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ENVELOPING ALGEBRAS OF LIE GROUPS
WITH DISCRETE SERIES

NGUYEN HUU ANH AND VUONG MANH SON

In this article we shall prove that the enveloping algebra of the Lie
algebra of a class of unimodular Lie groups having discrete series,
when localized at some element of the center, is isomorphic to the
tensor product of a Weyl algebra over the ring of Laurent polynomials
of one variable and the enveloping aglebra of some reductive algebra.
In particular, it will be proved that the Lie algebra of a unimodular
solvable Lie group having discrete series satisfies the Gelfand-Kirillov
conjecture.

1. Introduction. Let G be a real connected Lie group with center
Z, % and Z the Lie algebras of G and Z respectively. Let £* be
the linear dual of & . Then G is said to be an H-group if there exists
a linear functional / € £* such that the co-adjoint orbit of / in &*
is the hyperplane [ + Z+ where 2+ = {f € &*; f(Z) = 0} (see
Definition 2.1 of [2]).

In [2] it was proved that a connected Lie group G with center Z
is an H-group if and only if G is unimodular and there exists / €
Z* such that By(-, ) = [([-, -]) is a non-degenerate skew-symmetric
bilinear form on ¥/Z .

The class of H-groups plays the key role in the problem of classi-
fying unimodular Lie groups with discrete series. Let us recall that a
Lie algebra /# is called an H-algebra if it is the Lie algebra of an
H-group. The main results of [1] and [2] may be stated in another
form as follows:

A Lie algebra & is the Lie algebra of some connected unimodular
Lie group with discrete series iff & may be written as the semi direct
product of an H-algebra # with center Z and a reductive Lie algebra
S acting trivially on Z such that:

e the maximal semisimple subalgebra of ¥ has a compact Cartan
subalgebra.

e the center of ad () is the Lie subalgebra of gl(#) correspond-
ing to a compact torus in GL(%Z)

Such an & clearly acts in a completely reducible manner on 7 .
In the following we shall consider a slightly more general situation:
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namely & is the semidirect product of an H-algebra /# with center
Z and a subalgebra . acting trivially on .Z° such that /# con-
tains an .#-invariant subspace # complementing .Z . Our aim is
to determine the enveloping algebra of such a semidirect product and
apply this result to compute the characters of discrete series represen-
tations later. In the present article we treat only the case dim(Z") = 1.
Although the case dim(Z") > 1 is not much different from this, its
proof requires one to extend the ground field to an arbitrary field of
characteristic 0 and will be treated in another paper.
The main result many be stated as follows:

THEOREM 1. Let & =# 0. and Z be as above.! Then for any
{#0 in Z, the localized ring A = U(Z'), is isomorphic to a Weyl
algebra A, ® k[{, {~1], where n = dim(Z/Z"). Moreover there
exists a Lie algebra homomorphism X — ay from & into A such
that [X, ul =[ax, u], Yu € A. In particular U(Z); is isomorphic to
A ®Kk[L, TN U).

In fact, the above isomorphism will be described in more detail for
later applications (see Theorem 4.3).

The authors would like to express their gratitude to the Department
of Mathematics at the University of HoChiMinh City. The first author
would also like to express his gratitude to the International Center for
Theoretical Physics at Trieste, Italy for its hospitality during his stay
as a Visiting Scientist.

2. Notation. N, R, C always stand for the natural integers, the
real and complex numbers. Recall that if & is a Lie algebra with one-
dimensional center .Z = R{, then the localized enveloping algebra
U(%), is defined to be the set of all elements of the form {~"u, ne
N, u € U(¥) with the multiplication: ({~"u)({~"v) = {~+Myw .
Let 7 be the principal anti-automorphism of U(¥) so that:

T(X]Xz"'Xn) = (_l)anXn—l Xy, YXi, ..., Xy eg.

Then it is clear that 7 may be extended to an anti-automorphism of
U(%); by defining: 7({~"u) = (-1)"{"1(u). An element u € U(Z),
is said to be symmetric (resp. skew-symmetric) if t(u) = u (resp.
T(u)=—u).

