ωy. It suffices to show ωγ{B)

is an Fσ set. Clearly

ι(B) = ix: ω(x,f) c\Jlλn lf]{x: ω(x, f)Πli φ 0} j .
^ ι=l ) \i=\ J

By Theorem 2.3 {x: ω(x, f) c |J"=1 //} is an Fσ set and since
is l.s.c. (1) each of the sets {x: ω(x, f)nliφ0} is an Fσ set. Hence
ωγ{B) is an Fσ set.

We now provide two simple sufficient conditions for ωy to be
Baire* 1 and Baire 1.

THEOREM 2.8. If f is a 2n function, then ωy is Baire 1.

Proof. We show ωy is l.s.c. (1). For each x, ω(x, f) is a 2k-
cycle for some k < n. Hence ω(x, f2") = {g(x)} for some g(x).
Then g = lim^oo fi2" and therefore g is Baire 1. For any x there
is a A: such that

2\ω(x,f) = {f(g(x)),...,f2\g(x))}.

Let F be closed. Then

{x : ω(jc, / ) C F } = fj{x : f\g{x)) e F}.
1=1

This set is a G$ set since each / z ^ , being a composition of a continu-
ous function with a Baire 1 function, is a Baire 1 function. Therefore,

is l.s.c. (1) and Baire 1.

We shall extend Theorem 2.8 in §3 (Theorem 3.8) to certain 2°°-
functions.
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THEOREM 2.9. If the family of all ω-limit sets is finite, then cύf is
Baire* 1.

Proof. It is clear that / is a 27-function for some j and each ω-
limit set is a 2k -cycle where k < j .

Suppose A = {ai, ... , a2k} is an ω-limit set. Then

: ω(x, f) = {at}}

~k

2 oo oo

= U U Γ\{{x-\fn2\x)-cii\<δl2})
i=\ m—\ n=m

where δ is less than the Hausdorff distance between any two of the
finite family of ω-limit sets for / . This set is an Fσ set. Hence,
[0,1] is a union of finitely many Fσ sets on each of which ω^ is
constant. It follows that (Of is Baire* 1.

The identity function shows that the converse of Theorem 2.9 is
false. Theorem 2.9 does not extend to the family of ω-limit sets
being countable as shown by

EXAMPLE 2.10. There exists a 2°-function / whose family of ω-
limit sets is countable and Of is not Baire* 1.

Proof. We may choose sequences {fl^}^ and {bn}^Lγ for which
a\ = 0, \ivcιan = 1 and an < bn < an+\ for all n and having the
additional property that if Un is the line segment joining (an , an) to
(bn, 1), Un has slope 3, and if Dn is the line segment joining (an , an)
to (fcΛ_i, 1) then Dn has slope - 3 . Let / be the function whose
graph is (USL2 At) u (U£=i Vn) U {(1, 1)} . Clearly / is continuous
and f(x) > x for all x. Hence, / is a 2°-function. Then clearly
all ω-limit sets are orbits of the fixed points, which are 1 and an for
n> 1.

If / is an interval contained in some (<2/_i, aϊ), then clearly \f(J)\
> (3/2)|/|. Then some iterate of / will contain some α 7 . To see this,
suppose no iterate of / contains an α 7 . Then there exists a sequence
{{aHk, αWfc+1)}£°=1 for which fk(J) c [aΆk, aUk+λ) and \ank+x, ankΓk

\fk{J)\ 2 (3/2)*|/| - ^ o o a contradiction.
In fact the orbit of / will contain a subsequence of {<Z/} -^ . Hence,

each interval contains points y and x for which ω(y, f) = {1} and
ω(x9 f) = some {an} .
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Let / be open and pick x e J such that ω(x > f) = {an} for
some n. Choose ya e J such that ya -+ x and ω(ya, f) = {1}.
Then ω(ya, /) -/> ω(x, /) so that each interval contains a point of
discontinuity of ωy and / cannot be Baire* 1.

We conclude this section by noting that while the condition that
ωy be continuous is rare, the condition that ωy be Baire* 1, which
implies ωf is continuous on a dense open set, is not. For the well-
studied logistic family: fk{x) = kx{\ — x), 0 < x < 1, 0 < k < 4,
Theorem 2.9 implies ωy is Baire* 1 whenever fk is a 2"-function.
This will occur as long as k is less than a certain k$ (approximately
equal to 3.5699 [P]).

On the other hand when k = ko, / has an infinite ω-limit set. We
shall see in §3 that this implies that ωf is not Baire* 1. Incidentally,

G B\ when k = ko, but ωf £ Bγ when k> k$.

3. 2°°-functions. In the previous section we saw that ωf is always
Baire 2, that ωy is Baire 1 if each ω-limit set is finite and that ωy is
never Baire 1 when h(f) > 0. There remains the case when h(f) = 0
and / has an infinite ω-limit set so that / is a 2°°-function.

We shall see that if all infinite ω-limit sets of / are perfect, then ωy
is Baire 1, but if / has an infinite ω-limit set with isolated points, then
ωy is not Baire 1. It will follow that the Baire class of ωy provides
a measure of chaos strictly intermediate to the two common notions:
the existence of scrambled sets and positive topological entropy.

Our program will be as follows: We first develop some proper-
ties of "simple systems" associated with infinite ω-limit sets for 2°°-
functions (Proposition 3.1). These properties will be used repeatedly
in the sequel. We then obtain a few lemmas that indicate how the
sets of points attracted to various ω-limit sets "intermingle." These
results are useful in the proofs of two of our main results. Finally
we obtain some results related to chaos. In particular, we prove for a
function / , all of whose infinite ω-limit sets are perfect, ωy is Baire
1. Thus there are chaotic functions for which ωy is Baire 1.

We begin with a discussion of a notion that others have used in
various forms for various purposes. Smital [S] has shown that if Ω
is an infinite ω-limit set for a 2°°-function / , then there exists a
sequence of closed intervals {T^}^ such that

(i) for each k, {//(7):)}?==1 are pairwise disjoint and Tk = f2 (Tk)

(ii) for each k, Tk+ι U/2*(Γ*+i) Q Tk
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(iii) for each k, Ω c (J-^
(iv) for each k and i, Q.r\fi{Tk)φ0.

We call the set J~ of all such fι(Tk) a simple system for Ω relative
to f.

Our purpose is to analyse simple systems, to derive some new results
and to shed light on previously known results. Moreover, in §4 we will
reverse SmitaΓs construction of simple systems by constructing 2°°-
functions from certain "systems" of intervals.

