ASYMPTOTIC BEHAVIOR OF EIGENVALUES FOR A CLASS OF PSEUDODIFFERENTIAL OPERATORS ON **R**ⁿ

JUNICHI ARAMAKI

We consider a pseudodifferential operator P whose symbol has an asymptotic expansion by quasi homogeneous symbols and the principal symbol is degenerate on a submanifold. Under appropriate conditions, P has the discrete spectrum. Then we can get the asymptotic behavior of the counting function of eigenvalues of P with remainder estimate according to various cases.

0. Introduction. We consider the asymptotic behavior of eigenvalues for a class of pseudodifferential operators on \mathbb{R}^n containing the Schrödinger operator with magnetic field:

(0.1)
$$p^w(x, D) = H(a) + V(x)$$

= $\sum_{j=1}^n \left(\frac{1}{i}\frac{\partial}{\partial x_j} - a_j(x)\right)^2 + V(x)$ $(i = \sqrt{-1}).$

Throughout this paper we assume that the magnetic potential a(x) satisfies:

$$a(x) = (a_1(x), a_2(x), \dots, a_n(x)) \in C^{\infty}(\mathbb{R}^n; \mathbb{R}^n)$$

and the scalar potential V(x) satisfies $V(x) \in C^{\infty}(\mathbb{R}^n; \mathbb{R})$. We regard $p^w(x, D)$ as a linear operator in $L^2(\mathbb{R}^n)$ with domain $C_0^{\infty}(\mathbb{R}^n)$. Under appropriate conditions, we shall see that $p^w(x, D)$ is essentially self-adjoint in $L^2(\mathbb{R}^n)$ and its self-adjoint extension P is semibounded from below and has a compact resolvent in $L^2(\mathbb{R}^n)$. Therefore the spectrum $\sigma(P)$ of P is discrete, that is, $\sigma(P)$ consists only of eigenvalues of finite multiplicity. Thus we can denote the eigenvalues with repetition according to multiplicity by: $\lambda_1 \leq \lambda_2 \leq \cdots$, $\lim_{k\to\infty} \lambda_k = \infty$. We consult the asymptotic behavior of the counting function $N_P(\lambda)$ of eigenvalues:

(0.2)
$$N_P(\lambda) = \#\{j; \lambda_j \le \lambda\}.$$

In the special case a(x) = 0, i.e., $p^w(x, D)$ is of the form:

$$(0.3) pw(x, D) = -\Delta + V(x),$$

JUNICHI ARAMAKI

if V(x) satisfies $\lim_{|x|\to\infty} V(x) = \infty$, then it is well known that

(0.4)
$$N_P(\lambda) = (2\pi)^{-n} \operatorname{Vol}[(x, \xi); |\xi|^2 + V(x) < \lambda](1 + o(1))$$

as $\lambda \to \infty$. In particular, Helffer and Robert [8] have obtained the asymptotic formula of $N_P(\lambda)$ for a class of quasi elliptic pseudodifferential operators containing the anharmonic oscillator: $V(x) = a|x|^{2k}$ in (0.3) (a real > 0, k integer ≥ 2). They have found not only the first term but also the following several terms of $N_P(\lambda)$. Aramaki [3] extended the result to the case containing the operator of the form, for example, $V(x) = x_1^2 + x_2^4 + ax_2^3$ (a real > 0) in \mathbb{R}^2 .

For general a(x) and n = 3, under the condition in (0.3), Combes-Schrader-Seiler [5] had the result

(0.5)
$$N_P(\lambda) = M(\lambda)(1 + o(1))$$
 as $\lambda \to \infty$

where

$$M(\lambda) = (2\pi)^{-3} \operatorname{Vol}\left[\left\{ (x, \xi); \sum_{j=1}^{3} (\xi_j - a_j(x))^2 + V(x) < \lambda \right\} \right].$$

In this paper we shall consider a class of pseudodifferential operator $p^w(x, D)$ of the form (0.1) containing the case, for example,

(0.6)
$$a(x) = (bx_3^{k+1}, 0, 0), \quad V(x) = (x_1^2 + x_2^2)^l + ax_3^{k+1}$$

(a real > 0, b real, l positive integer and k odd integer). For such an operator, we seek the asymptotic behavior of $N_P(\lambda)$ of more precise form than (0.5):

(0.7)
$$N_P(\lambda) = M(\lambda)(1 + O(\lambda^{-\delta}))$$

as $\lambda \to \infty$ for some $\delta > 0$. Thus we consider a pseudodifferential operator $p^w(x, D)$ of order *m* with Weyl symbol $p(x, \xi)$ which has an asymptotic expansion by the quasi homogeneous functions:

$$p(x,\xi) \sim \sum_{j=0}^{\infty} p_{m-jT/2}(x,\xi).$$

Such operators are treated by [3] in which he considered the case where $p^w(x, D)$ is quasi elliptic, i.e., $p_m(x, \xi) \neq 0$ for $(x, \xi) \neq 0$. In the present paper, we treat the case where $p_m(x, \xi)$ is degenerate on some closed submanifold in \mathbb{R}^{2n} . Under a suitable hypoelliptic condition, we shall get the asymptotic formula similar to (0.7).

The plan of this paper is as follows. In $\S1$, we give the precise definition of the operators mentioned as above and give some hypotheses.

In §2, we construct the parametrices of $P - \zeta I$ for some $\zeta \in \mathbb{C}$ where I denotes the identity operator in $L^2(\mathbb{R}^n)$. Section 3 is devoted to the construction of complex powers P^z ($z \in \mathbb{C}$) of P. If the real part Re z of z is negative and sufficiently small, P^z is of trace class and the trace $\operatorname{Tr}[P^z]$ has a meromorphic extension $Z_P(z)$ to \mathbb{C} . Thus §4 is devoted to the study of the singularity of $Z_P(z)$. In §5 we examine asymptotic behavior of eigenvalues with the remainder using the technique of Aramaki [4]. Finally §6 gives an example which illustrates our theory.

1. Definitions of operators and some hypotheses. In this section we introduce some classes of pseudodifferential operators on \mathbf{R}^n and give our hypotheses.

Throughout this paper, fix a multi-index $(h, k) = (h_1, h_2, ..., h_n, k_1, k_2, ..., k_n)$ such that $h_j, k_j \ge 1, h_j+k_j > T$ for j = 1, 2, ..., n and put

T = the least common multiple of $\{h_1, h_2, \ldots, h_n, k_1, k_2, \ldots, k_n\}$,

$$r(x, \xi) = \left[\sum_{j=1}^{n} \{|x_j|^{2T/h_j} + |\xi_j|^{2T/k_j}\}\right]^{1/(2T)}$$

for $(x, \xi) = (x_1, x_2, ..., x_n, \xi_1, \xi_2, ..., \xi_n) \in \mathbb{R}^{2n}$. Then we consider a symbol $p(x, \xi) \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ satisfying:

(1.1) There exists a sequence of functions $\{p_{m-jT/2}(x, \xi)\}_{j=0,1,...}$ where $p_{m-jT/2}(x, \xi)$ are C^{∞} functions in $\mathbb{R}^{2n}\setminus 0$ and quasi homogeneous of degree m - jT/2 of type (h, k) such that

$$p(x, \xi) \sim \sum_{j=0}^{\infty} p_{m-jT/2}(x, \xi).$$

Here the quasi homogeneity of $p_{m-jT/2}$ of degree m - jT/2 of type (h, k) means that:

$$p_{m-jT/2}(\lambda^h \cdot x, \lambda^k \cdot \xi) = \lambda^{j-mT/2} p_{m-jT/2}(x, \xi)$$

for all $\lambda > 0$ and $(x, \xi) \in \mathbb{R}^{2n} \setminus 0$ where

$$\lambda^h \cdot x = (\lambda^{h_1} x_1, \ldots, \lambda^{h_n} x_n)$$
 and $\lambda^k \cdot \xi = (\lambda^{k_1} \xi_1, \ldots, \lambda^{k_n} \xi_n).$

Then the meaning of the asymptotic sum in (1.1) is as follows: For any integer $N \ge 1$ and multi-indices α , β , there exists a constant

 $C_{\alpha\beta N} > 0$ such that

$$\left| D_{x}^{\alpha} D_{\xi}^{\beta} \left[p(x,\xi) - \sum_{j=0}^{N-1} p_{m-jT/2}(x,\xi) \right] \right| \\ \leq C_{\alpha\beta N} r(x,\xi)^{m-(NT/2) - \langle \alpha,h \rangle - \langle \beta,k \rangle}$$

for all $(x, \xi) \in \mathbf{R}^{2n}$ such that $r(x, \xi) \ge 1$ where $\langle \alpha, h \rangle = \sum_{i=1}^{n} \alpha_i h_i$ for multi-indices $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$ and $h = (h_1, h_2, \dots, h_n)$ as above (cf. Robert [9]).

Next we define a pseudodifferential operator P with the Weyl symbol $p(x, \xi)$ as above:

(1.2)
$$p^{w}(x, D)u(x) = (2\pi)^{-n} \int \int e^{i(x-y)\cdot\xi} p\left(\frac{x+y}{2}, \xi\right) u(y) dy d\xi,$$

for all $u \in S(\mathbf{R}^n)$ which denotes the totality of rapidly decreasing C^{∞} functions and $x \cdot \xi = \sum_{j=1}^{n} x_j \xi_j$. Our first assumption is:

(H.1) $p(x, \xi)$ is a real valued function on \mathbb{R}^{2n} .

Then it is well known that the operator $p^w(x, D)$ defined by (1.2) is formally self-adjoint, i.e., for all $u, v \in S(\mathbb{R}^n)$,

$$(p^w(x, D)u, v) = (u, p^w(x, D)v)$$

where (u, v) denotes the usual inner product of u and v in $L^2(\mathbb{R}^n)$.

