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SEMIFREE ACTIONS ON SPHERES

MONICA NICΌLAU

We employ knot theoretic techniques to construct a strong rela-
tionship between free and semifree Z m actions on high dimensional
spheres. This correspondence is then used to study free actions on
spherical codimension two links.

Introduction* The present paper deals with the problem of compar-
ing free and semifree Z m actions on high dimensional spheres. Our
approach is to consider fixed or invariant subsets, and use equivari-
ant knot theoretic techniques to show that, in codimension two, the
classification and the existence questions are essentially the same, for
free and for semifree actions. This strong correspondence is then
used to study free cyclic actions on high dimensional spherical links
of codimension two. We show that such links can exhibit at most
one component which is itself invariant under the action, all other
components being permuted.

All manifolds considered will be smooth or PL. We study pairs
{J2n+ι, K2n~x), n > 2, with / a sphere, and K a homotopy sphere,
smoothly or locally flat embedded in / . Such a knot admits a free
Zm action T^, if T? acts freely on / , leaving K invariant; it admits
a semifree Z m action Ts, if Ts acts semifreely on / with fixed set
Jτ = K. For a triple (/, K; T) with T either free or semifree, an
equivariant knot complement is a knot complement which is invariant
under the action T. The algebraic invariants used are Seifert type
invariants [LI], [L2], [St], [N]. We first prove:

THEOREM 2.3. A knot admits a free Zm action if and only if it
admits a semifree Zm action. Moreover, the restrictions of these actions
to equivariant knot complements can be chosen to be the same.

Two equivariant knots (//, Kι\ 7}), i = 0, 1, with 7} both ei-
ther free or semifree are equivariantly homeomorphic, if there exists a
(PL, DIFF) homeomorphism φ: Jo -+ J\ which is action and orien-
tation preserving and such that φ(K0) = K\.

THEOREM 2.4. Let (Jo, Ko) and (J\, K{) be two knots admitting
Ίjm actions. Then the fixed knots are equivariantly homeomorphic if
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and only if their associated action-equivalent invariant knots are equiv-
ariantly homeomorphic.

Here, two invariant knots (Z m acts freely) are action-equivalent, if
their normal bundles are equivariantly isomorphic. For equivariant
cobordism, we obtain:

THEOREM 2.5. A knot admitting Zm actions is semifree null-
cohordant if and only if it is free null-cobordant.

The precise relationship between the surgery theoretic Cappell-
Shaneson Γ groups [CS1] in the cases of free and semifree actions
will be given in a later paper. Here we obtain, as a result of Theorems
2.3, 2.4, and 2.5, the classification and the existence of fixed knots
in terms of Seifert invariants, by using earlier results on invariant
knots. In particular, we give the classification of simple fixed knots up
to equivariant homeomorphism in terms of such invariants, by using
our earlier classification [N] of invariant knots. (Recall that a knot
is simple if its complement has the homotopy type of Sι up to the
middle dimension. Algebraic knots, for example, are always simple
[M2].) Using ^-equivalence of Seifert forms [L2] we prove:

THEOREM 3.2. Two simple fixed knots are equivariantly homeomor-
phic if and only if their derived Seifert forms are s-equivalent

Here the derived Seifert form is the equivariant Seifert invariant
defined in §3. A semifree action is highly connected if the fixed set is
a simple knot. The corresponding classification of highly connected
semifree actions on spheres is given in:

THEOREM 5.1. Two highly connected semifree actions on S2n+ι,
n > 2, are isomorphic if and only if their derived Seifert forms are
s-equivalent

Similarly, we use the equivariant cobordism classification of invari-
ant knots [St], to give the corresponding classification for fixed knots
in terms of cobordism of Seifert invariants:

THEOREM 3.3. A fixed knot is null-cobordant if and only if its derived
Seifert matrix is null-cobordant
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In §3, we use the realization of free actions on knots [N] to obtain
necessary and sufficient conditions for the existence of semifree ac-
tions. This is done using the knot isometry (Q, S) [Ml], [St], [N].
Here Q is the intersection form for a Seifert manifold V of minimal
genus, while S is the rational monodromy of the knot. Recall that
when these are given in matrix form and 5 G / * ( Z ) is a Seifert matrix
for V, then B = (I - ST)~lQ, and the isometry (Q, S) determines
the knot.

THEOREM 3.6. Let (/, K) be a simple knot with isometry (Q, SQ)

for the Seifert manifold V. Then (J, K) admits a semifree Z m ac-
tion with equivariant Seifert manifold V, if and only if there exists a
rational matrix S\ G Λ C ( Q ) such that:

1. Sψ=S0

2. SfQSx = Q
3. (I-Sι)-ιeJ

In particular, for the unknot, we obtain:

COROLLARY 3.7. The trivial knot admits a unique semifree Zm ac-
tion for each m.