In order to accomplish this project we use a device suggested in [D;
p. 136]. We code the sets /'(7fc) with finite tuples of zeros and ones.
To this end, let N denote the set of positive integers and let J^ be
the set of sequences of zeros and ones. If n € JV and n = {rij}ψ=ι we

write n 1 fc = (/ii, «2 > > flfc) By 0 ( r e s 1) w e mean that n e /
such that Πi = 0 (resp. 1) for all /.

Define a function A\JV -+ Jf by

where addition is modulus 2 from left to right.
For each k e N and i e N put

h\k = Tk and JA>(1)]k = Γ(Tk).

It easily follows from (i) that for any m, n e J^ and k e N there
exists j e N such that AJ(m] k) = n] k. Hence the above relations
actually define Jn^ for all n E / and k e N so that the collection
of all /n1£ coincides with the simple system ^ .

Recasting (i) through (iv) into the new notation we have the follow-
ing:

(a) For each n G / and k e N9 Jn]k,o a n d Λifc,i a r e disjoint

closed subintervals of Jn^ which f2 interchanges.
(b) For each k e N, / maps the collection {J^k - n e J^} onto

itself.
(c) For each k e N, Ω c \J{Jn]k : n e / }
(d) For each n e / and k e N, Ω n Jn]k Φ 0 .

Now put

κ= U

and
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oo

Λ = ( I Jn\k
k=\

Then K and each Jn are compact. For a fixed n e / , {Λifc}£Li *s

descending. Therefore the components of K consist of the Jn sets.
Moreover

Λ : = l z = l

Let 5 consist of all x for which there exists n e ./f such that
{*} = /„. Let

Q = S and C = ( i £ - i n t i Q - Q .

Then Q is a Cantor set (i.e. perfect, nowhere dense and nonvoid).
Also C is countable and possibly empty.

Let G be the component of [0, 1] - K which contains the inter-
val between JQ and J\. In general, let Gn^ be that component of
[0, I]- K which contains the interval between Jn^0 and Jn^ι. Let

^ = {G} U {Gn1fc : n G^*, & € TV}

and

G° = Gu [0, inf#) U (sup#, 1]

and

Note that [inf^, supK] = K U (U^7) and [0,l] = K\J [jjίo GJ.
In the rest of §3 the symbols A, K, Q, 5, C, ^ , Gn1^? G^,

ΛiiA: > e^c. will always mean those sets defined above associated with
a particular ^ arising from a 2°°-function / and one of its infinite
ω-limit sets Ω. Hence, we give no further explanations for these
symbols when they appear in the sequel.

Proposition 3.1 below lists some properties of the system we have
described. Some of these properties are essentially known but are scat-
tered throughout the literature and are sometimes stated in different
forms (see [S]). For completeness we sketch the proofs.

In particular 3.1 part (1) implies that if we identify n with Jn then
"/(n) = A(ή) for n e 5"'. Hence the coding by Jf allows us to
represent / on S by the fixed function A.



78 A. M. BRUCKNER AND J. CEDER

PROPOSITION 3.1. Let Ω be an infinite ω-limit set for a 2°°-function
f with J" = {Jn]k : n e JV, k e N} a simple system for Ω relative to
/ . Then

(1) for each component Jn of K, f(Jn) = J^n)
(2) for each j, β[a, b] n [a, b] = 0 for each component (a, b)

ofinXK.
(3) ΩnintK = 0. In fact, intK contains no points in any ω-limit

set
(4) for some BCC, Ω = QuB.
(5) if c e C y then c is an endpoint of a component of intK and

c is isolated in QuC.
(6) if (a, b) is a component of in\K, then either both a and b

are in Q or one is in Q and the other in C
(7) for all xeK, ω{xj^= Q.
(8) if intK φ 0, then intK = K.
(9) if Bφ0y then QQB.

(10) C can have at most 2 points in any component of [0, 1] - Q
and at most one point in [0,infQ) and (supβ, 1].

(11) if Ω; is an ω-limit set which intersects Ω, then Q c Ω' c
QuC.

(12) For each x either Q c ω(x, /) c K or ω(x, f) c UjLo^
for some k e N.

(13) if JnnBφ0, then Jn c int(Jn]k) for all k.

Proof. (1) Each equality below is easy to verify:

( oo \ oo oo

n J-I* = n fw=n A^ 1 *=-̂ w
A : = l / A:=l k=\

(2) Let [a, 6] = /„. We have fi(Jn) = JAj{n). The set JAj(n) is
disjoint from Jn by a).

(3) It follows from (2) that int K can contain no points of any
ω-limit set.

(4) From (3) and the definition of simple system, Ω C K— int K =
QUC. Let B = ΩnC.

(5) Since c £S, c is contained in a nondegenerate componenΓφf
K. The definition of C shows c is an endpoint of the component.
Let U be a neighborhood of c disjoint from Q. If c is a limit point
of C, there exists n e J^, k e N such that /n is a component
of int K and /n1^ c £7. But / n l ^ n Ω is uncountable and therefore
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contains points of Q. Thus c is a limit point of Q. Since Q is
closed, c e β , a contradiction. Thus c is isolated in QuC.

(6) Choose n e / such that [a, b] = Jn. Then a9 b e Jn^ for
all k eN. But /n1£ n Q ^ 0 , while ( f l , ί ) n β = 0 . Thus either α
or b must be a limit point of Q and therefore in Q.

(7) Since K is invariant, ω(x, /) c K. By (3), int Λ:nω(.x;, /) =
0 . It follows from (2) and (5) that Cnω(x, /) = 0 . Thus ω(x, /) c
Q. To establish the reverse inclusion let q e Q, ί/ a neighborhood
of q, and s e S Π U. There exists n e / such that {s} = Jn,
and there exists k e N such that /n1^ c £/. Choose m e ^ such
that x e Jm. There exists j e N such that ^ ( m ) 1 k = n ] k.
Thus fj(Jm) C fj{Jm]k) = Jn}k > and / ' (JC) e £Λ Repetitions of this
argument show q e ω(s, / ) .

