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ASYMPTOTIC BEHAVIOR OF EIGENVALUES
FOR A CLASS OF PSEUDODIFFERENTIAL
OPERATORS ON R”

JUNICHI ARAMAKI

We consider a pseudodifferential operator P whose symbol has an
asymptotic expansion by quasi homogeneous symbols and the princi-
pal symbol is degenerate on a submanifold. Under appropriate condi-
tions, P has the discrete spectrum. Then we can get the asymptotic
behavior of the counting function of eigenvalues of P with remainder
estimate according to various cases.

0. Introduction. We consider the asymptotic behavior of eigenval-
ues for a class of pseudodifferential operators on R” containing the
Schrodinger operator with magnetic field:

(0.1) p¥(x, D)= H(a)+ V(x)
n 18 2
= (———] - a,-(x)) +V(x) (i=v-1).

Throughout this paper we assume that the magnetic potential a(x)
satisfies:

a(x) = (a1(x), @(x), ..., an(x)) € C*(R"; R")

and the scalar potential V' (x) satisfies V' (x) € C*(R"; R). We re-
gard p¥(x, D) as alinear operator in L2(R") with domain C{°(R").
Under appropriate conditions, we shall see that p“(x, D) is essen-
tially self-adjoint in L2(R") and its self-adjoint extension P is semi-
bounded from below and has a compact resolvent in LZ(R”). There-
fore the spectrum a(P) of P is discrete, that is, g(P) consists only
of eigenvalues of finite multiplicity. Thus we can denote the eigen-
values with repetition according to multiplicity by: 4; < 4, < -+,
limy _, . Ax = co. We consult the asymptotic behavior of the counting
function Np(4) of eigenvalues:

(0.2) Np(A) =#{j; A; < A}.
In the special case a(x) =0, i.e., p¥(x, D) is of the form:
(0.3) p¥(x,D)=-A+V(x),
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20 JUNICHI ARAMAKI
if V(x) satisfies lim|y|_,, V' (x) = oo, then it is well known that
(0.4) Np(A) = (2r)™" Vol[(x, &); € + V(x) < A|(1 + o(1))

as A — oo. In particular, Helffer and Robert [8] have obtained the
asymptotic formula of Np(4) for a class of quasi elliptic pseudodiffer-
ential operators containing the anharmonic oscillator: ¥ (x) = a|x|**
in (0.3) (a real > 0, k integer > 2). They have found not only the
first term but also the following several terms of Np(4). Aramaki [3]
extended the result to the case containing the operator of the form,
for example, V(x) = x? + x5 +ax; (a real > 0) in R2. :

For general a(x) and n = 3, under the condition in (0.3), Combes-
Schrader-Seiler [5] had the result

(0.5) Np(A) = MQ)(1 +o(1)) as A — oo

where

M) = (27)~3 Vol

3
{ Z ~—ajx))2+V()</IH.

In this paper we shall consider a class of pseudodifferential operator
pY¥(x, D) of the form (0.1) containing the case, for example,

(0.6) a(x) = (bx¥*1,0,0), V(x)=(x}+x3) +axkt!

(a real > 0, b real, / positive integer and k odd integer). For such an
operator, we seek the asymptotic behavior of Np(4) of more precise
form than (0.5):

(0.7) Np(A) = M(A)(1 + O(27%))

as 4 — oo for some J > 0. Thus we consider a pseudodifferential
operator p¥(x, D) of order m with Weyl symbol p(x, &) which has
an asymptotic expansion by the quasi homogeneous functions:

o0
X, 8~ Dmjrpa(x, &).
j=0
Such operators are treated by [3] in which he considered the case
where p¥(x, D) is quasi elliptic, i.e., py(x, &) # 0 for (x, &) #0.
In the present paper, we treat the case where p,,(x, &) is degenerate
on some closed submanifold in R?”. Under a suitable hypoelliptic
condition, we shall get the asymptotic formula similar to (0.7).
The plan of this paper is as follows. In §1, we give the precise defi-
nition of the operators mentioned as above and give some hypotheses.
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In §2, we construct the parametrices of P —{I for some { € C where
I denotes the identity operator in L2(R"). Section 3 is devoted to the
construction of complex powers P? (z € C) of P. If the real part
Re z of z is negative and sufficiently small, P? is of trace class and
the trace Tr[P?] has a meromorphic extension Zp(z) to C. Thus §4
is devoted to the study of the singularity of Zp(z). In §5 we examine
asymptotic behavior of eigenvalues with the remainder using the tech-
nique of Aramaki [4]. Finally §6 gives an example which illustrates
our theory.

1. Definitions of operators and some hypotheses. In this section we
introduce some classes of pseudodifferential operators on R” and give
our hypotheses.

Throughout this paper, fix a multi-index (4, k) = (hy, ha, ..., hy,
ki,ky,..., k) suchthat h; , k; > 1, hj+k; >T for j=1,2,...,n
and put
T = the least common multiple of {A, Ay, ..., hn, ki, k2, ..., kn},

" 1/(2T)
r(x, &) = | S {x P 41821y
j=1
for (x,&) = (X1, X2, ..., Xn, 1,62, ..., &) € R, Then we con-

sider a symbol p(x, &) € C*(R"” x R") satisfying:

(1.1) There exists a sequence of functions {p,,_;7/2(x, ¢)}j=o,1,..
where p,,_;7/2(x, &) are C* functions in R?>*\0 and quasi homo-
geneous of degree m — jT/2 of type (h, k) such that

.X é) Epm ]T/2x é)
Jj=0

Here the quasi homogeneity of p,,_jr/, of degree m — jT/2 of
type (h, k) means that:

Pm—jrp(A - x, A% &) = 27T 2p, irn(x, &)
forall A >0 and (x, &) € R?"\0 where
Mox=@hx, ..., Mx,) and AK.&= ke, ARE).