Now we shall consider the operator $p^w(x, D)$ whose principal symbol $p_m(x, \xi)$ is non-negative and degenerate on some submanifold in $\mathbb{R}^{2n}\setminus 0$. In order to do so, let Σ_1 and Σ_2 be smooth closed quasi conic submanifolds of codimension d_1 and d_2 in $\mathbb{R}^{2n}\setminus 0$ respectively such that $d_1 + d_2 < 2n$. Here quasi conicity of Σ_i means that $(x, \xi) \in \Sigma_i$ implies $(\lambda^h \cdot x, \lambda^k \cdot \xi) \in \Sigma_i$ for any $\lambda > 0$.

The second assumption is:

(H.2) Σ_1 and Σ_2 intersect transversally. That is to say, $\Sigma \equiv \Sigma_1 \cap$ Σ_2 is a closed quasi conic submanifold such that for every $\rho \in \Sigma$, the tangent space $T_{\rho}\Sigma$ of Σ at ρ is the intersection of $T_{\rho}\Sigma_i$ (i =1, 2): $T_{\rho}\Sigma = T_{\rho}\Sigma_1 \cap T_{\rho}\Sigma_2$.

Then the normal space $N_{\rho}\Sigma$ of Σ at ρ is identified with the direct sum of $N_{\rho}\Sigma_i$ (i = 1, 2): $N_{\rho}\Sigma \equiv T_{\rho}\mathbf{R}^{2n}/T_{\rho}\Sigma = N_{\rho}\Sigma_1 \oplus N_{\rho}\Sigma_2$ (direct sum).

DEFINITION 1.1. Let *m* be a positive number, *l* positive integer and *M* non-negative integer. Then the space $\widetilde{S}_{(h,k;l)}^{m,M}$ is the set of all symbols $p(x, \xi)$ having an asymptotic expansion of type (1.1) and satisfying the following (1.3) and (1.4):

(1.3)
$$\Sigma = \{(x, \xi) \in \mathbf{R}^{2n} \setminus 0; p_m(x, \xi) = 0\}.$$

There exists a constant C > 0 such that

(1.4)
$$\frac{|p_{m-jT/2}(x,\xi)|}{r(x,\xi)^{m-jT/2}} \le Cd_{\Sigma}(x,\xi)^{M-j}$$

for j = 0, 1, ..., M where

$$d_{\Sigma_i}(x,\xi) = \inf \left\{ \left[\sum_{j=1}^n \left(\left(\frac{x_j}{r(x,\xi)^{h_j}} - y_j \right)^2 + \left(\frac{\xi_j}{r(x,\xi)^{k_j}} - \eta_j \right)^2 \right) \right]^{1/2}; (y,\eta) \in \Sigma_i \right\},$$

i = 1, 2 and

$$d_{\Sigma} = \{ d_{\Sigma_1}(x, \xi)^2 + d_{\Sigma_2}(x, \xi)^{2l} \}^{1/2}.$$

We assume the following regular degeneracy of the principal symbol:

(H.3) There exists a constant C > 0 such that

$$p_m(x,\xi) \ge Cr(x,\xi)^m d_{\Sigma}(x,\xi)^M$$

Now for every $\rho \in \Sigma$ and j = 0, 1, ..., M, we can define multilinear forms $\check{p}_{m-jT/2}(\rho)$ on $N_{\rho}\Sigma$ which may be identified with $\mathbf{R}^{d_1} \times \mathbf{R}^{d_2}$: For $X_1, ..., X_{M-j} \in N_{\rho}\Sigma$,

$$\check{p}_{m-jT/2}(\rho)(X_1,\ldots,X_{M-j}) = \frac{1}{(M-j)!}(\widetilde{X}_1\cdots\widetilde{X}_{M-j}p_{m-jT/2})(\rho)$$

where \widetilde{X}_j is a vector field extending X_j to a neighborhood of ρ . Then it is clear from (1.4) that $\check{p}_{m-jT/2}(\rho)$ is independent of the choice of extension \widetilde{X}_j of X_j . Furthermore we define

$$\tilde{p}_{m-jT/2}(\rho, X) = \check{p}_{m-jT/2}(\rho)(X, \dots, X).$$

If we write $X = (X_1, X_2) \in N_\rho \Sigma = N_\rho \Sigma_1 \oplus N_\rho \Sigma_2$, then it follows from (1.4) that

$$\tilde{p}_{m-jT/2}(\rho, X) = \sum_{|\alpha_1| + |\alpha_2|/l = M-j} \frac{1}{\alpha_1! \alpha_2!} (\tilde{X}_1^{\alpha_1} \tilde{X}_2^{\alpha_2} p_{m-jT/2})(\rho).$$

Thus we define a form $\tilde{p}(\rho, X)$ on $N_{\rho}\Sigma$ and the set Γ_{ρ} $(\rho \in \Sigma)$ as follows:

$$\begin{split} \tilde{p}(\rho, X) &= \sum_{j=0}^{M} \tilde{p}_{m-jT/2}(\rho, X), \\ \Gamma_{\rho} &= \{ \tilde{p}(\rho, X); \, X \in N_{\rho} \Sigma \}. \end{split}$$

If we note that $\tilde{p}(\lambda \rho, X) = \lambda^{m-MT/2} \tilde{p}(\rho, \lambda^{T/2}X_1, \lambda^{T/(2l)}X_2)$ for $\lambda > 0$, we see that $\Gamma_{\lambda\rho} = \lambda^{m-MT/2} \Gamma_{\rho}$ (cf. Helffer [6]).

Moreover we assume the following:

(H.4) For all $\rho \in \Sigma$, Γ_{ρ} does not meet the origin, i.e., $\Gamma_{\rho} \cap \{0\} = \emptyset$.

(H.5) m > MT/2.

Under the above hypotheses $(H.1) \sim (H.4)$, $p^w(x, D)$ is hypoelliptic with loss of MT/2 derivatives. Therefore if we define an operator P_0 on $L^2(\mathbb{R}^n)$ with definition domain $D(P_0) = S(\mathbb{R}^n)$ so that $P_0 u = p^w(x, D)u$ for $u \in D(P_0)$, then P_0 is essentially self-adjoint. If we also assume (H.5) in addition to $(H.1) \sim (H.4)$, then the closure P of P_0 has a compact resolvent and the spectrum consisting only of eigenvalues of finite multiplicity. Here we note that the definition domain of P is $D(P) = \{u \in L^2(\mathbb{R}^n); p^w(x, D)u \in L^2(\mathbb{R}^n)\}$. Moreover by (H.3), P is semi-bounded from below, i.e., there exists a real number C such that for all $u \in D(P)$, $((P + C)u, u) \ge 0$. Let $\lambda_1 \le \lambda_2 \le \cdots$, $\lim_{k\to\infty} \lambda_k = \infty$, be the sequence of eigenvalues with repetition according to multiplicity and $N_P(\lambda)$ be the counting function of eigenvalues as in the introduction.

Finally, in our arguments, we may assume:

(H.6) *P* is positively definite, i.e., $\lambda_1 > 0$.

Now let $\rho \in \Sigma$. Then we can choose a local coordinate system $w = (u_1, u_2, v, r)$ in a quasi conic neighborhood W of ρ where $u_1 = (u_{11}, \ldots, u_{1d_1}), u_2 = (u_{21}, \ldots, u_{2d_2}), v = (v_1, \ldots, v_{2n-d_1-d_2-1})$ such that u_{ij} $(i = 1, \ldots, d_i, i = 1, 2)$ and v_k $(k = 1, \ldots, 2n - d_1 - d_2 - 1)$ are quasi homogeneous functions of degree 0 with du_{ij}, dv_k being linearly independent and $\Sigma_i = \{u_{i1} = \cdots = u_{id_i} = 0\}$ (i = 1, 2).

Then we must define a micro-local symbol class containing $\widetilde{S}_{(h,k;l)}^{m,M}$.

DEFINITION 1.2. Let $m, M \in \mathbb{R}, W, w$ be as above. Then the space $S^{m,M}_{(h,k;l)}(W, \Sigma)$ is the set of all $a(w) \in C^{\infty}(W)$ satisfying: For

24

any integer $p \ge 0$ and multi-indices $(\alpha_1, \alpha_2, \beta)$, there exists a constant C > 0 such that

$$\left| \left(\frac{\partial}{\partial u_1} \right)^{\alpha_1} \left(\frac{\partial}{\partial u_2} \right)^{\alpha_2} \left(\frac{\partial}{\partial v} \right)^{\beta} \left(\frac{\partial}{\partial r} \right)^{p} a(w) \right| \leq C r^{m-p} \rho_{\Sigma}^{M-|\alpha_1|-|\alpha_2|/l}$$

where $\rho_{\Sigma} = (d_{\Sigma}^2 + r^{-T})^{1/2}$. Note that the symbol class is the Fréchet space with the usual semi-norms.

The following five propositions follow from routine considerations and so we omit the proofs (cf. Aramaki [2], [3] and Helffer-Nourrigat [7]).

PROPOSITION 1.3. Let X be a vector field with C^{∞} coefficients which are quasi homogeneous of degree 0 on $T^*\mathbf{R}^n$. Then we have:

(i) X is a continuous linear mapping from $S^{m,M}_{(h,k;l)}(W,\Sigma)$ to $S^{m,M-1}_{(h,k;l)}(W,\Sigma).$

(ii) If X is tangent to Σ_1 , then X is a continuous linear mapping

from $S_{(h,k;l)}^{m,M}(W, \Sigma)$ to $S_{(h,k;l)}^{m,M-1/l}(W, \Sigma)$. (iii) If X is tangent to Σ_1 and Σ_2 , then X is a continuous linear mapping from $S_{(h,k;l)}^{m,M}(W, \Sigma)$ to $S_{(h,k;l)}^{m,M}(W, \Sigma)$.