' © denotes the semidirect product.
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Let R be an algebra over R, n € N; then the Weyl algebra A,(R)
is the algebra over R generated by theset 7" ={pPi, ..., Dn> q15---
g, with relations:

Piq;—q;P;=9ij, 1<i<n

where J;; is the Kronecker symbol. We also say that 77 is a Gelfand-
Kirillov basis of A,(R). More generally, let A(R) be any algebra over
R; then a generating subset 77" = {p1, ...Dn, 41, ..., qdn} is said to
be a Gelfand-Kirillov basis of A(R) if the mapping: p; — D;, q¢; — q;,
1 < i < n may be extended to an algebra isomorphism between A(R)
and A4,(R). We often identify A(R) with 4,(R) and p; with p;, ¢;
with g;, 1<i<n.

Let #, be the (2n + 1)-dimensional Heisenberg algebra with the
standard basis {, &;, n;, 1 < i < n such that the only nonzero Lie
brackets among the elements of this basis are:

i, ml=2¢, 1<i<n.

It is clear that U(#y), is a Weyl algebra over R[{, —11 with Gelfand-
Kirillov basis p; =¢&;, gi=¢"15;, 1 <i<n. Let t be the principal
anti-automorphism of U(#;),. Then we have:

©(pi) =-pi, (@) =q, 1<i<n
and
7({) =-¢, (¢ =-¢!

Such an anti-automorphism of the Weyl algebra A, = 4, ®R[{, {71]
is also called the principal anti-automorphism of A, .

3. The nilpotent case. Let #Z = #, be the Heisenberg algebra
with standard basis {, &, n;, | < i < n as above. Let # =
(R + Ry;). Then there is a natural symplectic form on 7
with the canonical symplectic basis &;, 7;, 1 <i < n. The matrix of

any X € sp(#) with respect to this basis has the form:
a¥ b¥
(= )

where aX, bX, ¢X are n x n-real matrices such that bX and ¢X are
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symmetric, and ‘a¥ is the transpose of a¥ . Put

n

Sk =20 Y alEm )+ 201 S 05 - )

i,j=1 i,j=1

=_" Z a[](plqj+qul + C ! Z bljplp]
lj 1 i,j=1

¢ Z ¢’ qiq;.

i,j=1

va—

LEMMA 3.1. X — Sy is a Lie algebra homomorphism from sp(#)
into U(AZ); such that

[X, u] =[Sy, ul, VYXesp(Z), YuecUZ),.

Proof. For 1 < iy < n we have:
[&4&-2a4+2%m [X, & ]

Similarly, we have:
[Sx, m ]1=1X, m].
Hence it follows that:
[Sx,ul=[X,u]l, YueUZ).
Finally by using the commutation relations:

[pig;, pxai] = 6ipxd; — 6jkpids 5

[piq;, Pkpil = —0kpiD; — 61DiPk 5

[pigj, akdi] = dixd14; + 6i1dx4; »

pipj, a1l = S qipj + 6,19xP; + S jkDrd; + 61DiDk »

we see that
[Sx, Syl —Sx,y;, VX, Y €sp(Z). o

REMARK. The above expression of Sy is just the expression of D,
in [3] rewritten in the terminology of enveloping algebras instead ef
that of symmetric algebras as in [3].

Now let & = #Z ©.% where # is an H-algebra with one-dimen-
sional center .Z = R{. Assume that Z centralizes . and that 7
contains an .#-invariant subspace /# complementing .Z . Let ./~ be
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the greatest nilpotent ideal of 7 . Assume also that the center of ./ is
equal to .Z and that there exists an abelian ideal Z° of & contained
in # such that % /% is central in /' /2. Put & = Z N7,
N =N#NZ . Letn,..., N m beabasis of Z . Put:

H{XeHx [ X,Z|cZ}.

Then Ay = Zy N is precisely the centralizer of Z in /. Let
Xo=HNHF and Vg =MHNZ. Let m =dim.F and n =
3 dim(#/Z’). Then we have

PRrROPOSITION 3.2. Let the notation be as above. Let Xy, ..., Xy,
be any basis of 7 . Then there exist a Weyl subalgebra A of U(Z),
with Gelfand-Kirillov basis %" = {p;i, q;; 1 < i < m} and a Lie al-
gebra homomorphism y from 7y ® . onto a Lie subalgebra & of
U(%); satisfying the following properties:

1. U(¥); can be identified with a subalgebra of U(Y), commuting
with A,, such that

U(@); ~U(@); ® 4.

Moreover the restriction of the principal anti-automorphism 1 of U(Y),

to U(? )¢ coincides with the principal anti-automorphism of the latter,
and:

(pi) = -pi, (@) =4, 1<i<m.