Then the meaning of the asymptotic sum in (1.1) is as follows: For
any integer N > 1 and multi-indices «, £, there exists a constant
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Cyopn > 0 such that

N-1
D;Dg [p(x ,8) — Z Pm—jT)2(X, \f)}

j=0
< Copnr(x, &)m=(NT/D—(a, h)=(B k)

for all (x, &) € R*" such that r(x, &) > 1 where (a, h) = Z/ a
for multi-indices a = (a;, @z, ..., ay) and h = (hy, hy, .. hn)
above (cf. Robert [9]).

Next we define a pseudodifferential operator P with the Weyl sym-
bol p(x, &) as above:

(1.2)  p¥(x, Dju(x)

= (2m)~" / / e’ Vep (%—Z 6) u(y)dy d&,

for all u € S(R") which denotes the totality of rapidly decreasing C*°
functions and x-¢&=37_ x;¢;.
Our first assumption is:

(H.1) p(x, &) is a real valued function on R?",

Then it is well known that the operator p%(x, D) defined by (1.2)
is formally self-adjoint, i.e., for all u, v € S(R"),

(p¥(x, D)u, v) = (u, p¥(x, D)v)

where (u, v) denotes the usual inner product of # and v in L2(R").

Now we shall consider the operator p¥(x, D) whose principal sym-
bol pn(x, &) is non-negative and degenerate on some submanifold in
R?"\0. In order to do so, let ; and X, be smooth closed quasi conic
submanifolds of codimension d; and d, in R2"\0 respectively such
that d; + d, < 2n. Here quasi conicity of X; means that (x, &) € X,
implies (A" -x, Ak &) e X; forany 1> 0.

The second assumption is:

(H.2) X; and X, intersect transversally. That is to say, X=X, N
X, is a closed quasi conic submanifold such that for every p € X,
the tangent space T,X of X at p is the intersection of 7,%; (i =
1 , 2) sz = T/)Zl N Tp22 .

Then the normal space N,X of X at p is identified with the direct
sum of N,%; (i=1,2): N2=T,R”/T,Z = N,%, & N,%, (direct
sum).
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DEFINITION 1.1. Let m be a positive number l positive integer
and M non-negative integer. Then the space Sm h. k 1) is the set of all

symbols p(x, &) having an asymptotic expansion of type (1.1) and
satisfying the following (1.3) and (1.4):

(1.3) T ={(x,&) eR™0; pm(x, &) = 0}.
There exists a constant C > 0 such that

|Pm—jT/2(X, f)l
r(x, &m-iT/2 =

for j=0,1,..., M where

" 2
— i Xj v
ds (x,¢&) = 1nf{ [Jz::l ((r(x, o yj>
. N 7172
+ (W“ﬂj) )} s v.meip,

dy = {ds, (x, &)* +dx (x, &)¥}'/2.
We assume the following regular degeneracy of the principal symbol:

(1.4) < Cdg(x, &M

i=1,2 and

(H.3) There exists a constant C > 0 such that

Pm(x, &) > Cr(x, &)"ds(x, OM
Now forevery peX and j=0,1,..., M, we can define multi-
linear forms p,,_jr/2(p) on N, which may be identified with R% x
R% : For X, ..., XM_]' € sz,
. 1 . >
Pm—jT2(P)(X15 oo s Xp—j) = W(Xl o XM—jDPm—jT2)(P)

where X, is a vector field extending X; to a neighborhood of p. Then
it is clear from (1.4) that p,,_;r/2(p) is independent of the choice of

extension X; of X;. Furthermore we define

ﬁm—jT/Z(pa X) me—jT/Z(p)(X, R X)

If we write X = (X}, X3) € NyX = N,Z;®N,X,, then it follows from
(1.4) that

i L o s
Pm—jT2(p, X) = z W(X?‘ngpm—jr/z)(p)-
la, [+, /l=M~j
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Thus we define a form p(p, X) on N,X and theset I', (p € X) as
follows:

M
5P, X) = Pm_jr2(p, X),
j=0

I,={b(p, X); X € NyZ}.

If we note that p(Ap, X) = Am=MT/25(p AT/2x,, AT/CDX,) for 1 >
0, we see that I';, = Am~MT/2I", (cf. Helffer [6]).
Moreover we assume the following:

(H.4)Forall p € X, I', does not meet the origin, i.e., I',N{0} = &.
(H.5) m>MT/2.

Under the above hypotheses (H.1) ~ (H.4), p“(x, D) is hypoel-
liptic with loss of M7 /2 derivatives. Therefore if we define an op-
erator Py on L?(R") with definition domain D(P,) = S(R") so that
Pyu = p¥(x, D)u for u € D(FPy), then P, is essentially self-adjoint.
If we also assume (H.5) in addition to (H.1) ~ (H.4), then the clo-
sure P of Py has a compact resolvent and the spectrum consisting
only of eigenvalues of finite multiplicity. Here we note that the defi-
nition domain of P is D(P) = {u € L*(R"); p¥(x, D)u € L*(R")}.
Moreover by (H.3), P is semi-bounded from below, i.e., there exists
a real number C such that for all u € D(P), ((P+ C)u,u) > 0.
Let 4; <A, <---, lim_, 4, = 0o, be the sequence of eigenvalues
with repetition according to multiplicity and Np(4) be the counting
function of eigenvalues as in the introduction.