(8) Let U be an open set intersecting K. Suppose C/Πint K = 0 .
By (5) J7 Π # = £/ Π β . There exists k0 e N, m e ^ such that
Jm]k c t/ for all k > ko. Let (α, 6) be a component of int K,
[α, 6] = /n Choose j e N such that fJ(Jm<]k0) = Λifco F° Γ e a c h
k > ko there exists J E ^ such that J C Jm^ and / y ( / ) D / n .
Inductively we obtain a sequence {//} c ^ such that //+i c // and
fJ(Ji) D Λ f° r aU i € N. Since / ; is a continuous function and
/ n is a nondegenerate interval, the lengths of the intervals // cannot
approach 0. Thus ΠSi -̂  ^s a nondegenerate interval / . It is clear
that / c U and that / is a component of K.

(9) Let q e Q, b e B and U be a neighborhood of q. There
exists n e / such that b e Λ and there exists k e N and m e ,/f
such that /m1fc C [/. Choose j e N and p e / such that p/ = m;
for all / < k and AJ\p) = n. Then int Jp is a component of int i£
since fl(Jp) = Λ and Jn is non-degenerate. Choose c e / p n Ω such
that fJ(c) = 6. Since Q is an ω-limit set by (7), Q is invariant so
c^LQ. Thus c e ΰ and the conclusion follows from / P C [ / ,

(10) Observe first that if (α, b) is contiguous to Q and (α, c) is
a component of int K with b Φ c, then c must be in C. Thus
c is either an isolated point in Ω or c $. Ω. (Either situation can
occur.) From this the assertion follows easily. This result was proved
by different methods in [Shi].

(11) Suppose Ω' is an ω-limit set such that Ω n Ω ' Φ 0 . Let
z e Ω n Ω ' . Thus Ω' is infinite. Let Q and K' have the ob-
vious meanings. Since z £ Kr, ω(z, f) = Q by 3.1(7). Since
z e K, ω(z, f) = Q. Thus Q = Q. Suppose b eΩ' -Ω. Then
coφ, /) = Qf. For each n e / , and k e JV, /n1^ intersects <2 i n an
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uncountable set. Thus orbb intersects the interior of Jn^. Thus, if
k φ , / ) , then ω(x, /) intersects J^k . This is true for all n e /
and k G N. Thus ω(x, f) c K, so b e K. Since int iΓ contains
no ω-limit points, b G C. Hence, // Ω' w an infinite ω-limit set
that intersects another infinite ω-limit set Ω, then Ω' and Ω have a
common simple system and differ at most on a countable set contained
in C — (K — int K) — Q. This improves a result in [Shi].

(12) If orbx hits K, then we have ω(x, /) = Q by part (7). So we

may assume orb x C UJlo & . If orb x hits infinitely many members

of 5?, then ω(x, /) n Q φ 0 and by part (11), Q c ω(x, /) c

^ . Hence, orbx C |J j=o^ 7 f ° r s o m e k Then either ω(x, f) C

|Jy= 0 G7' or ω(x, /) contains a boundary point of (Jy=o ̂ ; ^n which

case ω(x, f)nK φ 0 and β c ω(x, /) by part (11).
(13) Suppose Jn = [c, d] where c is an isolated point of Ω. Then

d G (?. Since / n ^ Π (2 is uncountable for any k, it follows that d is
interior to each Jn^. Let ω ( x , / ) = Ω. Fix /c. Let F be an open
interval about c which misses d and all Jm^ for m 1 k ^n] k. Pick
/'(x) G / n ^ . Because / m ^ is periodic fl(x) G UIΛii^ : m ^ ^ } fo r

all j > i. Then there are infinitely many values of j for which
fl(x) G F and, hence, fJ{x) G / n ^ . By part (2) there is at most one
orbit point in [c, d]. Therefore, there is some /'(.x) G / n ^ Π [0, c)
and c is interior to Jn^k .

The next three lemmas give some information about the intermin-
gling of ω-limit sets, certain orbits and members of simple systems.
These together with the topological Lemma 3.5 are the foundation of
the proofs of Theorems 3.6 and 3.7.

LEMMA 3.2. Let ^ be a simple system for Ω relative to f. Suppose
Ωj is an ω-limit set containing Q and Ω2 is any ω-limit set different
from Ωi, say Ωj = co(x, f) and Ω2 = co(y, f). Then there exists
J G ^ and i G TV such that J is between f\x) and fι(y).

Proof. Suppose first that Ω2 Π K = 0. Since Ω2 is closed, there
exist neighborhoods U\ of Ω!, and U2 of Ω2 such that U\Γ\U2 = 0.
Choose q G U\, q a bilateral limit point of Q. There exist L, M f
</ such that L c U\, M c U\, and q is between L and M. There
exists Ϊ'O G iV such that /z(y) G ί72 for all / > /0. Choose / > /0

such that fι{x) is between L and M. Then one of the two sets L
and M is between /'(x) and fι(y).
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Now suppose Ω2 Π K Φ 0 . By the proof of part 11 of 3.1, Ωi,
Ω2 and Ω have the same simple system ^ . Then Q C Ω2. Since
Ωi — Ω2 or Ω2 — Ωi is non void, say Ω2 — Ωi Φ 0 , we may choose
c eC with c G Ω 2 - Ω i . Then there exists Jn with c as an endpoint.
Hence, say /„ = [c, d] where d G Q. Choose k e N so that no
member of β is contained in [0, c] n Jn^ .

By 3.1(3), orbx is eventually out of [0, d] Π / n 1^. Hence there
is an s such that / > s and fι(x) G /n1^ imply / ' ( * ) > d. How-
ever, orb y is frequently in Jn^k Π [0, c] so there is j > s such
that p(y) G /n1^ Π [0, c]. In case / 7 (x) e /n1A: we have / 7 (JC) > d
and [c, ί/] c (fj(y), P{x)). Hence, there exists t > k, such that
Jn]t Q ( f i ( y ) , f i ( x ) ) . I n c a s e fi(x) e Jm]k w h e r e m ] k φ n \ k
we may use the function A to find v > s to obtain a member of ^
between / υ (x) and / υ ( y ) .

We say that two non-void mutually disjoint subsets X and Y of
some real interval are intertwined if between each point of X (resp.
Y) and each point not in X (resp. Y) there exist points of both X
and Y.

LEMMA 3.3. Let f be a simple system for Ω relative to f. Let
Ωi and Ω2 be different ω-limit sets each containing Q. If Ω\ = {x :
ω(x, /) = Ωi} and Ω.^= {y : ω(y, /) = Ω2},

Proof. If x e Ω,*{ (resp. JC G Ω^) and y <£ Ω\ (resp. y g Ω^),
then Lemma 3.2 gives a member J E ^ between / z(x) and fι(y)
for some / G N. If Q c ω(z, / ) , then orb z hits each member of
^ . If this were not the case there would exist a k such that orb z
Π LKΛ1A:: n ^ -^} = 0 by the periodicity of the intervals in ^Γ. This
would mean that ω(z, /) is disjoint from |J{i n t Λi* : n G ^ } a n d
ω(z, /) Π Q is finite, a contradiction.