PROPOSITION 1.4. We have an inclusion: For any $q \ge 0$,

$$S^{m,M}_{(h,k;l)}(W,\Sigma) \subset S^{m+q/2,M+q/T}_{(h,k;l)}(W,\Sigma).$$

PROPOSITION 1.5. If M is a non-negative integer, then we have

$$\widetilde{S}^{m,M}_{(h,k;l)} \subset S^{m,M}_{(h,k;l)}(\mathbf{R}^{2n},\Sigma).$$

PROPOSITION 1.6. If

$$p_i \in S^{m_i, M_i}_{(h, k; l)}(W, \Sigma)$$

for i = 1, 2, then we have

$$p_1 # p_2 \in S^{m_1 + m_2, M_1 + M_2}_{(h, k; l)}(W, \Sigma)$$

where

(1.5)
$$p_1 \# p_2 \sim \sum_{k=0}^{\infty} 2^{-k} \sum_{|\alpha+\beta|=k} \frac{(-1)^{|\beta|}}{\alpha!\beta!} \partial_{\xi}^{\alpha} D_x^{\beta} p_1 \partial_{\xi}^{\beta} D_x^{\alpha} p_2.$$

JUNICHI ARAMAKI

PROPOSITION 1.7. Assume that $p \in S^{m,M}_{(h,k;l)}(W, \Sigma)$ satisfies $|p| \geq Cr^m \rho_{\Sigma}^M$ in W for a constant C > 0. Then we have

$$p^{-1} \in S^{-m, -M}_{(h, k; l)}(W, \Sigma).$$

2. Construction of parametrices. In this section we shall construct the parametrices of $p^w(x, D) - \zeta I$ for some $\zeta \in \mathbb{C}$. For this purpose, let $\rho \in \Sigma$. As in §1, we can choose a local coordinate system $w = (u_1, u_2, v, r)$ in a quasi conic neighborhood W of ρ where $u_1 = (u_{11}, \ldots, u_{1d_1})$, $u_2 = (u_{21}, \ldots, u_{2d_2})$, $v = (v_1, \ldots, v_{2n-d_1-d_2-1})$ such that u_{ij} $(i = 1, \ldots, d_i, i = 1, 2)$ and v_k $(k = 1, 2, \ldots, 2n - d_1 - d_2 - 1)$ are quasi homogeneous functions of degree 0 with du_{ij} , dv_k being linearly independent and $\Sigma_i = \{u_{i1} = \cdots = u_{id_i} = 0\}$, (i = 1, 2). In order to construct parametrices for $p^w(x, D) - \zeta I$, we must also define a symbol class with a parameter ζ .

DEFINITION 2.1. Let $\rho \in \Sigma$, W be a quasi conic neighborhood of ρ having a local coordinate system (u_1, u_2, v, r) as above and Λ an open set in the complex plane C and $s, t \in \mathbf{R}$. Then the class $S^{s,t}_{(h,k;l)}(W, \Sigma, \Lambda)$ is the set of all C^{∞} functions $a(w, \zeta)$ on $W \times \Lambda$ satisfying the following (i), (ii) and (iii):

(i) For any $\zeta \in \Lambda$,

$$a(w, \zeta) \in S^{s,t}_{(h,k;l)}(W, \Sigma).$$

(ii) For any $w \in W$, $a(w, \zeta)$ is holomorphic in Λ .

(iii) For any $(\alpha_1, \alpha_2, \beta, p)$, there exists a constant $C = C(\alpha_1, \alpha_2, \beta, p) > 0$ (independent of $\zeta \in \Lambda$) such that

$$\begin{aligned} |\zeta| \left| \left(\frac{\partial}{\partial u_1} \right)^{\alpha_1} \left(\frac{\partial}{\partial u_2} \right)^{\alpha_2} \left(\frac{\partial}{\partial v} \right)^{\beta} \left(\frac{\partial}{\partial r} \right)^p a(w, \zeta) \right| \\ &\leq C r^{m+s-p} \rho_{\Sigma}^{M+t-|\alpha_1|-|\alpha_2|/l} \end{aligned}$$

for all $(w, \zeta) \in W \times \Lambda$.

Since (h, k; l) is fixed throughout this paper, we omit the subscript of symbol classes $S_{(h,k;l)}^{m,M}(W, \Sigma)$ and $S_{(h,k;l)}^{s,t}(W, \Sigma, \Lambda)$ and we denote the class of pseudodifferential operators defined by (1.2) with the Weyl symbols with support contained in W in $S^{m,M}(W, \Sigma, \Lambda)$ by $OPS^{m,M}(W, \Sigma, \Lambda)$.

By the Taylor theorem we can write, for $j \leq M$

$$p_{m-jT/2} = \sum_{|\alpha_1|+|\alpha_2|/l=M-j} a_{\alpha_1\alpha_{2j}}(u_1, u_2, v, r)u_1^{\alpha_1}u_2^{\alpha_2}$$

in W and we note that $\rho_{\Sigma}(x, \xi)$ is equivalent to

$$\left\{\sum_{j=1}^{d_1}|u_{1j}|^2+\sum_{j=1}^{d_2}|u_{2j}|^{2l}+r^{-T}\right\}^{1/2}.$$

If we identify $X = (X_1, X_2) \in N_\rho \Sigma = N_\rho \Sigma_1 \oplus N_\rho \Sigma_2$ with (u_1, u_2) and $\rho \in \Sigma$ with (0, 0, v, r), we can write

$$\tilde{p}(\rho, u) = \sum_{j=0}^{M} \sum_{|\alpha_1|+|\alpha_2|/l=M-j} a_{\alpha_1\alpha_2j}(0, 0, v, r) u_1^{\alpha_1} u_2^{\alpha_2}.$$

PROPOSITION 2.2. For every $\rho \in \Sigma$, there exists a quasi conic neighborhood W of ρ having a local coordinate system (u_1, u_2, v, r) as above and $q_i(\zeta) = q_i(\zeta; x, \zeta) \in S^{-m, -M}(W, \Sigma, \Lambda)$, i = 1, 2, where Λ is the union of an open cone in C having the vertex with the origin containing the negative real line and a set $\{\zeta \in C; |\zeta| < \varepsilon\}$ for some $\varepsilon > 0$ such that

(2.1)
$$(p - \zeta) #q_i(\zeta) = 1 + r_i(\zeta)$$

where

$$\begin{aligned} r_1(\zeta) &= r_{11}(\zeta) + r_{12}(\zeta) \quad and \quad r_2(\zeta) = r_{21}(\zeta) + r_{22}(\zeta), \\ r_{11}(\zeta) &\in S^{0,1}(W, \Sigma, \Lambda), \quad r_{21}(\zeta) \in S^{-T/2, -1}(W, \Sigma, \Lambda) \end{aligned}$$

and

$$r_{12}(\zeta), r_{22}(\zeta) \in S^{-T_0/2,0}(W, \Sigma, \Lambda)$$

where $T_0 = Min\{T_1, T\}, T_1 = Min\{h_j + k_j; j = 1, ..., n\} - T$.

Proof. Choose a function $\chi \in C^{\infty}(\mathbb{R}^{2n})$ such that $\chi(x, \xi) = 1$ for $r(x, \xi) \ge 1$ and $\chi(x, \xi) = 0$ for $r(x, \xi) \le 1/2$. First we construct $q_1(\zeta; x, \xi)$. In a quasi conic neighborhood W of $\rho \in \Sigma$, put

$$q_1(\zeta; u_1, u_2, v, r) = \chi(u_1, u_2, v, r)(\tilde{p}(\rho, u) - \zeta)^{-1}.$$

Then we have

$$(p-\zeta)#q_{1}(\zeta) = \chi \left\{ (\tilde{p}-\zeta)#(\tilde{p}-\zeta)^{-1} + \left(p - \sum_{j=0}^{M} p_{m-jT/2}\right) #(\tilde{p}-\zeta)^{-1} + \sum_{j=0}^{M} (p_{m-jT/2} - \tilde{p}_{m-jT/2}) #(\tilde{p}-\zeta)^{-1} \right\} + [p, \chi](\tilde{p}-\zeta)^{-1}$$

where $[p, \chi] = p \# \chi - \chi \# p$. Since $(\tilde{p} - \zeta)^{-1} \in S^{-m, -M}(W, \Sigma, \Lambda)$ we can write

$$\partial_{x_j} = C_{1j} \cdot \partial_{u_1} + C_{2j} \cdot \partial_{u_2} + C_{3j} \cdot \partial_v + C_{4j} \partial_r, \partial_{\xi_j} = D_{1j} \cdot \partial_{u_1} + D_{2j} \cdot \partial_{u_2} + D_{3j} \cdot \partial_v + D_{4j} \partial_r$$

where C_{ij} , D_{ij} (i = 1, 2, 3) are quasi homogeneous of degree $-h_j$, $-k_j$, C_{4j} , D_{4j} are of degree $1 - h_j$, $1 - k_j$ respectively, the formula (1.5) leads to

$$(\tilde{p}-\zeta)#(\tilde{p}-\zeta)^{-1}-1 \in S^{-T_0,0}(W,\Sigma,\Lambda).$$

Since

$$p - \sum_{j=0}^{M} p_{m-jT/2} \in S^{m-(M+1)T/2,0}(W, \Sigma, \Lambda),$$

we have

$$\begin{pmatrix} p - \sum_{j=0}^{M} p_{m-jT/2} \end{pmatrix} \# (\tilde{p} - \zeta)^{-1} \in S^{-(M+1)T/2, -M}(W, \Sigma, \Lambda) \\ \subset S^{-T_0/2, 0}(W, \Sigma, \Lambda).$$

It is easy to see that $[p, \chi](p - \zeta)^{-1} \in S^{-\infty}(W, \Sigma, \Lambda)$. Since for j = 0, 1, ..., M,

$$p_{m-jT/2} - \tilde{p}_{m-jT/2} \in S^{m-jT/2, M-j+1}(W, \Sigma, \Lambda),$$

we have

$$\sum_{j=0}^{M} (p_{m-jT/2} - \tilde{p}_{m-jT/2}) \# (\tilde{p} - \zeta)^{-1} = r_{11}(\zeta) + r_{12}(\zeta)$$

where

(2.2)
$$r_{11}(\zeta) = (p_m - \tilde{p}_m)(\tilde{p} - \zeta)^{-1} \in S^{0,1}(W, \Sigma, \Lambda)$$

and it follows from the formula (1.5) that $r_{12} \in S^{-T_0/2,0}(W, \Sigma, \Lambda)$.