Finally, in our arguments, we may assume:

(H.6) P is positively definite, i.e., 4 > 0.
Now let p € £. Then we can choose a local coordinate system w =
(41, up, v, r) in a quasi conic neighborhood W of p where u; =

(Ur1s .o tig), U2 = (Ua1, .o Ug), U = (U1, ..., Vopd —d 1)
such that u;; (i=1,...,d;,i=1,2)and vy, (k=1,...,2n—
dy —d, — 1) are quasi homogeneous functions of degree 0 with du;;,
dv; being linearly independent and X; = {y;; = --- = ug = 0}
(i=1,2). =

Then we must define a micro-local symbol class containing §(’Z ’ ,’:l N

DerFINITION 1.2. Let m, M € R, W, w be as above. Then the
space S(’Z: ,Ic” 1)(W, Y) is the set of all a(w) € C>°(W) satisfying: For
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any integer p > 0 and multi-indices (a;, ay, ), there exists a con-
stant C > 0 such that

8\ [ 8 \2[d\ [0
(ow) Gm) (75) (&) aw
where py = (d2 + r~T)!/2. Note that the symbol class is the Fréchet
space with the usual semi-norms.

The following five propositions follow from routine considerations
and so we omit the proofs (cf. Aramaki [2], [3] and Helffer-Nourrigat
[71).

< Cpmep pMley =l

PrOPOSITION 1.3. Let X be a vector field with C™ coefficients which
are quasi homogeneous of degree 0 on T*R". Then we have:
(1) X is a continuous linear mapping from S(’Z,](” l)(W, ) to
m,M—1
S(h’k;l) (W, x).
(i1) If X is tangent to X, then X is a continuous linear mapping

,M—-1/1
Jrom it (W, Z) 10 Syl (W, E).

(ii1) If X is tangent to X, and X,, then X is a continuous linear
mapping from S(’Z:,]('{I)(W, %) to S(’Z,’,’:{I)(W, 3).
ProrosITION 1.4. We have an inclusion: For any q > 0,

M +q/2,M+q/T
S(rZ,k;l)(W’Z)CS(rZ,Ig;l) W, E).

ProrosITION 1.5. If M is a non-negative integer, then we have
St ko) © ik (R 2.
ProprosITION 1.6. If
i€ Sy (W, %)
for i =1, 2, then we have
m+m,, M +M,

pl#p2€S(h,k;[) (W, %)

where

o —1)I8I
(1.5) pi#py~ Y 278 Y (a'/)ﬂ 0¢ DEp0f Dips.
k=0 la+B)=k
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PROPOSITION 1.7. Assume that p € S(’Z}(” n(W ., %) satisfies |p| >

CrmpM in W for a constant C > 0. Then we have
ptesy M w, ).

2. Construction of parametrices. In this section we shall construct
the parametrices of p“(x, D)—{I for some { € C. For this purpose,
let p € £. Asin §1, we can choose a local coordinate system w =
(uy, up, v, r) in a quasi conic neighborhood W of p where u; =

(Uir, oo mg), Uz = (U1, ooy Uag), U = (Vi,oon, V2pd —d,-1)
such that u;; (i=1,...,d;,i=1,2)and v, (k=1,2,...,2n—
d, —d, — 1) are quasi homogeneous functions of degree 0 with du;;,
dv, being linearly independent and X; = {u;; = --- = u;y = 0},

(i=1, 2). In order to construct parametrices for p“(x, D) - (I, we
must also define a symbol class with a parameter (.

DEFINITION 2.1. Let p € £, W be a quasi conic neighborhood of
p having a local coordinate system (u;, up, v, r) as above and A
an open set in the complex plane C and s, t € R. Then the class
Siile.y(W 5 Z, A) is the set of all C* functions a(w, ) on W x A
satisfying the following (1), (ii) and (iii):
(1) Forany (€A,
a(w, {) e S(s};fk;l)(W, ).

(1)) Forany w € W, a(w, {) is holomorphic in A.
(iii) For any (ay, ay, 8, p), there exists a constant C =
C(ay, az, f,p) >0 (independent of { € A) such that

() () (2 (&) ww o)

< Cpmes=p pM o=l

€]

forall (w,{)e W xA.

Since (&, k; [) is fixed throughout this paper, we omit the subscript
of symbol classes S(’Z:,](”;I)(W, %) and S(sh’ ”k;,)(W, X, A) and we de-
note the class of pseudodifferential operators defined by (1.2) with the
Weyl symbols with support contained in W in S™-M(W X, A) by
OPS™M(W T A).

By the Taylor theorem we can write, for j < M

(07 Q.
Pm-jriz= 9, Gaga, (U1, U2, v, 1)Uy Uy’
o [ +la /=M —
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in W and we note that py(x, &) is equivalent to

a " 12
S lul*+ > gl +r7TH

j=1 j=1
If we identify X = (X, X2) € N,Z = N,Z; & N,Z, with (u;, uy)
and p € X with (0,0, v, r), we can write

M
plp,uy=> Y Ga,(0,0,v, Nuluz.
J=0 |a,|+le,|/I=M~j

PROPOSITION 2.2. For every p € X, there exists a quasi conic neigh-
borhood W of p having a local coordinate system (uy, u,,v,r) as
above and q;({) =q;({; x, &) eS™ MW ,X,A), i=1,2, where
A is the union of an open cone in C having the vertex with the origin
containing the negative real line and a set {{ € C; |{| < &} for some
& > 0 such that

(2.1) (0 = O#qi(0) =1+ 1:(0)
where
ri(§) =ru(l) +ra(l) and ry({) = ru(l) +ra(l),
m@) eSO W, Z,A), m()esTHN W, A)
and
r2(0), ra(0) € STI20W, X, A)
where To =Min{T;, T}, Ty =Min{h; +k;; j=1,...,n}-T.
Proof. Choose a function y € C*®°(R?") such that x(x, &) =1 for

r(x,& >1 and yx(x,¢&) =0 for r(x, &) < 1/2. First we construct
q1(¢; x, &) . In a quasi conic neighborhood W of p e X, put

ql((a U, u, v, r) =X(ula U, v, r)(ﬁ(pa u)_g)_l‘
Then we have

(p — O)#aq1(8)
M
=X {(ﬁ ~O#B -0+ (p - me-jr/z) #p—0)!