Obviously, orb x C Ω ] and orb y C Ω ^ . Therefore / hits both
Ωj and Ω2. Let w eΩ\Γ\J. Then pick v between x and j ; such
that P{v) = lu. Clearly υ e Ω\. Likewise there is a point of Ω£
between x and y.

LEMMA 3.4. Let </ be simple system for Ω relative to f. Let

Then X and Y are intertwined.
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Proof. Obviously X and Y are nonvoid and mutually disjoint. By
3.1 part 12 [0, 1] = I U 7 . Hence it suffices to show that if x e X
and y G Y then there are points of both X and Y between x and
y. Apply Lemma 3.2 to ω(x, /) and ω(y, /) to get / G N and
J G ̂  such that / is between f\x) and fι(y). But / intersects
Q and / contains a member of £? which in turn contains a periodic
point. Pick a e J ΠX and b e J ΠY, Pick z and ω between x
and y so that / '(z) = a and / z(ω) = b. Clearly z G X and J G Γ .

The next lemma is probably known in some form or another. Its
proof is straightforward and will be omitted.

LEMMA 3.5. Suppose X and Y are intertwined. Then

(a) X and Y have the same boundary P, which is a perfect set.
(b) X Π P and YΓ)P are dense in P.
(c) Each of X and Y is dense-in-itself and bilaterally dense-ίn-

ίtselfwhen restricted to (inf X U 7 ,

Now we present two consequences of the preceding lemmas.

THEOREM 3.6. If f has an infinite ω-limit set, then ωf is not
Baire* 1.

Proof. If h(f)>0 we know that ωf is not Baire 1 by Theorem 2.2.
So we may assume that / is a 2°°-function with an infinite ω-limit
set Ω. Let / b e a simple system for Ω relative to / . Let X and
Y be the sets of Lemma 3.4. Let P be the common boundary of X
and Y by 3.5.

Suppose x G X. Then ω(x, /) c \J^=0 G
j for some k by 3.1 part

12. Let e = dist(ω(x, f), K). Then for all y G Y we must have
H(ω(x, / ) , ω(y,f)) > β. Therefore ωf ] P is discontinuous at
each point of the set X Π P which is dense in P. Hence ωf is not
Baire* 1.

Example 2.10 shows that the converse of Theorem 3.6 is false. We
have been unable to characterize Baire* 1 functions in terms of their
ω-limit sets.

THEOREM 3.7. If f has an infinite ω-limit set with an isolated point,
then ωf is not Baire 1.

Proof. If h(f) > 0, then ωf is not Baire 1 by Theorem 2.2. Hence,
we may assume that / is a 2°°-function. Let Ω be an infinite ω-limit
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set with an isolated point. Let ^ be a simple system for Ω relative
to / . Then Q C Ω and by Lemma 3.3 β* and Ω* are intertwined.
And by lemma 3.5 P Γ)Q* and P Π Ω* are dense in the perfect set
P. If ωf is Baire 1, then clearly P n Ω* and P n Q* are both Gj
sets. This is impossible by the Baire Category theorem. Hence ωf is
not Baire 1.

The converse of Theorem 3.7 is also true.

THEOREM 3.8. If every infinite ω-limit set for f is perfect, then ωf
is Baire 1.

Proof. Suppose M is a perfect ω-limit set for / . If int M Φ 0 ,
then h{f) > 0 (see [FShS; Theorem A]). But if h{f) > 0, then / has
a countably infinite ω-limit set [HOLE], a contradiction. Therefore,
each ω-limit set for / is either a Cantor set or a 2^-cycle.

By Theorem 2.7 it suffices to show that ωf is 1. s.c. (1) and thus
to show the set A = {x : ω(x, /) n W Φ 0} is an Fσ set whenever
W is an open interval.

Choose a sequence of closed intervals {Wn}™=ι such that W =

U^=i ^Λ Form the set
oo oo oo oo

n=\ j=\ k=\ m=\

which is clearly an Fσ set.
We will show A = E. The inclusion £ C 4̂ is clear. Suppose now

that x G A. If ω(x, /) is a cycle, then obviously x e E. Suppose,
then, that ω(x, /) is a Cantor set. Let ^ = {/nl̂ : n e JV, A: G Λ̂ }
be a simple system for ω(x9 f) relative to / . Thus co(x, f) = Q.
Since Q Π W Φ 0 , we see from Proposition 3.1, that there exists
n e Jf and k e N such that /n l^ c fΓ. Since Jn^ is closed,
there exists n e N such that / n ^ c Wn. Since orb x intersects all
intervals in f, there exists j G N such that / 7 (x) G Jn^ . But Jn l^

is periodic of period 2k so fj+m2\x) e Jn]Jc C Wn for all m e N,
that is, ^ C £ . Thus 4̂ = E.

Combining Theorems 3.7 and 3.8 we obtain

THEOREM 3.9. ωy is Baire 1 if and only if any infinite ω-limit set
for f is perfect.

If Ω is any ω-limit set for / , then Ω* = {x : ω(x, /) = Ω} is a
level set for the function ωf. Since ωf is always Baire 2 each Ω*
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is an Fσδ set. This is well-known [Sh2]. In case (Of is Baire 1 (or
equivalently all infinite ω-limit sets are perfect) then clearly each Ω*
is a Gs . What follows from Lemmas 3.3 and 3.5 and Theorem 3.7 is
that if h(f) = 0 and Ω\ and Ω2 are different and intersect, then Ω\
and Ω£ can't both be Gs sets.

We close this section with some applications of the previous results
to non-chaotic functions. The first is a new characterization of non-
chaotic functions.

COROLLARY 3.10. Let h(f) = 0. Then f is non-chaotic if and
only if there are periodic points between any two points of any infinite
ω-limit set

Proof. Obviously we can assume that / is a 2°°-function. Suppose
Ω is any infinite ω-limit set and <? is a simple system for Ω relative
to / . Since f2 interchanges each Jn^k,o a n d Jn]k,\ there is a pe-
riodic point between them. In general then each interval contiguous
to K contains a periodic point. By 3.1 part (2) no point in int K is
periodic. Thus if a component of int K has both end points in Ω,
then there is no periodic point between them. If each component of
int K has an endpoint not in Ω, then each two points in Ω can be
separated by a periodic point. Hence, the stated condition is equiv-
alent to no component of int K having both end points in Ω. This
in turn is equivalent to each two points in any infinite Ω being sep-
arated by periodic intervals. But this is a known characterization of
non-chaotic functions [FShS].