Finally, we use Theorem 3.6 to improve on our calculations in [N].

THEOREM 4.1. The generalized trefoil knot, Seifert matrix:

1 1

0 1

is the unique genus 1 knot admitting semifree Z m actions. This occurs
for every m = ±l (mod 6), and the derived knot is also the generalized
trefoil knot

In §6 we use the results in §2 to study free Z m actions on spherical
codimension two links. The results hold in high dimensions only; they
are false in the classical dimension. We prove:

COROLLARY 6.2. Suppose Z m acts freely on a codimension two
spherical HnL Then at most one component is invariant under this
action, the other components being permuted.

We then use Corollary 6.2 to give necessary conditions for a link
with four components to admit a free Z m action, and then obtain
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a collection of four component links which cannot admit any such
actions.

We note that C. Kearton, P. Strickland, and S. Wilson [K], [KW],
and [S], have solved the existence and equivariant homeomorphism
problems of simple fixed knots in terms of the Blanchfield pairing.
Hence Theorems 2.3 and 2.4 can be used also to give such results for
invariant knots, in terms of the Blanchfield pairing.

I wish to thank Julius Shaneson and Mark Steinberger for helpful
conversations, and Andrew Casson and Jacob Sturm for help with the
calculations in §4.

1. Definitions and the derived knot. A fixed knot is a triple
(/ 2 n + 1 , K2n~ι; T), n > 2, where / is a sphere, K a homotopy
sphere, and T a semifree Zm action on / with fixed set Jτ = K.
Two such triples (Jo, KQ; TQ) and (J\, K\ 7Ί) are said to be equiv-
αriαntly homeomorphίc if there exists a (PL, DIFF) homeomorphism
φ: JQ —> J\ which is action and orientation preserving, and such that
Φ(KQ) = (K\). Note however that since the fixed set K — Jτ is
determined by the action T, the condition φ(K0) = (K\) is unneces-
sary. Hence two fixed knots are equivariantly homeomorphic if and
only if the corresponding actions are isomorphic. Two fixed knots
(/, KQ; 7Q) and (/, K\ T\) are equivariantly cobordant if there ex-
ists an Λ-cobordism JΓ connecting Ko and K\ in / x 7, and a
semifree Z m action & on / x I with fixed set 3?, and such that

Given a fixed knot (/, K T), we consider a Γ-equivariant com-
plement X, together with its orbit space X* = X/T.

THEOREM 1.1. Let (J, K; T) be a fixed knot with knot group Z,
and T-equivariant complement X. Then the orbit space X* is also
a knot complement. Moreover, X and X* have the same homotopy
groups.

Proof. Note that X* is a homology Sι. For the bundle map
dX —> K is a Γ-bundle with fiber S1, and since K is fixed, this
fiber is a Γ-invariant meridian μ. Hence if /?': μ -> S 1 is the restric-
tion to μ of the m-fold cover p: X —• X*, then the inclusion μ ^ X
induces an isomorphism of the spectral sequences of the two m-fold
covers p and p1. Hence X* is a homology S 1 . Consideration of the
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commutative diagram:

=1 I
l -> HX(X) h Hx(xη Z zm - l

shows that πi(X*) is abelian, hence isomorphic to Z (see [N], Propo-
sition 2.1 for details). Since /?: X -» X* is an m-fold cover, πz (X) =
π, (X*) for / > 1. Notice too that since dX w μ x K with μ a
Γ-invariant circle, <9X/Γ = dX* « Sι x S 2 " " 1 . Form the space
3Γ = χ*ud {D2xS2n~ι). Since X* is a homology S 1 , it follows from
Mayer-Vietoris that &~ is a homology 5 2 n + 1 . Moreover, π i ( ^ ) = 0
by Van Kampen, since the map j : π\(dX*) —> τt\(X*) induced by
inclusion is an isomorphism (see [N], 2.2). In DIFF the homotopy
sphere 5Γ becomes a sphere by changing the smooth structure near a
point outside X*. D

In SΓ = X* u (D2 x S2""1) we consider the codimension two sub-
sphere K! = {0} x S2n-χ. We call ( ^ , K') the derived knot of the
fixed knot (/, K T). It follows from [L2] and the last statement of
Theorem 1.1 that if (/, K) is a simple knot, then the derived knot
is determined by X*. In general however, the derived knot as it is
constructed here will be a pair of knots [LS], [CS2].