For the case i = 2, we put

$$q_2(\zeta; x, \xi) = (p_m(x, \xi) + r^{m-MT/2} - \zeta)^{-1}.$$

Then by the same arguments as the case i = 1, we also see that (2.1) also holds for i = 2.

Now we shall construct global parametrices of $p^w(x, D) - \zeta I$ ($\zeta \in \Lambda$). In order to do so, let $\rho \in \Sigma$ and W be a quasi conic neighborhood of ρ as in Proposition 2.6. Then choose a function $\varphi(x, \xi) \in$

28

 $C^\infty({\bf R}^{2n})$ which is quasi homogeneous of degree 0 and ${\rm supp}\,\varphi\subset W$ and define

(2.3)
$$q_{10}^{w}(\zeta; x, D) = \varphi^{w}(x, D) \{ q_{1}^{w}(\zeta; x, D) - q_{2}^{w}(\zeta; x, D) r_{1}^{w}(\zeta; x, D) \},$$

(2.4) $q_{20}^w(\zeta; x, D)$ = $\varphi^w(x, D) \{ q_2^w(\zeta; x, D) - q_1^w(\zeta; x, D) r_2^w(\zeta)(x, D) \}.$

Then we have

$$\begin{aligned} (p^w(x, D) - \zeta I) q_{j0}^w(\zeta; x, D) \\ &= \varphi^w(x, D) + d_j^w(\zeta; x, D) \qquad (j = 1, 2) \end{aligned}$$

where

$$d_j^w(\zeta; x, D) \in OPS^{-T_0/2, 0}(W, \Sigma, \Lambda).$$

Moreover, if we define for every j = 1, 2,

$$q_{jl}^{w}(\zeta; x, D) = q_{j0}^{w}(\zeta; x, D)(-d_{j}^{w}(\zeta; x, D))^{l}, \qquad l = 1, 2, \dots,$$

we can find

$$q_j^w(\zeta; x, D) \in OPS^{-m, -M}(W, \Sigma, \Lambda)$$

such that

$$q_{j}^{w}(\zeta; x, D) - \sum_{l=0}^{N-1} q_{jl}^{w}(\zeta; x, D) \in OPS^{-m-NT_{0}/2, -M}(W, \Sigma, \Lambda).$$

Thus we see

$$(p^{w}(x, D) - \zeta I)q_{j}^{w}(\zeta; x, D) \equiv \varphi^{w}(x, D)$$

modulo $OPS^{-\infty}(W, \Sigma, \Lambda) = \bigcap_m OPS^{-m, -M}(W, \Sigma, \Lambda)$. Of course, since $p^w(x, D)$ is elliptic outside Σ , we construct a usual parametrix there and by a partition of unity, we can construct the global parametrix for $p^w(x, D) - \zeta I$.

3. Construction of complex powers. In this section we construct complex powers for $p^w(x, D)$. For this purpose, define an operator P_0 on $L^2(\mathbf{R}^n)$ so that

$$P_0 u = p^w(x, D)u, \qquad u \in D(P_0),$$

where $D(P_0) = S(\mathbb{R}^n)$. Under the hypotheses $(H.1) \sim (H.5)$, P_0 has the closure P whose spectrum is discrete. Moreover, P is bounded

from below, so by (H.6) we may assume that there exists a positive number $\gamma > 0$ such that

$$(Pu, u) \ge \gamma \|u\|_{L^2(\mathbf{R}^n)}^2$$

for all $u \in D(P)$. Then we can define complex powers P^z of P as follows.

(3.1)
$$P^{z} = \frac{-1}{2\pi i} \int_{\Gamma} \zeta^{z} (P - \zeta I)^{-1} d\zeta$$

for Re z < 0. For Re $z \ge 0$, choose a positive integer k such that Re z < k and define $P^z = P^k P^{z-k}$. Here Γ is a curve beginning at infinity, passing along the negative real line to a circle $|\zeta| = \varepsilon_0$ $(0 < \varepsilon_0 < \gamma)$, then clockwise about the circle, and back to the infinity along the negative real line. Note that the definition of P^z $(z \in \mathbb{C})$ is well defined (cf. Shubin [11] and Seeley [10]).

We set Λ as the union of a small open convex cone containing the negative real line and $\{\zeta \in \mathbb{C}; |\zeta| < (\varepsilon_0 + \gamma)/2\}$. Then we define the symbol, for Re z < 0,

(3.2)
$$p_{i,z}(x,\xi) = \frac{-1}{2\pi i} \int_{\Gamma} \zeta^z q_i(\zeta;x,\xi) d\zeta$$
 $(i=1,2)$

and denote the pseudodifferential operator with the Weyl symbol $p_{i,z}(x,\xi)$ by $p_{i,z}^w(x,D)$. If $k-1 \leq \text{Re } z < k$ for some positive integer k, we define $p_{i,z}^w(x,D) = p^w(x,D)^k p_{i,z-k}^w(x,D)$. Then we have

THEOREM 3.1. Assume that $p(x, \xi) \in \widetilde{S}^{m,M}_{(h,k;l)}$ satisfies (H.1) ~ (H.6). Then we have

(i) $P^z \in OPS_{(h,k;l)}^{m \operatorname{Re} z, M \operatorname{Re} z}$ and has the Weyl symbol $p_{i,z}(x, \xi)$ (i = 1, 2).

(ii) For any a < 0 and m', $M' \in \mathbf{R}$ such that ma < m',

$$(m-MT/2)a < m'-M'T/2,$$

 $p_{i,z}(x,\xi)$ are holomorphic on any compact set in $\Pi_a = \{z; \text{Re } z < \alpha\}$ with values in $S_{(h,k;l)}^{m',M'}$. More precisely, for any compact set K in Π_a and $\alpha_1, \alpha_2, \beta, p$, there exists a constant $C = C_{K,\alpha_1,\alpha_2,\beta,\vec{p}}$ independent of $z \in K$ such that

(3.3)
$$|\partial_{u_1}^{\alpha_1}\partial_{u_2}^{\alpha_2}\partial_v^{\beta}\partial_r^p p_{i,z}| \leq Cr^{m'-p}\rho_{\Sigma}^{M'-|\alpha_1|-|\alpha_2|/l}.$$

Later, we denote the class satisfying (i), (ii) and (iii) of Theorem 3.1 by $HS^{m \operatorname{Re} z, M \operatorname{Re} z}$.

For the proof we need the following lemma.

LEMMA 3.2. Let $a(\zeta)(x, \xi) \in S^{s,t}(W, \Sigma, \Lambda)$ and define

$$a_z(x,\xi) = \frac{-1}{2\pi i} \int_{\Gamma} \zeta^z a(\zeta)(x,\xi) \, d\zeta.$$

Then $a_z \in HS^{m \operatorname{Re} z+m+s, M \operatorname{Re} z+M+t}$.

Proof. Since $a(\zeta)(x, \xi)$ is holomorphic in

$$\Gamma_{\rho(x,\,\xi)} = \{\zeta \,;\, \operatorname{Im} \zeta = 0\,,\, \operatorname{Re} \zeta \ge 0\} \cup \{\zeta \,;\, |\zeta| \le 2\delta\rho(x\,,\,\xi)\}$$

with values in $S_{(h,k;l)}^{s,t}(W, \Sigma, \Lambda)$ where $\rho(x, \xi) = r^m \rho_{\Sigma}^M$, by the Cauchy theorem we may replace the contour Γ in the integral with $\Gamma_{\rho(x,\xi)}$. Moreover for any $\alpha_1, \alpha_2, \beta, p$, there exists a constant $C = C_{\alpha_1,\alpha_2,\beta,p}$ such that

$$|\partial_{u_1}^{\alpha_1}\partial_{u_2}^{\alpha_2}\partial_v^{\beta}\partial_r^p a(\zeta)(x,\xi)| \leq C|\zeta|^{-1}\rho(x,\xi)r^{s-p}\rho_{\Sigma}^{t-|\alpha_1|-|\alpha_2|/l}.$$

Now we decompose $\Gamma_{\rho(x,\xi)}$ in (3.2) into $\Gamma = \Gamma_1 + \Gamma_2 + \Gamma_3$ as follows:

$$\begin{split} &\Gamma_1; \, \zeta = -s \,, & -\delta\rho(x\,,\xi) \leq s < \infty \,, \\ &\Gamma_2; \, \zeta = \rho(x\,,\xi) e^{-i\theta} \,, & -\pi \leq \theta \leq \pi \,, \\ &\Gamma_3; \, \zeta = s \,, & \delta\rho(x\,,\xi) \leq s < \infty . \end{split}$$

For i = 1, 3, we have, for some constant C and C_z

$$\begin{split} \int_{\Gamma_{i}} |\zeta^{z} \partial_{u_{1}}^{\alpha_{1}} \partial_{u_{2}}^{\alpha_{2}} \partial_{v}^{\beta} \partial_{r}^{p} a(\zeta)| |d\zeta| \\ &\leq C \rho(x, \xi) r^{s-p} \rho_{\sigma}^{t-|\alpha_{1}|-|\alpha_{2}|/l} \int_{\delta \rho(x, \xi)}^{\infty} s^{\operatorname{Re} z-1} ds \\ &\leq C_{z} (r^{m} \rho_{\sigma}^{M})^{\operatorname{Re} z+1} r^{s-p} \rho_{\Sigma}^{t-|\alpha_{1}|-|\alpha_{2}|/l}. \end{split}$$

For i = 2, we have

$$\begin{split} \int_{\Gamma_2} |\zeta^z \partial_{u_1}^{\alpha_1} \partial_{u_2}^{\alpha_2} \partial_v^\beta \partial_r^p a(\zeta)| \, |\, d\zeta| \\ &\leq C \rho(x, \zeta) r^{s-p} \rho_{\Sigma}^{t-|\alpha_1|-|\alpha_2|/l} \int_{|\zeta|=\delta\rho(x, \zeta)} |\zeta|^{\operatorname{Re} z-1} |\, d\zeta| \\ &= C (r^m \rho_{\Sigma}^M)^{\operatorname{Re} z+1} r^{s-p} \rho_{\Sigma}^{t-|\alpha_1|-|\alpha_2|/l}. \end{split}$$

This completes the proof.