COROLLARY 3.11. If f is non-chaotic, then any infinite ω-limit set
for f is perfect and ωf is Baire 1.

Proof. That any infinite ω-limit set is perfect follows from the argu-
ment in the proof of Corollary 3.10. That ωf is Baire 1 now follows
from Theorem 3.8.

We summarize our results relating the Baire class of ωf to the types
of ω-limit sets possessed by / .

(1) ωf is continuous if and only if each ω-limit set for / has
cardinality one or two and the union of all ω-limit sets is connected.

(2) ωf is Baire 1 if and only if all ω-limit sets are either finite
sets or Cantor sets.

(3) ωf is Baire 2 but not in έ%\ if and only if / possesses an
infinite ω-limit set with isolated points.
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Regarding the Baire class of (Of and forms of chaos we have the
following chain of implications

(Df is continuous =» / is nonchaotic => ωf is Baire 1 => /?(/) = 0.

None of the reverse implications is valid.

4. Construction of examples. In this section we will attempt to re-
verse our construction of simple systems from a given 2°°-function.
We will begin with a certain collection of sets coded by finite tuples
of O's and Γs with properties similar to those of simple systems and
produce a 2°° -function / and corresponding infinite ω-limit set Ω
relative to which this collection is a simple system. The results of this
construction are stated as Theorem 4.1. We then modify the construc-
tion to obtain a 2°°-function possessing an infinite ω-limit set with
isolated points.

A system f = {Jn^k: n e J^, k e N} of non-degenerate closed
subintervals of [0,1] is called a primitive system if

(Pi) J\ and JQ are disjoint with 0 G J\ and U / o In general
Λifc,i a n d Jn]k,o a r e disjoint subsets of J^k containing the
left and right endpoints of / n ^ respectively.

(P2) If nSb=i Jtf\k is a singleton, then f|&ii Jλ(n)\k is a singleton too.

Observe that in comparison to the arbitrary simple system of §3
there is now an order in that / n ^ , i always lies to the left of Jn]k,o
and that the endpoints of each Jn^k must belong to K.

Suppose that ^ = {/n^: n e JV , k e N} is a primitive system.
Put

κ= U fVi*
neJ^ k=l

and

Λ = I ) Jn]k
k=\

Then Γ̂ is perfect and { / n : n G / } is the set of components of
K. Let S consist of all those x for which {x} is a component of
K.

Define / on S as follows: if {x} = Jn, then {f(x)} = JA{U)
First we show that for each x e S, l i m ^ * f(s) exists. Let x e

S. Then there exists n e JV such that one of the following is true:
{x) — Jn or [x, b] = Jn for some b > x with x e S - S or
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[a, x] = Jn for some a < x with x e S - S. Let [%, 6^] = /n1£ and
[ck > ^ ] = JA(n)]k a n ( i [c> d] = JA(jή . There are several cases

( 1). n = 1. Then Jn = [0, x] where 0 < x and x € S . Let
5 G S n ( x , ^ ) . Pick m > k so that [0, x] c /n1m>i and s e /nim,o
Let [c, 1] = JA{n) = / 0 Then f(s) e /oim,i so that ck < f(s) < c.
Since b^ —> x and c^ —• c, we have lim5_fX+ / ( j ) = c.

(Case 2). n = 0. This is similar to Case 1 and we get Iim5_^χ- f(s)
exists again. :

(Case 3). Jn = [a, x] where α < x and n is not constant. Suppose
Πj = 0 and let k > i. Let s e (x, b^). Then there exists m > k
such that [a,x] c / n 1 m i and s € /nim,o Since A(n ] m,j) =

1 m), 7) we have f(s) e JA{n)]m,o s o that d < f(s) < dk . Since
x and d^-^ d it follows that Iim5_ x̂+ /(s) = ^/.

4). / n = [-̂  9 b] where x < b and n is not constant. Similarly
we can prove that lim^^^.- f(s) = c.

(Case 5). Jn = {x} and n is not constant. Using Cases 3 and 4 we
obtain lim5_>Λ:+ f(x) = d = c = Iim5_^- f(s) so that Uniy-^ f(s) =

Since no non-degenerate component contains a point of S interior
to it we conclude from the above cases that lim^-,^ f(s) exists for all
x e S. This means that / is uniformly continuous on S and can be
extended to be continuous on S.

Next we extend / continuously to K as follows: Suppose Jn =
[a, b] with aφb. Then a or b belongs to S. Suppose, for example,
that a e S and b & S. Let JA^ = [c, d] where c < d. From Cases
2 and 4 above f(a) = c. Define f(b) = d. Similarly with the other
possibility. Now having defined / at both endpoints of /„ we define
it on Jn by linearity.

Finally we define / on the components of [0, 1 ] — K by linearity.
It is easily checked that this extension is continuous.

We now examine the behavior of / on the components of [0, 1] -*.
K.

Let Gn1£ be the open interval between Jn]k,ι a n d Λifc,o and let
G denote the interval between J\ and JQ. Thus /n l^ is a disjoint
union of «/nifc,i> Gn]k ? and / n ^,o by condition (Pi). It also follows
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from (Pi) that for every Π E / , k e N, Gn^ is a component of
the complement of K.

Notice that these definitions agree with those of G and G n^ found
in §3. Also, put 9 = {G} U {Gn1^: n e ^ ^ G i V } , G° = G and

k

We will say that each Gn l^ has ranfe /:.
Suppose G^k = (a, b). Then a is the right endpoint of the com-

ponent /niA:,io a n d b is the left endpoint of the component Jn-\k, 01
(Note: If aeS, consider α as both a right and left endpoint.)

lfn]kφl]k, then Cases 3 and 4 above show that f(a) is the
right endpoint of JA(ή\k, iθ) = «̂ 4(n)i&, 10 a n d /(ft) is the left endpoint
of J^(niik,oi) = ^(n)i*,oi - Therefore, / is increasing on Gn]k and

(a) f(GΏ]k) = GA(n)]k

On the other hand if n } k = 1 1 k Cases 3 and 4 again show that
/(ft) is the left endpoint of /oifc,i a n d f(a) is the right endpoint of
•Joifc.oio Hence / is decreasing on G^ and

In particular, / ( G ^ ) contains intervals of arbitrarily high rank but
none with rank lower than k.