j=0

M
+ > (Pm-jr2 — P 2B — C)_l}

j=0

+, X1 -07!
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where [p, x] =p#y—x#p. Since (p—{)" e S ™MW X A) we
can write

8x] = Cyj - Ou, + Caj - Ou, + C3j - Oy + C4;0,,

8¢j = Dyj Oy + Dyj -0y + D3j- Oy + D4jOr
where C;;, D;; (i = 1,2,3) are quasi homogeneous of degree

—hj, —k;, Csj, Dsj are of degree 1 — h;, 1 — k; respectively, the
formula (1.5) leads to

G-0#p -0 - 1€ W, 2, A).

Since u
D= Pmejrjp €STMINTZ0(W 5 A),
j=0
we have

M
(p - me_jm) #(p— ()" e STWMENT2. =My |5 A)
j=0

c S7L/20w X, A).

It is easy to see that [p, x](p —{)~! € S™™(W,Z,A). Since for
j=0,1,..., M,

Pm—jT2 = Pm—jrjp € STITI2 M-I (W |3 A,

we have
M
Z(pm—jT/Z = P jr2)#B — O~ = r11(0) + r12()
=0

where

(2.2) 11(0) = (Pm —Bm)(D - )~ € SO (W, 2, A)

and it follows from the formula (1.5) that r, € S~H/2:0W X, A).
For the case i = 2, we put

(83 x, &) = (Dm(x, &) +rm=MTI2 )=,

Then by the same arguments as the case i = 1, we also see that (2.%)
also holds for i = 2.

Now we shall construct global parametrices of p“(x, D)-{I ({ e
A). In order to do so, let p € £ and W be a quasi conic neighbor-
hood of p as in Proposition 2.6. Then choose a function ¢(x, &) €
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C>(R?") which is quasi homogeneous of degree 0 and suppp C W
and define

(2.3) ayp(¢; x, D)
=¢"(x, D){q{"({; x,D)—-qy"({; x, D)ri’(¢; x, D)},

(2.4) q3(¢; x, D)
=¢"(x, D){q5’({; x, D) —q{" (s x, D)ry ({)(x, D)}.
Then we have

(0" (x, D) - {1)g%(¢; x, D)
= p¥(x, D)+d"({;x,D)  (j=1,2)

where
d¥((; x, D)€ OPS™ /20w, 2, A).

Moreover, if we define for every j=1, 2,
a4 x, D) =q}(¢; x, D)(—=dP (¢ x, D), 1=1,2,...,
we can find

g’ (¢; x, D)€ OPS™™ "MW X, A)

such that
N-1
a’ (s x, D)= q4(¢; x, D)€ OPS™" NI/ =MW 5, A).
=0
Thus we see

(pw(x> D)_Cl)q_;ﬂ(é’>an) Eww(-an)

modulo OPS~(W , X, A) =(),,OPS™™ MW ,Z, A). Of course,
since p¥(x, D) is elliptic outside X, we construct a usual parametrix
there and by a partition of unity, we can construct the global para-
metrix for p¥(x, D) —{I.

3. Construction of complex powers. In this section we construct com-
plex powers for p¥(x, D). For this purpose, define an operator P
on L*(R") so that

Pyu =p“(x, D)u, ue D(P),

where D(Py) = S(R"). Under the hypotheses (H.1) ~ (H.5), Py has
the closure P whose spectrum is discrete. Moreover, P is bounded
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from below, so by (H.6) we may assume that there exists a positive
number y > 0 such that

2
(Pu, ) 2 )12 e

for all u € D(P). Then we can define complex powers P? of P as
follows.

z__1 z _ -
(3.1) P *m/rf (P — Iy dg

for Rez < 0. For Rez > 0, choose a positive integer k such that
Rez < k and define P? = PkPz~%  Here T is a curve beginning
at infinity, passing along the negative real line to a circle |{| = ¢
(0 < gy < y), then clockwise about the circle, and back to the infinity
along the negative real line. Note that the definition of P? (z € C)
is well defined (cf. Shubin [11] and Seeley [10]).

We set A as the union of a small open convex cone containing the
negative real line and {{ € C; |{| < (¢0 + 7)/2} . Then we define the
symbol, for Rez < 0,

(3.2) pi,z(x,é)=—2:n—ll—./rczq,~(c;x,é)dc (i=1,2)

and denote the pseudodifferential operator with the Weyl symbol
Di.z(x,&) by p}’fz(x, D). If k-1 < Rez < k for some positive
integer k, we define p{’ (x, D) =p*¥(x, D)kpl?”z_k(x , D). Then we
have

THEOREM 3.1. Assume that p(x,&) € S(h k) satisfies (H.1) ~
(H.6). Then we have
(i) P? € OPS(’Z%f 7) MRez and has the Weyl symbol p; .(x, &)
‘ ?iil)’l?"gr: any a <0 and m', M’ € R such that ma < m’,
(m—-MT/2a<m —MT)/2,

Di. -(x,¢) are holomorphzc on any compact set in I, = {z; Rez <
a} with values in S(h ko - More precisely, for any compact set K

in g and oy, ay, B, p, there exists a constant C = Cx o o, .
independent of z € K such that

(3.3) |0, lauzaﬁappl .l <crm —pp oy |=lool/T
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Later, we denote the class satisfying (i), (i1) and (ii1) of Theorem
3.1 by Hste z,MRe z .
For the proof we need the following lemma.