2. Let X = x(#); then x induces an isomorphism Sfrom %/%
onto . Moreover there exists a basis X1y Xonoom Of Z such
that each X; may be expressed as:

(1) X;={Gi(q,{7'X,{7'p),  1<i<2n

where g = (g1, ..., 4m), ("X = (71X, ..., {7 Xopom), {Tlp =
(¢ 'p1, ..., ¢ pm) and each G; is a polynomial of 2n indetermi-
nates 0 = (01, ...,0n), v=W1,..., Yan—2m), ©= (01, ..., On)

which are in fact linear combinations of 1, w, w with coefficients in
R[0] such that the mapping (0, v, w) — (Gi(0, v, ))i<i<2n is an
automorphism of the polynomial ring R[0, v , w] with Jacobian 1.

3. x is, in fact, an isomorphism from # onto ¥ = x(*) and the
action of % on # is induced from that of ¥ on # /% . Moreover
foreach Y € %, x(Y) can be expressed as:

(2) x(Y)=Y - {Sy(q, {'X, 7 'p),
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where the polynomial Sy(0, v, w) is a linear combination of 1, y,
w with coefficients in R[6].

Proof. By making a preliminary change of basis if necessary, we may

assume that the basis has the form: {#ny, ..., #m, X1, ---, Xon—2m>
&,y ..., &n} where:

e Ni,..., Nm is a basis of .7,

e X,,..., X, is a basis of ./ (mod .7,

e X, 1,..., Xon_om is a basis of #,mod ./,

o &, ...,&, isabasis of /" mod /.

Moreover it follows from Proposition 3.1 of [2] (see also Proposition
4.2 of [1]) that &, ..., &, may be chosen so that:

[&i, njl=0;¢, 1<i<m.

Put g, =("'n;, 1 <i<m. Now for every X € 7% ©.% there exists
a real m x m-matrix SX such that:

m
[X,m]=—§:S,~’§nj, 1<i<m.
j=1
Note that S¥ =0 if X € .4;. Let / be the linear form on # such

that [({) =1, I[(#) =0, and let B, be the associated skew-symmetric
bilinear form on # . For X e Z;©.% and 1< i, j < m we have:

B/([X> éi]r ’71) +B[(él'a [X’ ’7}]) = l([X> [éia ”]]D =0.

Hence
m

[X,&1=)_SX& (mod.Ag).
i=1
Put
1 & oy
Sx=-3 > SE(Eig; + aié).
i j=1
Then X — Sy commutes with the ¢;’s. Moreover for 1 <i < m we
have:

(3) [X -8x,¢&]=0 (mOdﬂfo + Z(Ij%) .

j=1
It follows that for X, Y € Z; © . we have:

[X, Sy]l=1[Sx, Y] =I[Sx, Syl (mod dSat+ Y f]iqj/Vo) :

i=1 i, j=1
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Hence
[X-S8x,Y-Syl=[X,Y]-[X,Sy]-[Sx, Y]+ [Sx, Sy]

m m
=[X, Y] - [Sx, Syl (mod th«/’ﬁ+ Z QiQJ%) .

i=1 i,j=1

On the other hand, by a similar computation as in the proof of
Lemma 3.1 we see that:

m
[Sx, Syl = Six,v] (mod Z thj'///o) .

i,j=1
Hence
(4) [X—-Sx,Y -Sy]

m m
=[X, Y]-Sx, 1 (mod Z(Ii///o + Z (11‘41/16) .

i=1 i,j=1

Let Y, ..., Y; be a basis of .. Then it follows from (3) that
U&) =UM)Crs - 5 EmllXrp1 = Sx -+ s Xon—2m — Sx,_, ]
[Yi=Sy,..., Y= Sy]
=U0)c[Xrs1 = Sx 5+ s Xon—2m —Sx, _, |
‘M =Sy,.... Y =Syll&, ..., &¢nl
= A&, ..., Em]
where
A=UUN)[Xrs1-Sx s - » Xan-2m—Sx,_, I1-Sy,, ..., Y1=Sy].