End of proof of Theorem 3.1. Since $q_i(\zeta) \in S^{-m, -M}_{(h,k;l)}(W, \Sigma, \Lambda)$ and

$$(P-\zeta I)^{-1}-q_i^w(\zeta)(x, D)\in OPS^{-\infty}(W, \Sigma, \Lambda),$$

(i) follows from Lemma 3.2, (ii) follows from the same arguments of the proof of Aramaki [1; Proposition 3.1].

Next we clarify the symbol of P^z .

PROPOSITION 3.3. Let W be a small quasi conic neighborhood of $\rho \in \Sigma$. Then we have in W

(i)
$$\sigma(P^z) = \tilde{p}(p, u)^z + d_{1,z}$$
.
(ii) $\sigma(P^z) = (p_m + r^{m-MT/2})^z + d_{2,z}$ where
 $d_{1,z} = d_{11,z} + d_{12,z}$ and $d_{2,z} = d_{21,z} + d_{22,z}$,
 $d_{11,z} \in HS^{m \operatorname{Re} z, M \operatorname{Re} z+1}$, $d_{21,z} \in HS^{m \operatorname{Re} z-T/2, M \operatorname{Re} z-1}$

and

$$d_{12,z}, d_{22,z} \in HS^{m \operatorname{Re} z - T_0/2, M \operatorname{Re} z}$$

Proof. (i) First, we consider the symbol $q_1(\zeta)(x, \xi)$ in (2.3). By the Cauchy theorem, we have

$$\frac{-1}{2\pi i}\int_{\Gamma}\zeta^{z}q_{1}(\zeta)(x\,,\,\xi)\,d\zeta=\chi\tilde{p}(\rho\,,\,u)^{z}.$$

Since $q_2(\zeta) # r_1(\zeta) - q_2(\zeta) r_{11}(\zeta) \in S^{-m-MT/2, -M}(W, \Lambda)$, it suffices to consider

(3.4)
$$d_{11,z} = \frac{-1}{2\pi i} \int_{\Gamma} \zeta^{z} q_{2}(\zeta) r_{11}(\zeta) d\zeta.$$

Since $q_2(\zeta)r_{11}(\zeta) \in S^{-m, -M+1}(W, \Lambda)$, it follows from Lemma 3.2 that $d_{11,z} \in HS^{m \operatorname{Re} z, M \operatorname{Re} z+1}$. Thus (i) holds. Taking (2.3) into consideration, (ii) also follows.

4. The singularity of trace of P^z . In this section we consider the singularities of trace of P^z and determine the order of the poles and the coefficients of the Laurent expansions at the points. Let $p_z(x, \xi)$ be the Weyl symbol of P^z and holomorphic function of z. It is well known that if

$$\int_{\mathbf{R}^n\times\mathbf{R}^n} |p_z(x,\xi)| \, dx \, d\xi \leq C_z$$

32

for some constant C_z , then P^z is an operator of trace class and the trace is given by:

$$\operatorname{Tr}[P^{z}] = (2\pi)^{-n} \int_{\mathbf{R}^{n} \times \mathbf{R}^{n}} p_{z}(x, \xi) \, dx \, d\xi.$$

Since

$$\int_{r\leq 1} p_z(x\,,\,\xi)\,dx\,d\xi$$

is an entire function, we may consider:

$$\int_{r\geq 1}p_z(x\,,\,\xi)\,dx\,d\xi.$$

In order to do so, we need the following proposition.

PROPOSITION 4.1. Let $f(z; x, \xi)$ be a C^{∞} function on $\mathbb{C} \times \mathbb{R}^n \times \mathbb{R}^n$ satisfying

(i) For every $(x, \xi) \in \mathbb{R}^n \times \mathbb{R}^n$, $f(z; x, \xi)$ is a holomorphic function in \mathbb{C} .

(ii) For every compact set K in C, $f(z; x, \xi)/r^{m \operatorname{Re} z-j} \rho_{\Sigma}^{M \operatorname{Re} z-i}$ is bounded uniformly in $z \in K$.

Then the integrals

•

$$I_{ji}(z) = \int_{r\geq 1} f(z, x, \xi) \, dx \, d\xi$$

holomorphic in $\Pi_a = \{z; \text{Re } z < a\}$ if a satisfies any one of the following (I) and (II):

(I) $Ma - i + d_1 + d_2/l < 0$ and $(m - MT/2)a - j + Ti/2 + |h| + |k| - Td_1/2 - Td_2/(2l) < 0$, (II) $Ma - i + d_1 + d_2/l \ge 0$ and ma - j + |h| + |k| < 0.

Proof. Let K be any compact subset in Π_a . Then there exists a constant $C_K > 0$ (independent of $z \in K$) such that

$$|f(z, x, \xi)| \le C_K r^{m \operatorname{Re} z-j} \rho_{\Sigma}^{M \operatorname{Re} z-i} \le C_K (r^m \rho_{\Sigma}^M)^a r^{-j} \rho_{\Sigma}^{-i}$$

for all $z \in K$. In fact, we have from (H.5), $r^m \rho_{\Sigma}^M \ge r^{m-MT/2} \ge 1$. Let W be a quasi conic neighborhood of $\rho \in \Sigma$ and (u_1, u_2, v, r) a local coordinate system in W as in §2. Then

$$dx d\xi = J(u_1, u_2, v, r) du_1 du_2 dv dr$$

JUNICHI ARAMAKI

where $J(u_1, u_2, v, r)$ is quasi homogeneous of degree |h| + |k| - 1. Since $\rho_{\Sigma} = \{|u_1|^2 + |u_2|^{2l} + r^{-T}\}^{1/2}$ in W, we have, for $z \in K$,

$$\begin{split} |I|_{ji}(z) &\equiv \int_{W \cap \{r \ge 1\}} |f(z, x, \xi)| \, dx \, d\xi \\ &\leq C \int_{W \cap \{r \ge 1\}} (r^m \rho_{\Sigma}^M)^a r^{-j} \rho_{\Sigma}^{-i} r^{|h| + |k| - 1} \, du_1 \, du_2 \, dv \, dr \\ &= C \int_1^\infty r^{ma - j + |h| + |k| - 1} \, dr \\ &\times \int_{W \cup \{r \ge 1\}} (|u_1|^2 + |u_2|^{2l} + r^{-T})^{(Ma - i)/2} \, du_1 \, du_2 \, dv. \end{split}$$

Since $|u_i|$, |v| are bounded in W, we may assume that $|u_i|$, $|v| \le 1$. By the change of variable $(u_1, u_2) \rightarrow (r^{-T/2}u_1, r^{-T/(2l)}u_2)$, we have with another constant C,

$$|I|_{ji}(z) \le C \int_{1}^{\infty} r^{ma-j+|h|+|k|-1-(l(Ma-i)+ld_{1}+d_{2})T/(2l)} J_{i}(r) \, dr$$

where

$$J_{i}(r) = \int_{|u_{1}| \le r^{T/2}, |u_{2}| \le r^{T/(2l)}} (|u_{1}|^{2} + |u_{2}|^{2l} + 1)^{(Ma-i)/2} du_{1} du_{2}$$

$$\le C \int_{0}^{r^{T/(2l)}} \int_{0}^{r^{T/2}} (t^{2} + s^{2l} + 1)^{(Ma-i)/2} t^{d_{1}-1} s^{d_{2}-1} dt ds.$$

Moreover, we take the change of variable: $t = R \cos \theta$, $s = R^{1/l} \sin^{1/l} \theta$. Since the Jacobian is

$$\frac{D(t, s)}{D(R, \theta)} = \frac{1}{l} R^{1/l} \sin^{(1/l)-1} \theta,$$

we have

$$J_{i}(r) \leq C \int_{0}^{r^{T/2}} (R^{2} + 1)^{(Ma-i)/2} R^{\{(ld_{1}+d_{2})/l\}-1} dR$$
$$\times \int_{0}^{\pi/2} \cos^{d_{1}-1} \theta \sin^{(d_{2}/l)-1} \theta d\theta.$$

Here we note that

$$\int_0^{\pi/2} \cos^{d_1 - 1} \theta \sin^{(d_2/l) - 1} \theta \, d\theta = \frac{1}{2} B\left(\frac{d_1}{2}, \frac{d_2}{2l}\right)$$

where $B(\cdot, \cdot)$ denotes the Beta function and

$$\int_0^\infty (R^2 + 1)^{(Ma-i)/2} R^{\{(ld_1+d_2)/l\}-1} dR$$

= $\frac{1}{2} \frac{\Gamma(\{ld_1+d_2\}/2l)\Gamma(\{l(i-Ma)-ld_1-d_2\}/(2l))}{\Gamma((i-Ma)/2)}$

if
$$Ma - i + d_1 + d_2/l < 0$$
. When $Ma - i + d_1 + d_2/l \ge 0$,
 $J_i(r) \le C \int_0^{r^{T/2}} R^{\{Ma - i + (ld_1 + d_2)/l\} - 1} dR = O(r^{(l(Ma - i) + ld_1 + d_2)/(2l)} \log r)$

as $r \to \infty$. Thus we have, with an another constant C > 0,

$$|I|_{ji}(z) \leq C \int_{1}^{\infty} r^{ma-j+|h|+|k|-1-T(l(Ma-i)+ld_{1}+d_{2})/(2l)} dr,$$

if $Ma - i + d_1 + d_2/2 < 0$ and

$$|I|_{ji}(z) \le C \int_1^\infty r^{ma-j+|h|+|k|-1} \log r \, dr$$

if $Ma - i + d_1 + d_2/2 \ge 0$. Therefore the integral $I_{ji}(z)$ is absolutely convergent for each case (I) or (II). Outside Σ , by the ellipticity of $p(x, \xi)$, (I) or (II) is clear. This completes the proof.