LEMMA 3.2. Let a({)(x, &) e SU (W, X, A) and define

ax(x. &) = 5 [ Ca@)x, Ot

Then a, € HS™m Re z+m+s, M Re z+ M+t )

Proof. Since a({)(x, &) is holomorphic in
1_‘p(x,é) = {C, Im{=0,Rel> O} U {Ca IC' < 25,0()6, 5)}

with values in S(Sh’tk_l)(W, 2, A) where p(x,&) = rmpM | by the
Cauchy theorem we may replace the contour I' in the integral with
I')y(x,& - Moreover for any ay, a3, B, p, there exists a constant C =
Ca,,a,,p,p such that

t_lall—'lazl/l

o ool opa()(x, O < CILI™ plx, &7 p}
Now we decompose I'y ¢ in (3.2) into I'=1T"; + I, + I3 as follows:

I';{=-s, -0p(x,¢) <s< o0,
I ¢ =p(x, &e ', —n<0<m,
I3;(=s, op(x, &) <s<oo.

For i =1, 3, we have, for some constant C and C,
[ caiaizatopalidc

00
< C/)(X, é)rs-—ppé‘|al|—lazl/l/ SRe z—1 ds
dp(x,¢)

M\Re z+1 .s—p I—la|=|a,|/!
SCz("mPa) e z+ rs 17'0Z 1 21"

For i =2, we have

/r cFog 000l ora(0)]|dC|

_ —la|=|a,|/! z
<Cp(x, & pp}t: la; =l |/ /m i é)lClRe lldCI
=0p(x,

— C(rmpgl)Re z+1rs—pp)t:—|all"|az|/l.

This completes the proof.
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End of proof of Theorem 3.1.
Since ¢;({) € S(;”"k’;"lfu(W, ¥, A) and

(P—L{D)™' ~q"({)(x, D) € OPS™(W, X, A),

(i) follows from Lemma 3.2, (ii) follows from the same arguments of
the proof of Aramaki [1; Proposition 3.1].
Next we clarify the symbol of PZ.

ProPOSITION 3.3. Let W be a small quasi conic neighborhood of
p € L. Then we have in W

(i) a(P?)=pp, u)* +d; ;.
(ii) o(P?) = (pm+r"=MT/2)7 + d, , where

di,;=du,+dyn,. and dy ;=dy ;+dy,;,
dll,z eHstez,MRe z+1 , d21,z GHSmRe z—-T/2,MRe z—-1

and
d12 2, d22 z GHSmRe z-T,/2,MRe z

Proof. (i) First, we consider the symbol g;({)(x, &) in (2.3). By
the Cauchy theorem, we have

- /r Ca(O)(x, &) dl = xb(p. u)*.

Since g>(O)#r1() — q2()ri(§) € S™m-MI2. =My | A), it suffices to
consider

(3.4 iz = 37 [ FaOm© e

Since ¢>({)r11(¢) € S™™ ~M+1( | A), it follows from Lemma 3.2
that dy; , € HS™Rez, MRez+1 = Thys (i) holds. Taking (2.3) into
consideration, (ii) also follows.

4. The singularity of trace of PZ?. In this section we consider the
singularities of trace of P? and determine the order of the poles and
the coefficients of the Laurent expansions at the points. Let p.(x, &)
be the Weyl symbol of P? and holomorphic function of z. It is well
known that if

/ p=(x, &) dxdé < C.
R"xR"
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for some constant C,, then P? is an operator of trace class and the
trace is given by:

Tr[P?] = (21)" /R | pal, E)dxde.

Since
[ petxoaxa
r<1
is an entire function, we may consider:
[ petx.oyaxae.
r>1

In order to do so, we need the following proposition.

ProOPOSITION 4.1. Let f(z; x, &) bea C™ function on CxR" xR”"
satisfying
(i) Forevery (x,¢&) e R"xR", f(z; x, &) is a holomorphic func-
tion in C.
(ii) For every compact set K in C, f(z; x, &)/rmRe =) pMRe 2=
is bounded uniformly in z € K .

Then the integrals
Iji(z)=/>lf(z,x,£)dxdé

holomorphic in 11, = {z;Rez < a} if a satisfies any one of the
Jollowing (1) and (II):

() Ma-i+di+dyJl<0 and m—-MT/2)a—j+Ti/2+|h|+
lk| - Td/2 - Td,/(2]) < 0,

(II) Ma-i+dy+d,/| >0 and ma—j+|h|+|k|<O0.

Proof. Let K be any compact subset in II,. Then there exists a
constant Cx > 0 (independent of z € K) such that
1f(z, x, &) < CgrmRez=ipltRe 2=t < Cy(r™ pgl )r~/ p5!

for all z € K. In fact, we have from (H.5), r™p¥f > ym—MT/2 > 1,
Let W be a quasi conic neighborhood of p € X and (u;, up,v,r) a
local coordinate system in W as in §2. Then

dxdé=J(uy,uy,v,r)dujduydvdr
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where J(u;, uy, v, r) is quasi homogeneous of degree |h| + |k|—1.
Since ps = {|u1|® + |uz|? +r~T}Y/2 in W, we have, for z € K,

|ji(z) = /Wn{m} f(z, x, &) dx dé

<C (rmp]z‘f)ar—jpgirv’""'kl“ldul du2 dvdr
wn{r>1}

o0
_ C/ pma—j+hl+HEI1 g,
1

X / (|u1l2+|u2|21+r—T)(Ma—i)/2du1 a’uza’v.
wWu{r>1}

Since |u;|, |v| are bounded in W, we may assume that |u;|, |[v|< 1.
By the change of variable (u;, u3) — (r~T/?u;, r7/@)y,), we have
with another constant C,

ji(2) < C/°° pma—j+hL+lkl=1=((Ma=i)+1d+d)TICD) () dy
i

where
) — 2 2 (Ma—i)/2
I /H i (P 2+ )02 Gt

/e

< C/ / (t2+s2’+ 1)Ma=D/2gd =151 gt ds.