Finally it is easy to see that / is decreasing on G with slope < — 1
and f{G)^G.

Moreover, similar arguments to those above show that when n ]
k φ\\k the endpoints of Jn^ map onto the endpoints of JA(n)]k
I t f o l l o w s t h a t w h e n n]kφl]k, f(Jn]k) = JA(n)]k, -

If [0, a] = J1]k, then /(0) = 1 e / o ^,o and f{J1]k,o) = Λ>1̂ ,1
The interval Jx^ is the union of J\ and all the sets Jn]m and Gn]m

where m > k and Λ, = 1 for all i < k. However, by (a) and (β)
and the above relations each of these sets is mapped into J^. It
follows that f{J\\k) = Jθ]k Therefore, for all n, j , k and /

and in general

f(Jn]k) = JAι(n)]k

Now fix k e N. The calculations above show that / is linear on
each of the intervals Gn^ and that / Z (G O JA:) = G^(o ^ ) for 7 < 2k

while / 2 (Gtyfc) contains G o ^ properly. Thus / 2 is linear on G o ^
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with slope λ > 1. It follows that / has a periodic point pk of period
2k in Gm.

Let x φ pk and x e GQ]k . Then \f2\x) - f2\pk)\ = λ\x - pk\ >
\x — pk\ = \χ — f2 (pk)\. Thus f2 (x) Φ x . This shows that pk is the
only periodic point of order 2k in G^k. Since fJ(G^k) is disjoint
form G^k for j < 2k, pk is in fact //*£ only periodic point of any
period in G^k . Moreover it is easily seen that there is only one fixed
point po in G. Since it is clear that / has no periodic points in K,
this means that / is a 2°°-function.

Now put Ω = Q = S. Then it is easily seen that f is a simple
system for Q relative to the 2°° -function / by verifying conditions
(a) through (d) of §3.

Let En be the set of points which are eventually periodic of order
2n . Then En = (J~= 1 f~

m(pn) From (a) and (β) it follows that if
M e & and m e N then f~~m(M) is the union of countably many
open intervals each contained in some member of S?. Moreover,
upon each of these intervals, fm is linear and non-constant. Now
suppose En were uncountable. Then some f~m(pn) is uncountable
and there exists an interval T such that fm ] T is linear and T Π
f~m(Pn) is uncountable. This implies fm is constant somewhere, a
contradiction. Therefore En is countable. We also remark that En is
a Gs set because it can be represented as

OO (X) OO

£ » = n Π \j{X-\fk{x)-Pn\<\lJ}.
7=1 w=l &=m

Hence, En is nowhere dense in each perfect set by the Baire Category
Theorem.

Now put E = U£Li En . Then the set E of eventually periodic points
is countable From 3.1 we know that each member of %? hits E and
EΠK = 0.

Moreover, since the derivative of f2 on G^k is Λ, and λ > 1 the
point p£ is a repelling periodic point for k > 1. In addition it is
easily verified that po is repelling. Hence, any asymptotically periodic
point is eventually periodic. That is, if l im/.^ p+il (x) = pk then
fm(x) = /?£ for some m. By 3.1, part 12, we know for each x,
ω(x, /) = Q or ω(x, /) c |J^= 0 G

7 for some k. In the latter casd.
ω(x, /) must be a cycle. Therefore it follows that for each x either
co(x, /) = Q or x is eventually periodic.

Now apply Lemmas 3.4 and 3.5 to E and its complement to obtain
that E is bilaterally dense-in-itself.
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Let V be any open subinterval of G^k and put / = f~2 ^

Then / is an open interval which f2 maps linearly onto V. Since

f2" has slope λ > 1 on G^]k the iterates fi2\l), i = 1, 2, 3, . . .

will increase in length with magnification factor λ as long as they

remain inside G^k . Therefore there is a first j such that fj2 (I) is

not inside G^k . Moreover, fj2 (I) is open and intersects K.

If wtK φ 0 , then since WK = K by 3.1(8), / ^ ( Z ) hits i
But since int K n £ = 0 by 3.1(7), />2 (/) contains an interval
missing E. Then F contains an interval W missing E. On the
other hand, if int K = 0 , then /J'2* (/) hits Q and p2* (I) contains
members of & of arbitrarily large rank. Since each of these hit E it
follows that V C\E φz .

Therefore, it follows that if int K Φ 0 , then E is nowhere dense,
and if int K = 0 , then E is everywhere dense.

By Corollary 3.10 and its proof / is chaotic if and only if some
component of int K has both endpoints in Q.

Since the only infinite ω-limit set for / is the Cantor set Q, we
have ωf is Baire 1 by Theorem 3.9 and ωf is not Baire* 1 by Theo-
rem 3.6. Note that ωf is continuous on a dense open set if int K Φ 0 .

We summarize the foregoing results in the following theorem.

THEOREM 4.1. Suppose ^ — {/n^ : n e JV, k e N} is a primitive
system with K = \JneJί f]f=ι Jn]k .

Then K - intK = Q u C where Q is a Cantor set and C is a
countable set disjoint from Q.

Moreover, there exists a 2°°-function f such that

(1) </ is a simple system for Q relative to f.
(2) For each k, f has a single periodic orbit of order 2k .
(3) For each x, either x is eventually periodic or ω(x, f) = Q.
(4) The set E of eventually periodic points is countable and bilat-

erally dense-in-itself Also E is everywhere dense in [0,1] whenever
int K — 0 and E is nowhere dense if intK Φ 0.

(5) / is chaotic if and only if some component of int K has both
end points in Q.

(6) ωf is Baire 1 but not Baire* 1 and ωf is continuous on a dense
open set if intK Φ 0.

Now we would like to apply the foregoing construction to several
examples which illustrate various possibilities. We can either explic-
itly specify the primitive system (in which case the details may be
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cumbersome) or we can indirectly obtain the primitive system by
specifying the sequences in Jί corresponding to the set of single-
ton components of K. Theorem 4.2 below indicates that there is an
abundance of such correspondences possible.

THEOREM 4.2. Suppose S? c Jf such that (1) Jf -S? is countable
and (2) A(^)QS^.

Then there exists a primitive system {Jn^k : n e yy, k e N} such
that n e y if and only if Jn is a singleton.

Moreover, the function f given by Theorem 4.1 is non-chaotic if and
only if n is eventually constant for all n £ S?.