For brevity of notations, we put

$$N_1 = rac{ld_1 + d_2}{Ml}, \quad N_2 = rac{|h| + |k|}{m}$$
 and
 $N_3 = rac{2(|h| + |k|) - T(ld_1 + d_2)/l}{2m - MT}.$

COROLLARY 4.2. Let $d_{ij,z}$ (i, j = 1, 2) be as in Proposition 3.3. Then we have the following three cases.

(i) When $N_1 > N_2$, $\operatorname{Tr}[d_{2,z}^w]$ is holomorphic for $\operatorname{Re} z < -N_2 + \delta_1$ where $\delta_1 = \operatorname{Min}\{1/(2m), N_2 - N_3\}$.

(ii) When $N_1 = N_2$, $\text{Tr}[d_{1,z}^w]$ is holomorphic for $\text{Re } z < -N_2 + \delta_2$ for some $\delta_2 > 0$ except $z = -N_2$ which is at most a simple pole.

(iii) When $N_1 < N_2$, $\operatorname{Tr}[d_{1,z}^w]$ is holomorphic for $\operatorname{Re} z < -N_3 + \delta_3$ where $\delta_3 = \operatorname{Min}\{1/T(2m - MT), N_3 - N_2\}$.

Proof. First we consider the case (i). In this case, we have $-N_1 < -N_2 < -N_3$. Since $d_{21,z} \in HS^{m\operatorname{Re} z-T/2, M\operatorname{Re} z-1}$ and $d_{22,z} \in HS^{m\operatorname{Re} z-T_0/2, M\operatorname{Re} z}$, it follows from Proposition 4.1 that $\operatorname{Tr}[d_{2,z}^w]$ is holomorphic for $\operatorname{Re} z < -N_2 + \delta_1$.

In the case (iii), note that $-N_3 < -N_2 < -N_1$. If we consider the trace of $d_{11,z} \in HS^{m\operatorname{Re} z, M\operatorname{Re} z+1}$ and apply Proposition 4.1, it is easy to see that $\operatorname{Tr}[d_{1,z}^w]$ is holomorphic for $\operatorname{Re} z < -N_3 + \delta_3$.

The case (ii) is more delicate. In this case, we have $-N_1 = -N_2 = -N_3$. Since it easily follows from Proposition 4.1 that $\text{Tr}[d_{12,z}]$ is holomorphic for Re $z < -N_2 + 1/(2m)$ and $\text{Tr}[d_{11,z}^w]$ is also holomorphic for Re $z < -N_2$. Therefore it suffices to show that $\text{Tr}[d_{11,z}^w]$ is holomorphic for Re $z < -N_2 + \delta_2$ except $z = -N_2$ which is at most a simple pole. By (3.4),

$$d_{11,z} = \frac{-1}{2\pi i} (p_m - \tilde{p}_m) \int_{\Gamma} \zeta^z (p_m + r^{m-MT/2} - \zeta)^{-1} (\tilde{p}_m - \zeta)^{-1} d\zeta.$$

However by Proposition 4.1, we can replace $(\tilde{p} - \zeta)^{-1}$ with $(\tilde{p}_m + r^{m-MT/2} - \zeta)^{-1}$. Thus the Cauchy theorem leads to

$$d_{11,z} = (\tilde{p}_m + r^{m-MT/2})^z - (p_m + r^{m-MT/2})^z$$

Since by the Taylor theorem,

$$d_{11,z} = z(\tilde{p}_m - p_m) \int_0^1 \{\tilde{p}_m + r^{m-MT/2} + \theta(p_m - \tilde{p}_m)\}^{z-1} d\theta$$

= $zd'_{11,z} + z(z-1)d''_{11,z}$

where

$$d'_{11,z} = (\tilde{p}_m - p_m) \int_0^1 \{\tilde{p}_m + \theta(p_m - \tilde{p}_m)\}^{z-1} d\theta$$

and

$$d_{11,z}'' = (\tilde{p}_m - p_m)r^{m-MT/2} \\ \times \int_0^1 \int_0^1 \{\tilde{p}_m + \theta(p_m - \tilde{p}_m) + \chi r^{m-MT/2}\}^{z/2} d\chi d\theta.$$

At first we consider $d'_{11,z}$. Let $a \le \operatorname{Re} z \le b$ where $b < -N_2$. Then

$$(2\pi)^{-n} \int_{r\geq 1} d'_{11,z}(x,\xi) \, dx \, d\xi$$

= $\frac{-1}{(2\pi)^n (mz+|h|+|k|)}$
 $\times \int_{S*\mathbf{R}^n \cap W} (\tilde{p}_m(\omega) - p_m(\omega))$
 $\times \int_0^1 \{\tilde{p}_m(\omega) + \theta(p_m(\omega) - \tilde{p}_m(\omega))\}^{z-1} \, d\theta \, d\omega.$

Since $\tilde{p}_m(\omega) + \theta(p_m(\omega) - \tilde{p}_m(\omega))$ is equivalent to $(|u_1|^2 + |u_2|^{2l})^{M/2}$, we may assume that the integral is equivalent to

$$\begin{split} &\int_{|u_i| \le 1} (|u_1|^2 + |u_2|^{2l})^{(M \operatorname{Re} z + 1)/2} \, du_1 \, du_2 \\ &= C \int_0^1 \int_0^1 (t^2 + s^{2l})^{(M \operatorname{Re} z + 1)/2} t^{d_1 - 1} s^{d_2 - 1} \, dt \, ds \\ &\le B \left(\frac{d_1}{2} \, , \, \frac{d_2}{2l} \right) \int_0^1 R^{M(a+1) + d_1 + d_2/l - 1} \, dR. \end{split}$$

If $a \leq \operatorname{Re} z$ where $a > -N_2 - 1/M$, the integral is convergent. Thus $\operatorname{Tr}[d_{11,z}^{\prime w}]$ is holomorphic for $\operatorname{Re} z < -N_2 + \delta_2$ for some $\delta_2 > 0$ except $z = -N_2$ which is at most a simple pole. Next we shall show that $\operatorname{Tr}[d_{11,z}^{\prime \prime w}]$ is holomorphic for $-N_2 - \delta_2 < \operatorname{Re} z < -N_2 + \delta_2$ for some $\delta_2 > 0$. Since $\tilde{p}_m + \theta(p_m - \tilde{p}_m)$ is equivalent to $r^m(|u_1|^2 + |u_2|^{2l})^{M/2}$, we may consider the integral

$$I = \int_{r \ge 1, |u_1| \le 1} r^m (|u_1|^2 + |u_2|^{2l})^{(M+1)/2} r^{m-MT/2} dr$$

 $\times \int_0^1 \{r^m (|u_1|^2 + |u_2|^{2l})^{M/2} + \chi r^{m-MT/2}\}^{z-2} d\chi du_1 du_2.$

Choose $0 < \varepsilon < 1/2$, a and b such that $a < -N_2 + M\varepsilon/2$, $b > -N_2 + \varepsilon - 1/2$ and let $a \le \text{Re } z \le b$. Then

$$\int_0^1 \{ (r^m (|u_1|^2 + |u_2|^{2l}))^{M \operatorname{Re} z/2} + \chi r^{m-MT/2} \}^{\operatorname{Re} z-2} d\chi$$

$$\leq \{ (r^m (|u_1|^2 + |u_2|^{2l})^{M/2} \}^{\operatorname{Re} z-1-\varepsilon} \int_0^1 (\chi r^{m-MT/2})^{\varepsilon-1} d\chi$$

$$\leq \frac{1}{\varepsilon} \{ (r^m (|u_1|^2 + |u_2|^{2l})^{M/2} \}^{\operatorname{Re} z-1-\varepsilon} r^{(m-MT/2)(\varepsilon-1)}.$$

Therefore

$$I \leq \int_{1}^{\infty} r^{mb-M\varepsilon/2+|h|+|k|-1} dr \\ \times \int_{|u_{i}|\leq 1} (|u_{1}|^{2}+|u_{2}|^{2l})^{M(a-\varepsilon+1/M)/2} du_{1} du_{2}.$$

By the same change of variable as in Proposition 4.1, we see that the integral is covergent. Thus $\text{Tr}[d_{11,z}^{mw}]$ is holomorphic for $-N_2 + \varepsilon - 1/M < \text{Re } z < -N_2 + M\varepsilon/(2m)$. This completes the proof.