Put py =¢,,andfor 1 <i<m-1 put
+et

Pis1 = Z ( Ol (ad &)1+ (ad &) &) - q}
..,j

On the other hand for Y € A put

v = 3 CT R aa g ad (gl

. . m:
jl"“’jm

Now by applying successively Lemma 4.7.6 of [S] we see that v is a
homomorphism from A onto a subalgebra A of U(¥); commuting
with the p;’s and g;’s so that

U(®); ~A® Am.
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Note that it follows also from Lemma 4.7.5 of [5] that v induces an
isomorphism from A/% A onto A. On the other hand it follows from
(4) that {X —Sy+.ZA; X € Z)} (resp. {Y —Sy +FA;Y €.57)}) is
a Lie subalgebra of A/ % A isomorphic to %)% (resp. ¥ ). Thus
X — x(X) = v(X—Sx) is a Lie algebra homomorphism from 7,65
onto a Lie subalgebra % of A which induces an isomorphism from
(%) Z)© .S onto % . Note that A can be identified with U(Z )e -

Moreover let # and . be the images of #; and % respectively;
then the action of . on % /% is tranformed into the action of .%
on 7 .

Now it is clear that /?j =x(X;) 1<j<2n-2m) and p; (1<
Jj < m) may be expressed in the form

p
(5) XJZZaUXlJf—ejC: IS]Sra
1=1

r m
Xeij=Xrgj+ Y bijXi+ Y cijé+er ),
i=1 i=1
1<j<2n-2m-r,

,
pi=&+ Y dyXi+ f;¢, 1<j<m,

where e, ..., en—2m> f1,.--> fm €R[g] and a, b, ¢, d are matri-
ces with coefficients in R[g] of dimension r xr, r x (2n —2m —r),
m x (2n —2m —r) and r x m respectively. Moreover since ./ is
nilpotent, we may choose X;, 1 < i < r so that a is a unipotent
matrix and hence det(a) = 1. For an arbitrary basis {X;, 1 <i<r}
of /"y we can make a change of basis for {f ;} with real matrix co-
efficients which preserves det(a). Therefore a~! is also a matrix with
coefficients in R[g]. Hence it follows that the #;’s, X;’s and ¢&;’s
may be expressed in the form (1) with

e Gi0,y,w)=0;, 1<i<m,

e for 1 <i<r, Gyy(0, v, ) is a linear combination of 1,
v, ..., W with coefficients in R[],

e for 1 <i<2n-2m-r, Guirii(0, v, @) — ¥,,; 1s a linear
combination of 1, vy, ..., ¥,, @ with coefficients in R[€], .

o for 1 <i<m, Gy_pmii(0, ¥, ®)— w; is a linear combination
of 1, vy, ...,y with coefficients in R[6].

Hence it is clear that the polynomial map defined by the G;’s is an
automorphism of the polynomial ring R[f, v, w] with Jacobian 1.
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Finally (2) follows immediately from the definition of y and a
similar computation as above. Note that X;, ..., X, commute with
the ¢;’s so that

r
Xj=) Xaj+el, 1<j<r
i=1

Therefore
r r
(X)) =D t(ai)t(Xi) +7(e;0) = =) a;Xi — el = =X
i=1 i=1

This together with (5) imply that the restriction of 7 to U(? )¢ is
precisely the principal anti-automorphism of U(¥),. o

THEOREM 3.3. Let & = # ©.% where # is a nilpotent H-algebra
with one-dimensional center Z = R; . Assume that Z centralizes %
and that # contains an -invariant subspace # complementing
Z.Let n=3dim(7/Z).

1. Under these conditions, for an arbitrary basis X, ..., Xy, of
Z , there exists a Gelfand-Kirillov basis %# = {p;, ¢;; 1 < i < n} of
U(HZ); such that

(1) 1(p;) = —pi, ©(q;) = qi, 1 < i < n where 7 is the principal
anti-automorphism of U(Z ) ;

(ii) for 1 < i <2n, {71X; is a linear combination of 1, {~'py,
..., L 1p, with coefficients in R[q] and the corresponding polynomials
of 2n indeterminates 6, ...,0,, w1, ..., w, define an automor-
phism of the polynomial ring R[0, w] with Jacobian 1.

2. For each Y € &7 there exists a polynomial ay(0, ) which is

a polynomial of degree <2 in w1, ..., w, with coefficients in R[0]
such that:

(i) Y — Cay(q, {"'p) is a Lie algebra homomorphism from &%
into U(Z)¢;

(ii) ay(q, {~'p) is symmetric and
[Y, ul = [Lay(q, ('), ul, YueUZ);

(iii) the mapping Y — Y —Lay(q, {"'p) is a Lie algebra isomor-
phism from &~ onto a Lie subalgebra &' of U(Z), so that