Proof. Case 1. JV = S?. Let Γ by the Cantor set in [0,1] and
{Bm}™={ be an enumeration of the components of [0, 1]-Γ. Suppose
B\ = (a, b). Put J\ = [0, a] and JQ = [b, 1]. Having chosen Jn^k

for k < ra, consider a fixed /nim = [c9 d]. Let Bj = (a, b) be
the first member of {Bn}

(^)_ι inside Jn]m- ? u t Λim,i = [c> a\ a n d
Λi/w,o = [b9 d]. It is easily checked that {/n^ -.neJ^ykeN} is a
primitive system.

Gore 2. Jf Φ S*. In this case we see from (2) that Jf — S? is
countably infinite. There is a homeomorphism h from «ŷ  (consid-
ered as {0, 1}^ with the product topology), onto the Cantor set Γ
such that A(l) = 0 and Λ(0) = 1. Let {^}£li be an enumeration of
Jf -<¥. Let X = [0, 1 ] U U * 1 I W * > * ) } X [ 0 , 2 - * ] . Thus X consists
of the unit interval together with vertical segments of length 2~k over
h(υk). We shall define the required primitive system in such a way
that these vertical segments "transform" into component intervals of
int K.

For each k, let xk = h(vk). For (x, y) e X, let g(.x, >>) = x +
y + Σx <x 2~k Then g maps X onto [0, 2] in an order-preserving
manner when X is furnished with the lexicographic order.

Now let (ak ,bk) be a component interval of [0, 1] - Γ. Let

0 otherwise,
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Let Bk = (γk , βk).
Carrying out the inductive construction in Case 1 with the present

intervals B^, we arrive at a system { / n ^ : n G / , l ί E J V } that sat-
isfies condition (Pi). It is easy to check that Jn is a singleton if and
only if n G ^ . Since A(S*) c S?, condition (P2) is also satisfied.

Finally we recall from Theorem 4.1, part 5, that / is nonchaotic
if and only if each nondegenerate component of K has an endpoint
in C. In our present setting such a component corresponds to an
n which is eventually constant. By taking specific subsets 5? of JV
and applying Theorems 4.1 and 4.2 we find both chaotic and non-
chaotic 2°°-functions for which a>f is Baire 1 (and for which the other
conclusions of Theorem 4.1 are also valid). The following table of
examples illustrates this.

S consists of
1 all n

2 all n with no
"01" tail

3 all n such that
nt = 0 for
infinitely many i

all n not even-
tually constant

/ is special features
non-chaotic (1) C = 0

chaotic (1) no left or right tails
(2) C = 0

non-chaotic (1) no right tails
(2) C consists of the left ends

of components of K
(3) each Jn eventually maps

onto a singleton

non-chaotic (1)

(2)

C consists of all left ends
of left tails and all right
ends of right tails
each non-degenerate Jn

eventually maps onto a right tail

By a left tail (resp. right tail) we mean any non-degenerate compo-
nent Jn such that n is eventually 1 (resp. 0) or equivalently the left
end (resp. right) point of Jn abuts the complement of K.

Theorem 4.1 is not a full reversal of our construction of a simple
system in the sense that the ω-limit set Ω of Proposition 3.1 can have
isolated points whereas the unique infinite ω-limit set Q of Theorem
4.1 is a Cantor set. For a full reversal we would have to first know
what are the possible infinite ω-limit sets for (chaotic) 2°° functions.
This is presently unknown. However as a sufficient condition we know
from parts 9 and 10 of 3.1 that the set of isolated points of any infinite
ω-limit set, if non-void, is dense in Q and intersects each interval
contiguous to Q in at most two points.
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However, Kirchheim [Ki] has recently provided an example of a
2°°-function with an infinite ω-limit set having isolated points and
mentioned that certain previously alleged examples were not com-
pletely correct.

We will now give another example of a 2°°-function with an infinite
ω-limit set with isolated points using the methods of §§3 and 4. This
construction is radically different from Kirchheim's. It involves a sys-
tem {Fn^k -.neyy.keN} which differs from a primitive system in
that part (13) of Proposition 3.1 is taken in account.

THEOREM 4.3. There exists a 2°°-function having an ω-limit set of
the form Qu C where Q is a Cantor set in (0,1) and C consists
of one point taken from each component of [0, sup Q] - Q and C n
(supβ, 1] = 0 . Moreover, f has exactly one 2k-cycle for each K.

Proof. Let Q be any Cantor set in (0,1) and C consist of exactly
one point from each interval continuous to Q together with the point
2 inf Q. Let Jt consist of all n e / having a tail of Γs.

Similar to previous constructions we may define by induction a sys-
tem & of closed intervals {Fn^k -.ne^^keN} such that for each
n and k, Fn^k x and Fn^k0 are disjoint subintervals of int Fn^k for
which the non-degenerate components of K = \Jnejr Γ\h=ι Fn]k coin-
cide with all Fn = Γ\h=ι Fn]k with n G ̂  which in turn coincides
with all [c, q] where c e C and q is the nearest point of Q to the
right of c. Moreover, we may choose F\ and FQ SO that 0 = inf F\
and 1 = sup FQ .

For each n e / and k e N let Fn^k = [an^k, bn^k]. If n e ^ # ,
then f)h=dan]k> bn^k] = [αn, #n] where an and bn are the endpoints
of Fn. Then C consists of all an for n e / .

Let S consist of all x such that {x} = Fn for some n e Jf.
Clearly ~S = Q. Let B consist of all bn for n e J^. Then Q =
S\JB. Obviously F^n) is a singleton whenever Fn is a singleton. Let

We will now define a function / on L as follows:
If x e S, define f(x) so that {/(*)} = FA{n) when {x} = Fn.

On C U B define / by

f{a*) = aA{n) and f(bn) = bA{n).

Finally define / on the remaining points of L when n 1 k Φ 11 k by

/fail*) = aA(n)]k a n d
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and

f{βv\k) = aθ]k+i and f(b1]k) =

Note that f(ai) = a0 = supQ = ft0 = /(fti). The following is easily
verified; whenever j > k + 2

(1) f(an]k) < f(an]j) < f(bn]j) < f(bn]k).

We remark that k + 2 cannot be replaced by k + 1. Then / is
continuous on L. To show this it suffices to show continuity at each
point of C, B and S since the other points of L are isolated. We
will carry out the proof of continuity only at a\ and b\. The general
proof will be essentially the same.