Now we consult

$$I_1(z) = (2\pi)^{-n} \int \int_{r\geq 1} \varphi \tilde{p}(\rho, u)^z \, dx \, d\xi$$

and

$$I_2(z) = (2\pi)^{-n} \int \int_{r \ge 1} \varphi(p_m + r^{m - MT/2})^z \, dx \, d\xi.$$

In order to do so, we define, for $\rho \in \Sigma$ and $X = (X_1, X_2) \in N_{\rho}\Sigma$,

Hess
$$\tilde{p}_m(\rho, X) = \sum_{|\alpha_1| + |\alpha_2|/l = M} \frac{1}{\alpha_1! \alpha_2!} (X_1^{\alpha_1} X_2^{\alpha_2} p_m)(\rho).$$

Note that it follows from (H.3) that Hess $\tilde{p}_m(\rho, X) > 0$, for all $X = (X_1, X_2) \in N_{\rho}\Sigma$ so that $X \neq 0$. Define a measure dX_{ρ} on $N_{\rho}\Sigma$ such that

(4.1)
$$\int_{\operatorname{Hess} \tilde{p}_m(\rho, X) < 1} dX_\rho = 1.$$

Then it is easily seen that $dX_{\lambda \cdot \rho} = \lambda^{m(d_1+d_2/l)/M} dX_{\rho}$ for $\lambda > 0$, i.e., dX_{ρ} is quasi homogeneous of degree $m(d_1 + d_2/l)/M = mN_1$. Next we define a positive C^{∞} density on Σ as follows: Choose a local coordinate system (u, v') where $u = (u_1, u_2)$ is as in §2 so that $dx d\xi = du dv'$, so dv' is quasi homogeneous of degree |h| + |k|. Then we define $d\rho = f(\rho) dv'|_{\rho}$ where

(4.2)
$$f(\rho) = \int_{\sum_{|\alpha_1|+|\alpha_2|/l=M} a_{\alpha_1,\alpha_2,0}(0,v,r(\rho))u_1^{\alpha_1}u_2^{\alpha_2} < 1} du_1 du_2.$$

It follows that $d\rho$ is quasi homogeneous of degree $|h| + |k| - mN_1$.

Moreover, taking Proposition 4.1 into consideration, we note that $\varphi = \varphi|_{\Sigma} + r_1$ in the integral $I_1(z)$ where $r_1 \in S^{0,1}$ and $r_1 \tilde{p}(\rho, u)^z \in S^{m \operatorname{Re} z, M \operatorname{Re} z+1}$, so we may put

$$I_1(z) = (2\pi)^{-n} \int \int_{r \ge 1} \tilde{p}(\rho, u)^z \, dX_\rho \, d\rho.$$

THEOREM 4.3. Assume that $p(x, \xi) \in \widetilde{S}_{(h,k;l)}^{m,M}$ satisfies the hypotheses (H.1) ~ (H.6). Then there are three cases for the singularities of $Z_P(z) = \text{Tr}[P^z]$.

(I) When $N_1 > N_2$, $Z_P(z)$ is holomorphic for $\text{Re } z < -N_2 + \delta_1$ where δ_1 is as in Proposition 4.2 except only one singularity at $z = -N_2$ which is a simple pole and the residue $R_1(-N_2)$ is given by:

$$R_1(-N_2) = \frac{-1}{m} (2\pi)^{-n} \int_{S_q^* \mathbf{R}^n} p_m(\omega)^{-N_2} d\omega$$

where $S_q^* \mathbf{R}^n = \{(x, \xi) \in T^* \mathbf{R}^n; r(x, \xi) = 1\}.$

(II) When $N_1 = N_2$, $Z_P(z)$ is holomorphic for $\text{Re } z < -N_2 + \delta_0$ for some $\delta_0 > 0$ except only one singularity at $z = -N_2$ which is a double pole and the coefficient $R_2(-N_2)$ of $(z + N_2)^{-2}$ of the Laurent expansion at $z = -N_2$ is given by:

$$R_2(-N_2) = \frac{|h| + |k| - mN_1}{M(m - MT/2)} (2\pi)^{-n} \int_{S_q^*\Sigma} \int_{SN_{\omega}\Sigma} \tilde{p}_m(\omega, Y)^{-N_2} dY_{\omega} d\omega,$$

where $S_q^*\Sigma = S_q^*\mathbf{R}^n \cap \Sigma$ and $SN_\omega\Sigma = \{X \in N_\omega\Sigma; \text{ Hess } \tilde{p}_m(\omega, X) = 1\}$.

(III) When $N_1 < N_2$, $Z_P(z)$ is holomorphic for $\text{Re } z < -N_3 + \delta_3$ where δ_3 is as in Proposition 4.2 except only one singularity at $z = -N_3$ which is a simple pole and the residue $R_1(-N_3)$ is given by:

$$R_1(-N_3) = \frac{-(|h|+|k|-mN_1)}{m-MT/2} (2\pi)^{-n} \int_{S_q^*\Sigma} \int_{N_\omega\Sigma} \tilde{p}(\omega, X)^{-N_3} dX_\omega d\omega.$$

Proof. By Corollary 4.2, we may consider

$$I_1(z) = (2\pi)^{-n} \int \int_{r \ge 1} \tilde{p}(\rho, X)^z \, dX_\rho \, d\rho$$

for the case (II), (III) and

$$I_2(z) = (2\pi)^{-n} \int \int_{r \ge 1} (p_m + r^{m - MT/2})^z \, dx \, d\xi$$

for the case (I). First we consider $I_1(z)$. Note that by the quasi homogeneity of $d\rho$ we can write

$$d\rho = (|h| + |k| - mN_1)r^{|h| + |k| - mN_1 - 1} f(\omega) dr d\omega$$

where $d\omega$ is the measure on $S_q^*\Sigma$ and $f(\omega)$ is as in (4.2). Then

$$I_{1}(z) = (2\pi)^{-n} \int_{1}^{\infty} \int_{S_{q}^{*}\Sigma} \int_{N_{\omega}\Sigma} \tilde{p}(\omega, r^{T/2}X_{1}, r^{T/(2l)}X_{2})^{z} \times r^{(m-MT/2)z+|h|+|k|-1} dX_{\omega} d\omega dr$$

$$= (2\pi)^{-n} (|h| + |k| - mN_1) \times \int_1^\infty r^{(m - MT/2)(z + N_3) - 1} dr \int_{S_q^* \Sigma} \int_{N_\omega \Sigma} \tilde{p}(\omega, X)^z dX_\omega d\omega = \frac{-(|h| + |k| - mN_1)}{(m - MT/2)(z + N_3)} \int_{S_q^* \Sigma} \int_{N_\omega \Sigma} \tilde{p}(\omega, X)^z dX_\omega d\omega.$$

Here we consider

$$J(z) = \int_{N_{\omega}\Sigma} \tilde{p}(\omega, X)^{z} dX_{\omega}.$$

For brevity of notations, put $|X|_{\omega} = \{\text{Hess } \tilde{p}_m(\omega, X)\}^{1/M}$ for $X \in N_{\omega}\Sigma$ which is equivalent to $(|X_1|^1 + |X_2|^{2l})^{1/2}$. Then by (H.4), there exists a constant C > 0 such that $\tilde{p}(\omega, X) \ge C$. Therefore

$$\int_{|X|_{\omega}\leq 1}\tilde{p}(\omega, X)^{z}\,dX_{\omega}$$

is an entire function of z. Thus we may consider

$$J_1(z) = \int_{|X|_{\omega} \ge 1} \tilde{p}(\omega, X)^z \, dX_{\omega}.$$

Choose a real number a so that $a < -N_3$ and let $\text{Re } z \le a$. Then by similar arguments as in Proposition 4.1,

$$\int_{|X|_{\omega} \ge 1} \tilde{p}(\omega, X)^a \, dX_{\omega} \le \int_1^\infty s^{Ma+d_1+d_2/l-1} \, ds \int_{SN_{\omega}\Sigma} \tilde{p}(\omega, Y)^a \, dY_{\omega}$$

where $SN_{\omega}\Sigma = \{Y \in N_{\omega}\Sigma; |Y|_{\omega} = 1\}$. Therefore J(z) is holomorphic for Re $a < -N_1$. Thus the case (III) follows.

The case (II): Since $\tilde{p}(\omega, X) - \tilde{p}_m(\omega, X) = O(|X|_{\omega}^{M-1})$ as $|X|_{\omega} \to \infty$, we have $\tilde{p}(\omega, X)^z - \tilde{p}_m(\omega, X)^z = O(|X|_{\omega}^{M \operatorname{Re} z-1})$. Thus we may consider

$$J_2(z) = \int_{|X|_{\omega} \ge 1} \tilde{p}_m(\omega, X)^z \, dX_{\omega}.$$

Since $\tilde{p}_m(\omega, X)$ is quasi homogeneous of degree M in (X_1, X_2) , we see that

$$J_2(z) = \int_1^\infty s^{Mz+d_1+d_2/l-1} ds \int_{SN_\omega\Sigma} \tilde{p}_m(\omega, Y)^z dY_\omega$$
$$= \frac{-1}{Mz+d_1+d_2/l} \int_{SN_\omega\Sigma} \tilde{p}_m(\omega, Y)^z dY_\omega.$$

Here the integral is an entire function of z. Thus the case (II) follows.

The case (I): In this case we note that the integral

$$\int_{S_q^* \mathbb{R}^n} p_m(\omega)^{-N_2} d\omega = \lim_{\varepsilon \to 0} \int_{S_q^* \mathbb{R}^n \cap \{p_m \ge \varepsilon\}} p_m(\omega)^{-N_2} d\omega$$

exists. Now we must consider

$$I_2(z) = (2\pi)^{-n} \int \int (p_m + r^{m-MT/2})^z \, dx \, d\xi.$$

By the Taylor theorem and Proposition 4.1, we are reduced to studying

$$I_{2}'(z) = (2\pi)^{-n} \int_{S_{q}^{*}\mathbf{R}^{n}} (r^{m} p_{m}(\omega) + 1)^{z} r^{|h| + |k| - 1} dr d\omega.$$

The change of variable: $rp_m(\omega)^{1/m} = s$ leads to

$$I_{2}'(z) = (2\pi)^{-n} \int_{0}^{\infty} (s^{m} + 1)^{z} s^{|h| + |k| - 1} \int_{S_{q}^{*} \mathbf{R}^{n}} p_{m}(\omega)^{-N_{2}} d\omega$$
$$= \frac{1}{m} \frac{\Gamma(N_{2})\Gamma(-z - N_{2})}{\Gamma(-z)} \int_{S_{q}^{*} \mathbf{R}^{n}} p_{m}(\omega)^{-N_{2}} d\omega$$

if $\operatorname{Re} z < -N_2$. Thus the case (I) follows. This completes the proof.