U(%); ~UWZ),; ® U(F")
~ A, ®R[(, {71 Q U(P).
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Proof. The proof is carried out by induction on dim(#). If #Z is
isomorphic to a Heisenberg algebra with center .Z° then the theorem
follows from Lemma 3.1. Otherwise there is always an abelian ideal
% of ¥ contained in # satisfying the conditions of Proposition 3.2
(see Proposition 2.3 of [1]). By making a preliminary change of basis
if necessary we may assume that

Xi=ni, 1<i<m,
Xon-m+i =&i> 1<i<m,
where m = dim(# /.Z"). Hence it follows from Proposition 3.2 that
there exist a Lie algebra homomorphism y from # © % onto a Lie
subalgebra & of U(¥); and elements p;, 1 < i < m of U(Z),
satisfying the following properties.

e A, be the subalgebra generated by 7] = {p;, ¢;; 1 < i < m}
which is in fact a Weyl algebra with Gelfand-Kirillov basis 77; . Then

U(@); ~U(); ® Am.

e Let 7 be the principal anti-automorphism of U(¥);. Then the

restriction of 7 to U(? )¢ coincides with the principal anti-automor-
phism of the latter, and furthermore

tpi))=-pi, ©g)=¢; 1<i<m,
e x induces an isomorphism from #/% onto = x(#) and
U(Z); ~ U(Z); @ Am.

e For m+1<i<2n,{ -1 X; may be expressed as a linear combi-
nation of 1, {™'Xy, ..., (™' Xon_2m,> (7lp1s ..., {7 pm with coeffi-
cients in R[q, ..., gm], where Xi,..., Xop_om is a basis of Z as
described in Proposition 3.2. Let G;(0, v, w) be the corresponding
real polynomials. Then the mapping

(6’ (//,Q))H(e, Gm+l(0> V/:w)a'” D G2n(0a W:w))

is an automorphism of R[f, v, w] with Jacobian 1.
e x is in fact an isomorphism from % onto % such that

x(Y)=Y - {v(d, 71X, (71p), VYeS

where = (1, ..., dm), D=1, -, Pm), X = (X1, ..., Xon2m),
and $§y(f, v, w) is a linear combination of 1, wi, ..., ¥an_2m,
w1, ..., W, with coefficients in R[0].
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Now by the induction hypothesis U(%7 )¢ 1s isomorphic to a Weyl
algebra with Gelfand-Kirillov basis V = {Pi,gi; 1 <i < n-m}
where the following hold

(@) ©(B:) = —pi, 1(@)=di, 1 <i<n—m,

(ﬂ) For 1 < i < 2n-2m, {7'X; is a linear combination of

, Wy, o, T nem with coefficients in R[§] such that the cor-
respondmg polynomlals F; (0 @), 1 <i<2n-2m of 2n-2m
indeterminates (6, D) = (01 yeresOnem, @1, ..., @Gp_p) determine
an automorphism F of R[6, &] with Jacobian 1 Put

5 0;, 1<i<m,
Fi(6,0,d, v = ~ .
i ) {G,-(G,F(G,cb),w), m+1<i<2n.

Then the mapping
0,0,0,w)— (Fi6,0,0,0),...,F,0,0,0, o)

is an automorphism of R[A, 6, @&, w] with Jacobian 1. Moreover we
have
Xi=(F(4,4,('p,¢07'p), 1<i<2n.

On the other hand it follows also from the induction hypothesis
that for each ¥ € .7 there exists a polynomial a (0 @) which is in
fact a polynomial of degree <2 in @, ..., wn_m with coeflicients
in R[] such that Y — ¢ &3;(4 , {~1p) is a Lie algebra homomorphism

from . into U(;? )¢ and moreover
(6) ¥, ] =[ag(q, {7'p), @, Vie U
Put
ay(0,0, &, w)=a,y0,d) +sy(0,0, 0, w), VYeS

where Sy(0, 0, @, w) = §y(6, F(6, @), w). Then for ¥ = x(Y)
we have

Hence
Y, 4] - [Cay(d,4,L7'p, {71p), 4] =0, VieUZ).

On the other hand since Y and 4 a~(¢i ¢l
1 <i<m} we have

(7 [Y,ul=[ay(d,d,¢ "5, ", D), ul, VueUZ),.