Moreover, we take the change of variable: =R cos6, s=R!/!sin!/ lg.

Since the Jacobian is
D(t, s) 1

S /1 gin(1/D)=1
D(R. 0) IR sin 0,

we have

T/2
Ji(r) < C/r (R? + 1)Ma=D)/2p{(ld,+d)/1}-1 g R
0

n/2
X / cos?i—1 gsin%/D-1 9 4g.
0

Here we note that

/2 d d
d -1 g cin(d,/D-1 _ ! 1 @
/o cos?i™" @sin 0do = 2B ( 5 21)

where B(-, -) denotes the Beta function and
/°°(R2 + 1)(Ma=0)/2 Rild +d,) /11 g R
0

_1T({ld; + dy} /20T ({I(i — Ma) — ld, — d>}/(2]))
T2 (i — Ma)/2)
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if Ma—i+dy+dy/l <0. When Ma—i+d, +d,/| >0,
T/2
Ji(r) <C /r R{Ma—i+(ld1+d2)/l}—1 dR = O(r(l(Ma—i)+ld1+d2)/(21) 10g r)
0
as r — oo. Thus we have, with an another constant C > 0,
1ji(2) < C/°° pma=j+hll=1-T((Mai)+1d,+d,)/2]) g |
1

if Ma—i+d,+d,/2<0 and

w .

11|;i(z) < C/ pma=i+hi+lkl=1160 p gr
1

if Ma—i+d,+d,/2>0. Therefore the integral I;;(z) is absolutely
convergent for each case (I) or (II). Outside X, by the ellipticity of
p(x, &), (I) or (II) is clear. This completes the proof.

For brevity of notations, we put

_ldi+dy _|hl + K|
Nl = Ml N2 = T and
N 2(|h| + |k|) — T(ld, + d)/!
37 2m — MT '

COROLLARY 4.2. Let d;j , (i, j=1,2) be as in Proposition 3.3.

Then we have the following three cases.
(i) When Ny > N,, Tr[dy’ ] is holomorphic for Rez < —N, + 6,

where o) = M1n{1/(2m) , Ny — N3} .

(i) When Ny = N, Tr[d} ] is holomorphic for Rez < =N, + 9,
for some §, > 0 except z = —N, which is at most a simple pole.

(iii) When Ny < N, Tr[d}’ ] is holomorphic for Rez < —N3 + 3
where 03 = Min{l/T(2m —MT), N3-— Nz} .

Proof. First we consider the case (i). In this case, we have —N; <
—N, < —Nj. Since d21,z € HSmRez-T/2,MRez-1 apg dzz,z €
HSmRe z=T,/2.MRe z it follows from Proposition 4.1 that Tr[d}’,
is holomorphic for Rez < —N, + J; .

In the case (iii), note that —N3 < —N, < —N; . If we consider the
trace of dj; , € HS™Rez MRez+1l and apply Proposition 4.1, it is
easy to see that Tr[d}" ;] is holomorphic for Rez < —N3 + 3.

The case (ii) is more delicate. In this case, we have —N; = —N, =
—N3. Since it easily follows from Proposition 4.1 that Tr{d); ,] is
holomorphic for Rez < =N, + 1/(2m) and Tr[d}| ,] is also holo-3
morphic for Re z < —N, . Therefore it suffices to show that Tr[a’11 ;]
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is holomorphic for Re z < —N,+4J, except z = —N, which is at most
a simple pole. By (3.4),

dit s = X (Dm = Bm) /1_ (O 4+ P MTR ) (G — 0L AL

27

However by Proposition 4.1, we can replace (§ — {)~! with
(B + r™~MT/2 _ ()=1  Thus the Cauchy theorem leads to

diy ;= (B + P MTI2)Z _ (p, 4 pm=MT/2)z
Since by the Taylor theorem,
dit,z = z(Bm — Pm) /Ol{ﬁm + 1" MI2 4 6Dy — Pm)}* ' dO
=zdyy ,+z(z - 1)dy, ,
where 1
2= B =0w) [ (B +0om — pm)}*""
and
11,z = Bm = pm)r™ MTP2
f f {Bm + 0(pm — Pm) + xr™MT/23212 d x d6.

At first we consider dj; ,. Let a <Rez <b where b < —N,. Then

(2m)™" / dyy, (x,&)dxd¢

27:)”(mz + !hl + |k])
<[ (@) = pm(@)
1
x /0 (@) + 0(Dm(®) — Pm(@))}*~ dO do.

Since Pm(@) + 6(pm(w) — Pm(w)) is equivalent to (Juy|2 + |us |2 )M/2,
we may assume that the integral is equivalent to

/ (|u1|2 + |u2121)(MRe z+1)/2 dul duz
<1
1 pl
::C/ / (12 + s2)MRe 241)/2d,~1sdi=1 gy g
0

di M(a+1)4d, +d,1-1
33(2 21)/ R dR.
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If a <Rez where a > —N, — 1/M, the integral is convergent. Thus
Tr[d11 ,] is holomorphic for Re z < —N,+4d, for some d; > 0 except
z = —N2 which is at most a simple pole. Next we shall show that
Tr[d;’}”, .1 18 holomorphic for —N, —d, < Rez < —N, + J, for some
8, > 0. Since pp, + O(pm — Pm) is equivalent to ™ (|u;|2 + |us |2 )M/2,
we may consider the integral

I= / rm(‘u1|2 + |u2|21)(M+1)/2rm—-MT/2 dr
>1,ju <1
1
x [P+ P2 4 e M2 dy dy dos.
0

Choose 0 < & < 1/2, a and b such that a < —N, + Me/2, b >
—Ny;+ée—~1/2 andlet a <Rez <b. Then

1
/ {(rm(lullz + |u2l21))MRe z[2 + er—MT/Z}Re z-2 dX
0

1
<A (P + Py MR e [ M TRy
< é{( M(Juy | + fup |2 yMI2)Re 21 e p(m=MT/2)(e-1),
Therefore

1< /°° pmb—Me/2+hl+{kI-1 g,
1
x/ (2 + [ 2y M=+ 1IM12 gy oy
|u

By the same change of variable as in Proposition 4.1, we see that the
integral is covergent. Thus Tr[d”“’ ] is holomorphic for —N, + & —
1/M <Rez < —-Ny+ Me/(2m). Th1s completes the proof.