5. Asymptotic behavior of eigenvalues. In this section we shall consider the asymptotic behavior of eigenvalues of P under the hypotheses $(H.1) \sim (H.6)$. Let the eigenvalues of P according to multiplicity be $\lambda_1 \leq \lambda_2 \leq \cdots$ and $N_P(\lambda)$ be the counting function of eigenvalues: $N_P(\lambda) = \#\{j; \lambda_j \leq \lambda\}$. The following theorem is useful in the sequel.

THEOREM 5.1 (cf. [4]). Let P be a positively definite self-adjoint operator on a separable Hilbert space H with domain of definition K which is a dense subspace of H and the canonical injection from K to H is a compact operator. Here we regard K equipped with the graph norm as a Hilbert space. Assume that

(i) P^{-s} is of trace class for large $\operatorname{Re} s > 0$ and $\operatorname{Tr}[P^{-s}]$ has a meromorphic extension $Z_P(s)$ in $D_{\delta} = \{s \in \mathbb{C} : \operatorname{Re} s > a - \delta\}$ for some a > 0 and $\delta > 0$.

(ii) $Z_P(s)$ has the first singularity at s = a (> 0) and

$$Z_P(s) - \sum_{j=1}^p \frac{A_j}{(j-1)!} \left(-\frac{d}{ds}\right)^{j-1} \frac{1}{s-a}$$

is holomorphic in D_{δ} .

(iii) $Z_P(z)$ is of at most polynomial order in Ims in all vertical strips in D_{δ} , excluding neighborhood of the pole s = a.

Then we have:

$$N_P(\lambda) = \sum_{j=1}^p \frac{A_j}{(j-1)!} \left(\frac{d}{ds}\right)^{j-1} \left(\frac{\lambda^s}{s}\right)\Big|_{s=a} + O(\lambda^{a-\delta})$$

as $\lambda \to \infty$.

The proof is essentially due to the inverse Mellin transformation and given by [4].

Now we return to our consideration. Here we note from the construction of the parametrix of $P - \zeta I$ and the same arguments as in [3] that the condition (iii) of Theorem 5.1 holds.

PROPOSITION 5.2. Assume that $p(x, \xi) \in \widetilde{S}_{(h,k;l)}^{m,M}$ satisfies (H.1) ~ (H.6). Then we have three cases according to Theorem 4.3.

(I) When $N_1 > N_2$, we have

$$N_P(\lambda) = B_1 \lambda^{N_2} + O(\lambda^{N_2 - \delta_1})$$

as $\lambda \to \infty$ where

$$B_1 = \frac{1}{|h| + |k|} (2\pi)^{-n} \int_{S_q^* \mathbf{R}^n} p_m(\omega)^{-N_2} d\omega.$$

(II) When $N_1 = N_2$, we have

$$N_P(\lambda) = B_2 \lambda^{N_2} \log \lambda + O(\lambda^{N_2 - \delta_0})$$

as $\lambda \to \infty$ where

$$B_{2} = \frac{|h| + |k| - mN_{1}}{MT(|h| + |k| - Td_{1}/2 - Td_{2}/(2l))} \times (2\pi)^{-n} \int_{S_{q}^{*}\Sigma} \int_{SN_{\omega}\Sigma} \tilde{p}_{m}(\omega, Y)^{-N_{2}} dY_{\omega} d\omega.$$

(III) When $N_1 < N_2$, we have

$$N_P(\lambda) = B_3 \lambda^{N_3} + O(\lambda^{N_3 - \delta_3})$$

as $\lambda \to \infty$ where

$$B_{3} = \frac{|h| + |k| - mN_{1}}{|h| + |k| - Td_{1}/2 - Td_{2}/(2l)} \times (2\pi)^{-n} \int_{S_{q}^{*}\Sigma} \int_{N_{\omega}\Sigma} \tilde{p}(\omega, X)^{-N_{3}} dX_{\omega} d\omega.$$

6. Example. We consider the example (0.1):

$$p^{w}(x, D) = H_{(a, b)} + V(x)$$
 on \mathbb{R}^{3}

where $a(x) = (bx_3^{k+1}, 0, 0)$ and $V(x) = (x_1^2 + x_2^2)^l + ax_3^{k+1}$ (b real number, a > 0, k > 0 odd integer and l positive integer). Then we have m = 2l(k + 1), M = 2 and T = l(k + 1). If we put $\Sigma_1 = \{(x, \xi); \xi_1 = bx_3^{k+1}, \xi_2 = \xi_3 = 0\}$ and $\Sigma_2 = \{(x, \xi); x_1 = x_2 = 0\}$, it is easily seen that (H.2) holds and $d_1 = 3$ and $d_2 = 2$. Moreover we see $N_1 = 3/2 + 1/l < N_2 = 3/2 + 1/l + 1/(2(k + 1))$ and $N_3 = 3/2 + 1/l + 1/(k + 1)$. Thus by Proposition 5.2 (III), we have

$$N_P(\lambda) = B_4 \lambda^{(3/2+1/(k+1)+1/l)} + O(\lambda^{(3/2+1/(k+1)+1/l)-\delta})$$

as $\lambda \to \infty$ where

$$B_{4} = \frac{l}{k+1+l+3l(k+1)/2} (2\pi)^{-3} \\ \times \int_{S_{q}^{*}\Sigma} \int_{N_{\omega}\Sigma} \tilde{p}(\omega, X)^{-(3/2+1/(k+1)+1/l)} dX_{\omega} d\omega.$$

Here by simple calculation, we see that

$$\tilde{p}(\omega, X) = |X_1|^2 + |X_2|^{2l} + a/\sqrt{b^2 + 1},$$

42

so we have

$$\begin{split} I &= \int_{S_q^*\Sigma} \int_{N_\omega\Sigma} (|X_1|^2 + |X_2|^{2l} + a/\sqrt{b^2 + 1})^{-(3/2 + 1/(k+1) + 1/l)} \, dX_\omega \, d\omega \\ &= \operatorname{Vol}[S_q^*\Sigma] \prod_{j=1}^2 S_{(d_j - 1)} \\ &\times \int_0^\infty \int_0^\infty (s^2 + t^{2l} + a/\sqrt{b^2 + 1})^{-(3/2 + 1/(k+1) + 1/l)} s^{d_1 - 1} t^{d_2 - 1} \, ds \, dt \\ &= 2\pi^{5/2} a^{-1/(k+1)} \frac{\Gamma(1/l)\Gamma(1/(k+1))}{l\Gamma(3/2 + 1/l + 1/(k+1))} \end{split}$$

where $S_{(d_j-1)}$ is the surface area of the unit sphere in \mathbf{R}^{d_j} and we used $\operatorname{Vol}[S_a^*\Sigma] = 2(b^2+1)^{-1/(2(k+1))}$. Thus we have

$$B_4 = \frac{\Gamma(1/l)\Gamma(1/(k+1))}{2\pi^{1/2} \{3l(k+1) + 2(k+1+l)\}a^{1/(k+1)}\Gamma(3/2+1/l+1/(k+1))}$$

In the particular case k = l = 1, we have

$$N_P(\lambda) = \frac{1}{48a^{1/2}}\lambda^3 + O(\lambda^{3-\delta})$$

as $\lambda \to \infty$.

REMARK 6.1. When b = 0, we can regard $H_{(a,b)} + V(x)$ as a quasi elliptic operator of order 2l(k + 1) of type (k + 1, k + 1, 2l, l(k + 1), l(k + 1), l(k + 1)). In this case the result also follows from [3].

References

- J. Aramaki, Complex powers of a class of pseudodifferential operators and their applications, Hokkaido Math. J., 12, No. 2 (1983), 199–225.
- [2] _____, Complex powers of a class of pseudodifferential operators in \mathbb{R}^n and the asymptotic behavior of eigenvalues, Hokkaido Math. J., 16, No. 1 (1987), 1–28.
- [3] ____, On the asymptotic behaviors of spectrum of quasi-elliptic pseudodifferential operators on \mathbb{R}^n , Tokyo J. Math., 10, No. 2 (1987), 481–505.
- [4] _____, On an extension of the Ikehara Tauberian theorem, Pacific J. Math., 133, No. 1 (1988), 13–30.
- [5] J. M. Combes, R. Schrader and R. Seiler, Classical bounds and limits for energy distributions of hamilton operator in electromagnetic fields, Ann. Phys., 111, No. 1 (1978), 1–18.
- [6] R. Helffer, Invariant associés à une classe d'opérateurs pseudodifférentiels et application à l'hypoellipticité, Ann. Inst. Fourier Grenoble, 26 (1976), 55-70.
- [7] R. Helffer and J. Nourrigat, Construction de paramétrixes pour une nouvelle classe d'opérateurs pseudodifférentiels, J. Differential Equations, 32 (1979), 41-64.

JUNICHI ARAMAKI

- [8] R. Helffer and D. Robert, Propriété asymptotiques du spectre d'opérateurs pseudodifférentiels sur \mathbb{R}^n , Comm. Partial Differential Equations, 7 (1982), 795-882.
- [9] D. Robert, *Propriété spectre d'opérateurs pseudodifférentiels*, Comm. Partial Differential Equations, **3** (1978), 755-826.
- [10] R. T. Seeley, *Complex powers of an elliptic operator, Singular integrals*, Proc. Symp. Pure Math., Amer. Math. Soc., (1967), 288-307.
- [11] M. A. Shubin, *Pseudodifferential Operators and Spectral Theory*, Springer Verlag, Berlin, Heidelberg, New York, 1987.

Received April 22, 1991.

Tokyo Denki University Hatoyama-Machi, Hiki-Gun Saitama 350-03, Japan

44