) commute with {p;, ¢g;;

'm



12 NGUYEN H. ANH AND VUONG M. SON

Now it follows from (6) that

[C&?l(qa C_lﬁ)a C&'fz(qs { )] - [Yl 5 Ca ( )
[Ca~ q, C ), Yal.
Hence
(Y - lag (4, ¢7'h)., Y - {a5(q. ¢ 'p)
=%, Yz]—Cd[;l’Y]( ') vh, heZ
Put p=(p,p), =(4,4). Thenfor Y1, Y, €.% and Y, = x(Yy),
i=1, 2, wehave
[Y1 - Lay(q, ('), Y2 - Cay, (g, (7' p)]
=Y, Y] -lag 5,@, (')
= x([Y1, Y2]) — Cayqv, v, (4 ¢'p)
=Yy, Yal - Ly, v, (q, (')

i.e. Y— Y —{ay(q, {"'p) is a Lie algebra homomorphism which is
in fact an isomorphism. Let .5 be the image of % by this isomor-
phism. Then %’ commutes with U(#"); and hence

U@) ~UWZ) @ UF") ~ 4, ORI, (T UP).
Finally (7) implies that
[Cay (g, (7'p), Cay, (g, {'p)]

=Y, lay,(q, {7 'p)]
=[Lay (g, ¢ 'p), Yo, Y, hes.
Hence
(Y1, Y2l -Lay, vy(g, {'p)
=[11, V2] - [Cay (¢, {7 'p), Lay (g, {7'p)]

i.e. Y — Cay(q, {"'p) is a Lie algebra homomorphism from % into
U#); . 0

REMARK. This theorem contains Lemma 3.2 and Theorem 3.5 of
[6] as special cases.
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4. The general case. Let & = #Z © . as in Theorem 1 of the
Introduction. Assume also that there exists a nilpotent ideal .#~ of ¥
contained in # such that

e ./ is an H-algebra with center .Z,

e the action of . on # /" is trivial.

Then it follows from Theorem 2.9 and Lemma 2.3 of [2] that there
exists a Heisenberg subalgebra /# of # with center Z such that
K =N +H, VN =Z and [#, V) c V. Moreover #
commutes with & .

Now by applying Theorem 3.3 for &1 = /" © (ad-+(#]) X&) we see
that for any basis X, ..., X,,, of ./ there exists a Gelfand-Kirillov
basis 7] = {pi, q;; 1 < i< m} of UWN), satisfying the following
properties.

(1) For 1 <i<m, p; is skew-symmetric (resp ¢; is symmetric).

(ii) For 1 <i<2m, {~'X; is a linear combination of 1, {~!p;,
..., {7 1py with coefficients in R[g]. Furthermore the corresponding
polynomials F;, 1 <i < 2m, of 2m indeterminates (6, w) define
an automorphism of R[#, w] with Jacobian 1.

(iii) For every Y € A = ad;(#]) x S there exists a polynomial
ay(6, o) which may be expressed as a polynomial of deg <2 in w
with coeffcients in R[] such that ay(q, {~!p) is symmetric and:

e Y — lay(q,{ 'p) is a Lie algebra homomorphism from .#
into U(/");.

o [Y,u]l=[lay(g, {"'p), ul, Vu e U); .

e Y — Y —"{ay(q, {"'p) is a Lie algebra isomorphism from ¥
into U(%}), .

Let {, &, ni, 1 <i<n-—m,be the standard Heisenberg basis of
A, 1.e.

[éla”}]=51j6> ISI,JSn—m
For 1 <i<n-m put
Pi=¢& =L (a,{'p),
gi ="' — daa n (4, C'p).
Note that
[caad fl(q’ C_lp) ’ Caad n](q’ C_lp)] = gaad[él,q}](q’ C—lp) = 0.

Hence

i» 41 =&, {7 'nl = 6y
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On the other hand for all & € U(/"); we have

[Cdaae(a, ('), 0] = ad &(@)
i.e.

[pi, 4] =0, 1<i<n-—m.
Similarly, we have:

[G,,u]=0, I<i<n-m.

In particular 7" = {p;, p;, qi,4;; 1 <i<m,1<j<n-m}isa
Gelfand-Kirillov basis for U(#),. Furthermore it is clear that the
pi’s are skew symmetric (resp. the §;’s are symmetric). It follows
that for an arbitrary basis Xa41, ..., X2, of #Z complementing .%~
there exist polynomials F;, 2m + 1 < i < 2n, of 2n indeterminates
CR 0, o, w) of deg <1 in @ (resp. of deg <2 in w) with coefhi-
cients in R[6, 6] such that