To show that / is continuous at a\, let U be a neighborhood of
f(a\) = a© = s u p β . There exists k e N such that F^k c U. Let
v = (ai]k+i > b) where b e (a\, b\). Then V n L = {aΐυ : j >
k + 1} U {αi}, and f(Vnl) = {flou+i : 7 > fc + 1} U {α0} c t/. Thus
/ is continuous at a\.

To show that / is continuous at b\, let U be a neighborhood of
f(b\) — όo = ao = supQ. Choose k e N such that F Q ^ C £/. Let
F = (ft, fti<|fc+i), ft G (αi, fti). The set F n L consists of end points of
intervals in & contained in F^k+X and limits of sequences of these
end points. It follows from our observation (1) that if x e V Π L,
then %|£ < /(x) < ft01^ so f(x) e F^k c U. Thus / is continuous
at by.

We now extend / linearly on the intervals contiguous to the closed
set L obtaining a function also denoted by / that is continuous on
all of [0,1].

It is clear from our definition of / that orb a^ = {an^k : n e ^ , k e
N} so that ω ( α o , / ) = Q u C .

We now proceed to show the required periodic behaviour.
Let G be the open interval between F\ and Fo and Gn^k to be the

open interval between 1^,1 and Fn^ky0. Hence

G = (fti, a0)

Gn]k = (bn]k,l > an]k,θ)

Put G° = G, Gk = {J{Gn]k:neyT} and Fk =
It is easily verified that
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f(Gn]k) = GA(n)]k

G c f(G) = (a,, boo)

Q f(Gi]k) =

From this, it follows that / 2 is linear on G o ^ and has slope greater
than 1. Hence we have the same situation as we had in the construc-
tion of Theorem 4.1 so that G contains exactly one periodic point
Po, which is a repelling fixed point and each Gn^k contains exactly
one periodic point which is repelling and has order 2k . As before any
asymptotically periodic point must be eventually periodic. We may
also verify that

= FA{n)]k iίn\kφl\k

f{F\\k) = [βoi*,i > bO]k,o] = conv[F0]kΛuF0]k+ι], which is a proper
subset of F^k.

It then follows that f(Fn^k) contains no Fm^k or Gmy where j < k
and f(Gn^k) contains no Fm^k or Gm]j for j < k. From the above
facts we may establish that when k is fixed, for each i there exists
rrii such that

(2) f{Fι]k)CF

and such that ra; —• 00 when / —> 00.

Now consider any x. If orb x hits Fk , then clearly ω(x, /) C Fk .
Hence, if orb x hits each Fk , then ω(x, /) c ΠΓ=i Fk=K-

Suppose then that orb x misses some Fk and that ω(x, f) £ K.
Let m be the first k such that Fk n orb x = 0. If m = 1, then
orbx C G. If m > 1, then orbx n F m - 1 ^ 0 . By (2) either orb x
hits each FJ or orb x c \Jιj=0 G

j for some /. In the former case we
have ω(x, /) c K, a contradiction. Therefore, there is an / such that

jj
Then ω(x, /) c (Jy=o GJ, and it follows that ω(x, /) is a cycle

of order 2k with k < i. Therefore, we have shown that for each x
either ω(x, /) is a 2k-cycle for some k or ω(x, /) c K. Since AT
clearly has no cycles / must be a 2°°-function.

We end with several remarks.
(1) Let X = {i/n1fc : n e yf, k e N} be the family of intervals

contiguous to K coded so that Gn^k C Hn^k for all n and k. In our
two constructions of this section, those of Theorems 4.1 and 4.3, we
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saw that if x e Gn^k, then orb x Π Gm^j = 0 for all m e JV and
j < k. The families 9 and %* coincided in the first construction
but not in the second.

For members of %? transportation between a set Hn^k e %? to a
set of lower rank is possible because of the "wings" created by the
requirement that each Fn^k+i is interior to Fn^k . For example, auoe
H\\ but /(ΛHO) = #ooi € #o This transportation from a point in
one rank relative to %? to one of lower rank is obviously necessary
for there to be isolated points in an infinite ω-limit set.

(2) It was notationally convenient in our second construction (i.e.,
Theorem 4.3) to have -Fnifc+i ^ xv& ^n\k but it was necessary only that
Fn]k,\ be in the interior for us to draw the same conclusions about
/ . A disadvantage of the method we actually chose is that the sets do
not quite form a simple system for Ω = Q U C relative to / . What
fails is that f(F^k) is properly contained in F^k. It is very easy,
however, to obtain a simple system β. One simply has the right
end point rn^k of Jn^k coincide with the right end point of Fn^k 0,
i e > rn]k = n̂iA:,o More specifically J\ = [an, b\$] and in general
J\]k = [a\]k+\ 9 ̂ liA o] Then Jn^k is defined as usual via the function
A. The verification that f = {Jn]k : n e J^ 9 k € N} is a simple
system for Ω relative to / is straightforward. We mention only that
the fact that f2 (J^k) = J\\k follows from the observations that the
end points of J^k are the images under f2 of a^k^ and b\ that

is f2k(a1]kί0) = a1]k+ι and f2\b1) = bιk^.
(3) Since each of the members in %? contains exactly one periodic

point, no isolated point of Ω is in the closure of the set of periodic
points. In addition, the isolated point a§ of Ω has an orbit which
includes all the isolated points. Similar statements are true for the
example of [KJ. We have not seen an example of a 2°°-function
having an infinite ω-limit set with isolated points not exhibiting these
features.

(4) The lemmas in §3 that deal with intertwining sets provide addi-
tional information about the distribution of points attracted to given
ω-limit sets. In the notation of those lemmas, each pair selected from
the sets Q*, Ω* and E (the eventually periodic points) is intertwined.
Thus each of these sets is bilaterally dense-in-itself . One can also ver-
ify easily that the set Q* contains a dense open set.

One can show as in Theorem 4.1 that E is countable. Consider
now the set Ω*. Let c be an isolated point of Ω and let x e [0, 1].
It is clear that c eω(x, /) if and only if ω(x, /) = Ω. But
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oo oo
r-k c — c

a Gδ set. Thus Ω* is a Gδ set. (This also follows from [Sh 2]). Since
Ω* is dense-in-itself Ω* is uncountable.

The set Q* cannot be a Gδ set as we saw in §3. Since Q* = [0, 1] —
[ £ u Ω * ) , Q* is both an FσS and Gδσ. We have not determined
whether (2* is an Fσ set.
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