Now we consult

I(z) = 2n)"" / f  oplp, ) dxdg
and
I(z) = (2m)™" / / 0(Dm + P MTI2)? dx dE.
r>1

In order to do so, we define, for p € X and X = (X}, X3) € N)X,
Hesspm(p, X)= Y ——= (X' X3 0m)(p).

alas!
ap.03.
le, |+, |/ I=M
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Note that it follows from (H.3) that Hess p,,(p, X) >0, forall X =
(X1, X3) € N,X so that X # 0. Define a measure dX, on N,X such
that

(4.1) dXx, =1.

/Hessﬁm(p,X)<l
Then it is easily seen that d.X; , = Amd+&/M dx, for A >0, ie.,
dX, is quasi homogeneous of degree m(d; + d,/!)/M = mN, . Next
we define a positive C* density on X as follows: Choose a local
coordinate system (u, v’) where u = (u;, u;) is as in §2 so that
dxd¢ = dudv’, so dv’ is quasi homogeneous of degree |A| + |k]|.
Then we define dp = f(p)dv'|, where

42 f(p) = / dus dus.

1,52
ZlalHlaz!/le oy 0y, 000, 0, 1(P))ut; T24y7 <1

It follows that dp is quasi homogeneous of degree |A| + |k| — mN; .

Moreover, taking Proposition 4.1 into consideration, we note that
@ = @|s +r; in the integral I,(z) where r; € S%! and rp(p, u)? €
SmRe z,MRe z+1 , SO we may put

n@=@n [ [ s, w?dx,dp.

THEOREM 4.3. Assume that p(x, &) € §(’Z,i” ) satisfies the hypothe-
ses (H.1) ~ (H.6). Then there are three cases for the singularities of
Zp(z) = TI[P?].

(I) When Ny > N,, Zp(z) is holomorphic for Rez < —N, +
where &, is as in Proposition 4.2 except only one singularity at z =
—N, which is a simple pole and the residue R{(—N,) is given by:

-1
Ri(~No) = —(2n)" /S (@) do

where S;R" = {(x,{) € T*R"; r(x, &) = 1}.

(II) When Ny = N,, Zp(z) is holomorphic for Rez < —N, +
for some &y > 0 except only one singularity at z = —N, which is a
double pole and the coefficient Ry(—N,) of (z + N,)~% of the Laurent
expansion at z = —N, is given by

= BN [
RZ( NZ)_ M(m—MT/2)(2n) Sq'Z SNprm(w’ Y) dYa)dw,

where S;% = S;R"NE and SNyX = {X € N,X; Hess pp(w, X) = 1}.
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(Il) When Ny < N,, Zp(z) is holomorphic for Rez < —Nj3 + J3
where 03 is as in Proposition 4.2 except only one singularity at z =
— N3 which is a simple pole and the residue R\(—N3) is given by:

—(lh] + k| = mN,)

_ — —-n ~ —-N,
Ry(=Ny) = =0 2 o) /&;Z 2 0N do

Proof. By Corollary 4.2, we may consider
nz=en [ [ ple. x)7dx,dp
r>1
for the case (II), (III) and
B(z) = @m) " [ [ (pne+ MRy dxde
r>1

for the case (I). First we consider /;(z). Note that by the quasi ho-
mogeneity of dp we can write
dp = (|h| + |k| = mNy)rPHK=mN=1 £y drd e

where dw is the measure on S;X and f(w) is as in (4.2). Then

= [T [ b, )

X r(m—MT/2)2+|hl+|k|—1 de dodr
= (21)~"(|h] + |k| — mNy)

y / pm=MT[2)(z+N,)-1 g, / / o, X)?dX,dw
1 *Z NI

_ =+ 1k] = mNy)
~ (m—MT/2)(z+ N3)

/ plw, X)*dXydw.
s:zJNz

Here we consider
J(2) =/ Flw, X)* dXe.
N,T

For brevity of notations, put |X|, = {Hesspm(w, X)}'/M for X €
N,X which is equivalent to (|X;|! + [X3/*)!/2. Then by (H.4), there
exists a constant C > 0 such that p(w, X) > C. Therefore

/ plw, X)?dX,
|x],<1
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is an entire function of z. Thus we may consider
h@= [ b, X0 dXe.
[X1,>1

Choose a real number a so that a < —N; and let Rez < a. Then by
similar arguments as in Proposition 4.1,

[ b Xpdxe< [ sMerdsdi-las [ po, v)raY,

1X],>1 1 SN2

where SN,X = {Y € NyX; |Y|, = 1}. Therefore J(z) is holomor-

phic for Rea < —N; . Thus the case (IIT) follows. -
The case (I1): Since p(w, X) — pm(w, X) = O(X|M~1) as |X|p —

oo, we have p(w, X)? — (@, X)? = O(|X|MRe z-1) | Thus we may

consider

D(z) = / (w0, X)? dX,.
X, 21

Since pn,(w, X) is quasi homogeneous of degree M in (X, X;), we
see that
JZ(Z) =/ st+dl+d2/l—l dS/ ﬁm(w, Y)z de
1 SN,X
_ -1
T Mz +d1 +d2/l SN,X