Xi=C(Fia,4,¢'p,¢'p), 2m+1<i<2n

Moreover the mapping (6, 0, &, w) — (F(0, w), F(0, 60, @, w))
is an automorphism of R[f, 6, &, w] with Jacobian 1, where F =
(F)i<i<am> F = (F)ams1<i<on . Finally Y — Cay(q, {7'p) is a Lie
algebra homomorphism from . into U(/"); such that ay(q, ¢ 'p)
is symmetric and %’ = {Y — {ay(q, {"'p); Y € 5} is a Lie subal-
gebra of U(¥); isomorphic to % and commuting with the elements
of 77" so that

U(&) =~ U(#Z) @ UF") = 4, @R[, T U(P).
Thus by changing slightly the notation we obtain the following

ProrosiTION 4.1. Let &, #, &Z, /N be as above. Then for any
basis Xy, ..., Xon of # such that Xi, ..., Xom is a basis of V" =
Z NN, we may choose a Gelfand-Kirillov basis % = {p;, qi; 1 <
i < n} of UFA) such that 71 = {pi, q;; 1 < i < m} is a Gelfand-
Kirillov basis for U(/"); with skew-symmetric p; (resp. symmetric
q;), 1 < i < n. Moreover there exist polynomials F;, 1 < i < 2n
and ay, Y € & of 2n indeterminates (0, w) satisfying the same
properties as those in Theorem 3.3 with the only exceptions:

(i) for 1 <i<2m, F; isapolynomial of deg <1 in w, ..., Op:
with coefficients in R[6y, ..., 0,]

(i1) for 2m + 1 < i < 2n, F; is a polynomial of deg < 2 in
Wy, ..., 0 (resp. of deg <1 in wyyy, ..., W, ) wWith coefficients in
R[6,, ..., 6]
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(iii) ay depends only on (0, ..., 0y, ©,, ..., ©y). In particular
U(@) ~U(#);®U(¥)~ 4, ®R[{, {T'1®@ U(Y)
where ' ={Y —Cay(q1, ..., m, (" 'D1s ..., {7lPm); YEF Y} isa

Lie subalgebra of U(%); isomorphic to . and commuting with 7"

REMARK. The following lemma, which follows immediately from
Proposition V.2.5 of [4], shows that the assumptions of Proposition
4.1 certainly hold if the greatest nilpotent ideal of /# is an H-algebra
with center .Z .

LEMMA 4.2. Let & be a Lie algebra over a field of characteristic 0.
Let # be a solvable ideal of £ and V' the greatest nilpotent ideal of
KX .Then [§,Z)CcHN.

We are now ready to state the

THEOREM 4.3. Let & = Z 0% and assume that there exists an
F-invariant subspace Z as usual. Then
1. For any basis X, ..., X, of & we may choose a Gelfand-
Kirillov basis #"={p;, q;; 1 < i < n} of U(F), with skew-symmetric
p; (resp. symmetric q;), 1 < i <n and polynomials F;, 1 <i<2n
of 2n indeterminates (0, ) satisfying the following properties:
(i) for 1 <i < 2n, F; is in fact a polynomial of deg < 2 in w
with coefficients in R[0];
(ii) the mapping (0, w) — (Fi(0, w))i<i<2n IS an automorphism
of R[0, w] with Jacobian 1,
(iii) X; =({Fi(q, (" 'p), 1<i<2n;
2. for each Y € 7 there exists a polynomial ay(6, w) which is in
fact of deg <2 in w with coefficients in R[6] such that
(i) ay(q, {~'p) is symemitric;
(ii) Y — Cay(q, {"'p) is a Lie algebra homomorphism from &
into U(Z )¢ ;
(i) " ={Y -Clay(q, ("'p); Y € %} is Lie subalgebra of U(Z),
isomorphic to ¥ and commuting with % so that

UE®); ~U#) @ U(P") ~ 4, ®R[{, {1 @ U(S).

Proof. The proof is carried out by induction on dim # . Let ./
be the greatest nilpotent ideal of Z .
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() If A4 is isomorphic to a Heisenberg algebra with center .Z
then the theorem follows from Proposition 4.1.