Here the integral is an entire function of z. Thus the case (II) follows.
The case (I): In this case we note that the integral

/ pm(w)‘Nza'w =lim pm(w)’Nz dw
S:R" e>0 /s R"n{p, >e}

Dm(w, Y)?dY,,.

exists. Now we must consider
L(z) = (2n)™" / / (pm +r"MTI2)z dx dé.
By the Taylor theorem and Proposition 4.1, we are reduced to studying

I(z) = (2r)™" / (r"pm(w) + 1)7rHK=1 dr d o,
SR
The change of variable: rp,,(w)!/™ = s leads to
Ih(z) = 2m)™" / (s™ 4 1)Zslhl+lkI=1 / (@) Mdw
0 SIR”
_ 1 I(M)I(=z = Ny) / N,
= T(—2) - Pm(w) M dw

if Rez < —N,. Thus the case (I) follows. This completes the proof.
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5. Asymptotic behavior of eigenvalues. In this section we shall con-
sider the asymptotic behavior of eigenvalues of P under the hypothe-
ses (H.1) ~ (H.6). Let the eigenvalues of P according to multiplicity
be 11 <1y <--- and Np(4) be the counting function of eigenvalues:
Np(4) =#{j; Aj < 4}. The following theorem is useful in the sequel.

THEOREM 5.1 (cf. [4]). Let P be a positively definite self-adjoint
operator on a separable Hilbert space H with domain of definition K
which is a dense subspace of H and the canonical injection from K to
H is a compact operator. Here we regard K equipped with the graph
norm as a Hilbert space. Assume that

(i) P~S is of trace class for large Res > 0 and Tr[P~5] has a
meromorphic extension Zp(s) in Ds = {s € C;Res > a — 9} for
some a>0 and 6 > 0.

(ii) Zp(s) has the first singularity at s =a (> 0) and

7.4 d\ ' 1
Zr0) = L G-y (%)

is holomorphic in D; .

(iii) Zp(z) is of at most polynomial order in Ims in all vertical
strips in Dy, excluding neighborhood of the pole s = a.

Then we have:

Np(3) = ,‘YZ‘: = (%)H (5)

as A — oo.

+0(A979)

s=a

The proof is essentially due to the inverse Mellin transformation
and given by [4].

Now we return to our consideration. Here we note from the con-
struction of the parametrix of P — {I and the same arguments as in
[3] that the condition (iii) of Theorem 5.1 holds.

PROPOSITION 5.2. Assume that p(x, &) € :S’V(’Z;y ) satisfies (H.1) ~

(H.6). Then we have three cases according to Theorem 4.3.
(I) When N, > N,, we have

Np(A) = BiAM: + O(AN"%)

as A — oo where

By = 2n ‘”/ w) Mdo.
1 |hl+|kl( ) S'R”pm( )

q
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(II) When N; = N,, we have
Np(4) = BoAM: log A + O(A™>7%)

as A — oo where
_ |h| + |k| — mN,
" MT(|h| + |k| = Td,/2 — Td,/(2]))

x (2m)"" / / (@, Y) % d Yy do.
sz Jsnz

B,

(IIT) When N; < N,, we have
Np(2) = B3ANs + O(AN—%)

as A — oo where
_ R+ Ik = m
A+ k] — Tdy /2 — Tdy](21)

x (2m)~" / / plw, X) ™ MdXx,do.
S;ZJN,T

B;

6. Example. We consider the example (0.1):
p¥(x,D)=Hy p+V(x) onR’

where a(x) = (bxf*1,0,0) and V(x) = (x} + x3)! + ax¥*! (b real
number, a > 0, k > 0 odd integer and / positive integer). Then
we have m = 2l(k+1), M =2 and T = [(k+ 1). If we put
o= {(x, &) = bxktl, & =¢ =0} and 5, = {(x,&);x1 =
x, = 0}, it is easily seen that (H.2) holds and d; = 3 and d, = 2.
Moreover we see Ny =3/2+ 1/l <N, =3/2+1/1+1/(2(k+1)) and
N3 =3/2+1/l+1/(k +1). Thus by Proposition 5.2 (III), we have

NP('{) - B4/1(3/2+1/(k+1)+1/l) + 0(/1(3/2+l/(k+1)+1/l)—§)

as A — oo where

)
T k+1+1+3l(k+1)/2

x/ / Blw, X)~ G2 kEDRD gy de.
s:zJINE

By (2m)~?

Here by simple calculation, we see that

o, X)=1X1P+ X" +a/Vbr+1,
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so we have
I = / / (1X1|2 + |X2|21 + a/,/bZ + 1)—(3/2+1/(k+1)+1/1) de dow
s:zJINE

2
= Vol[S;Z1 ][ S -1
j=1

X /°° /°°(s2 + 12 4 a/ /b2 + 1)~ G2+ D)+1/D gdi = 1yd=1 g g gy
o Jo

= 2752~ 1/(k+1) T/ Hr{/k+1))
TG+ I+ 1k +1)

where S(dj_,) is the surface area of the unit sphere in R% and we
used VoI[S;X] = 2(b% + 1)~!/(2(*+D)  Thus we have
Bae T(1/OC(1/(k + 1)) |
2231k + 1)+ 2(k + 1 + D}aV/*k+DT(3/2 + 1/l + 1/(k + 1))
In the particular case k =/ =1, we have
1

Np(A) = W’P + 0(A379)

as A — o0o.

REMARK 6.1. When b = 0, we can regard H, ; + V' (x) as a quasi
elliptic operator of order 2/(k + 1) of type (k + 1,k + 1,2/,
I(k+1),l(k+1),Il(k+1)). In this case the result also follows from

[3].
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