(B) Thus assume that .#" is not isomorphic to any Heisenberg al-
gebra with center .Z° but the center of ./ is still Z". In this case
the proof is carried out exactly as in Theorem 3.3. The only differ-
ence is when applying the induction hypothesis we obtain polynomials
Fi(0, @), 1 <i<2n-2m which have deg < 2 (instead of deg<1)
in @& with coefficients in R[#]. Thus in the final results the polyno-
mials F; are of deg < 2 in w with coefficients in R[f] as stated in
(1.1) :

(y) Finally assume that the center of .#" contains .Z strictly. Let
% be a minimal abelian ideal of & contained in the center of ./
such that Z # Z . Since the action of . on Z /4 is trivial by
Lemma 4.2, by contragredient the action of & on % /Z is also
trivial. Therefore it follows from the proof of Theorem 2.9 of [2] that
dim(# /Z) = 1. Thus there exist £ € Z\A and € X =Z NF
such that [¢, 7] = ¢ and [, ¢] = [, n]l = {0}. Put q; = (I
and

Z{Xe# [X,Z]CHZ}=Centy(n).

Let D; and D, be the nilpotent and semisimple parts of the deriva-
tion ad ¢ so that D; may be extended to a locally nilpotent derivation
of U(# © ), such that Dig; =1, Di(&) =0. Now the action of
RD, x . on # defines a semidirect product & = #Z © (RD, x &)
which contains Hy ® % as an ideal. Moreover by modifying #Z
outside of the subspace generated by [, #Z] if necessary we may
assume that # is also invariant under the action of D,. For X €

U(%)¢ put

l
10 = Y S pi0dl.
1
Then it follows from Lemma 4.7.5 of [5] that y is a homomorphism
from U(%); onto a subalgebra A of U(¥), commuting with g; such
that the action of D; on A is trivial. Moreover since D; commutes
with RD,x.% itis clear that the action of y(RD,x.%) on x(#) = #
is induced from the action of RD, x.% on %, . Note that # is a Lie
subalgebra of A isomorphic to #;/Rn. Again by some preliminary,
change of basis we may assume that X; = n, X, = &. Hence by
using an argument similar to that in the proof of Theorem 3.3 and the
induction hypothesis, we see that there exist a Gelfand-Kirillov basis

V| ={pi, qi; 2 <i<n} of A with skew-symmetric p; (resp. sym-
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metric g;) 2 <i<n,and polynomials F;, 2<i<2n-1 of deg <2
in ®=(w,, ..., w,) with coefficients in R[é] =R[0,, ..., 0,] such
that

b Xl=CE(éa C_lﬁ),zﬁlﬁzn— la

o (0,®) — (Fi(f, ®))s<icon_1 is an automorphism of R[§, @]
with Jacobian 1.

Moreover there exist polynomials d, ay (Y € %) of deg<2 in
& with coefficients in R[] such that

(tDy, Y) — td(d, {'p) + Lay(d, {'p)
is a Lie algebra homomorphism from RD; x % into A and

[D2, ul =1[{d(d, {7'D), ul,
A.
{ [Y, ul=[lay(d, {7'D), ul, e

In particular
[D,-¢d(G, ¢ 'p), ul =0, VueA.
This shows that p; =¢& — {d(4§, {~'p) commutes with A and

[p1, a1l =Di(q1) =1,

i.e. U(¥), isisomorphic to a Weyl algebra with Gelfand-Kirillov basis
7 ={pi, qi; 1 <i< n}. Finally by putting
0, ifi=1,
Fi(01, ..., 00, 01, ..., 0,) =S Fi(8, d) ifa<i<2n-1,
w+d@,®) ifi=2n,

and
aY(01 ) éa w1, d)) = aY(éa (2))

we see that F;, 1 <i<2n,and ay, Y €., satisfy the statements
(1) and (2) of the theorem. m]

COROLLARY 4.4. Let & = Z 0. asin Theorem 4.3. Let Z(%;) be
the center of U(Z,), where Z, is the complexification of ¥ .
Then Z(%.); is isomorphic to the localized polynomial ring
ClYy, ..., Y, {, (1] where Yy, ..., Y, is a basis of some Cartan
subalgebra of ..

REMARK. This corollary gives a generalization of Theorem 2 in [3].
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COROLLARY 4.5. The Gelfand-Kirillov conjecture holds for the Lie
algebras of connected unimodular solvable Lie groups having discrete
series with one-dimensional center. In particular it also holds for H-
algebras with one-dimensional center.

Proof. We can apply the theorem with % abelian and get
U(&); ~ 4, ®R[{, (7@ S()

where S(&”) is the symmetric algebra of %. From this it follows
that the (skew) field of quotients of U(Z) is isomorphic to the (skew)
field of quotients of the Weyl algebra A4, over the polynomial ring
R[Y;, ..., Y;, {,] where Y, ..., Y; is a basis of .. O
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