REMARK. We could, alternatively, construct the derived knot of a
fixed knot by considering the quotient S/T = !Γ. If so, the derived
knot will be unique even if (/, K) is not simple. We prefer our
method of definition, as it emphasizes the strong relationship between
free and semifree actions.

2. Invariant knots versus fixed knots. We now use the derived knot
construction to show that the cases of free and semifree Z m actions
on knots are essentially the same.

Existence of Actions:

PROPOSITION 2.1. Let (J, K\ Ts) be a fixed knot with Ts-equi-
variant complement X. Then (J, K) admits a free Zm-action T^
with equivariant complement X, such that Ts\x = Tf\χ.

REMARK. The construction is similar to that in [St], except that in
our case we obtain an arbitrary invariant knot, not necessarily simple.
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Proof, Choose a free Z w action on K, and let P denote the orbit
space. Let ξ be an oriented 2-ρlane bundle on P with Euler class
a given unit in H2{P; Z) . Denote by (D(ξ), S(ξ)) the associated
(D2, Sι) bundle pair. It follows from the Gysin sequence that S(ξ) is
a homology Sι xS2n~ι, and from the homotopy sequence, a homotopy
S1 xS2n~ι. Hence in PL, S(ξ) = Sι xS2n~ι [B]. Form the space Q =
D(ζ)l)dX*, where X* = X/Ts is the derived knot complement for the
given fixed knot (/, K Ts). Since (X*, dX*) is a knot complement,
it follows from Van Kampen that π\(Q) = Z m , and its universal (m-
fold) cover is the sphere / ' = (K x D2) Όd X. In DIFF the smooth
structure of Q may need to be modified in D(ζ), i.e. away from X*,
in order to insure that the universal cover J' is a sphere. The m-fold
cover / ' —> Q provides a free Zm action T? on the knot (J", K),
with equivariant complement X, and with Γ^|^ = Γ^|χ. If (/, K)
is simple, then it must be isotopic to (/', K) since both knots have
complement X. In the non-simple case, a twisting corresponding to
the generator in πi(SO(2n)) may occur. If so, we can modify the
construction of Q by attaching (D(ξ), S(ξ)) to (X*, dX*) with a
twist on the boundary. D

PROPOSITION 2.2. Lβί (/, K\ T-f) be an invariant knot with Tf-
equivariant complement X. Then (J, K) admits a semifree Z m ac-
tion Ts, with equivariant complement X, such that Ts\χ =

Proof. Consider the quotient of the pair (J\ K) by the free action
Tf, ( β , P) = (J/Tf, K/Tf). The complement pair (X*, ΘX*) of
a tubular neighborhood of P in β , is the derived knot complement
for the case of free cyclic actions [N]. Hence we have an m-fold cyclic
cover

φ: (X,dX)-+(X\dX*)

with (X ,dX) a Γ^-equivariant knot complement, and:

dX*=Sι xτfKπSι xK.

It therefore suffices to find a new trivialization of dX such that &X =
Sι/Tf x K. For then the action T^\χ can be extended radially onto
D2 x K, giving the desired semifree action Ts. Consideration of the
m-fold covers:

φ:ΘX ->dX* πSι xK



SEMIFREE ACTIONS ON SPHERES 343

and, for (any) free Z m action τ on Sι

ψ:Sι xK-+Sι/τxKκdX*

provides an isomorphism between these two covers, and hence the
desired new trivialization of dX. α

It is worth stating Propositions 2.1 and 2.2 in:

THEOREM 2.3. A knot admits a free Z m action if and only if it
admits a semifree Z m action. Moreover, the restrictions of these actions
to equivariant knot complements can be chosen to be the same.

Equivariant classification. It is worth remarking on the degrees of
freedom for constructing such actions. When starting with a semifree
Z m action on the knot (/, K) any free action τ on the subsphere
K, and any oriented 2-plane bundle on the orbit space K/τ with
Euler class a unit, gives rise to a free action on (J,K). We will
soon see, however, that when starting with a free action on a knot,
the associated semifree action on this knot does not depend on the
equivariant normal bundle information.

For the case of knots invariant under a free cyclic action, we define
two triples (JQ9 KQ; 7Q) and (J\, K\ T\) to be action equivalent if
their normal bundles v(Ki,Jj) are equivariantly isomorphic. Com-
paring the equivariant classifications for the free and semifree case,
we prove the following:

THEOREM 2.4. Let (JQ, KO) and (J\, K\) be two knots admitting
Zm actions. Then the fixed knots are equivariantly homeomorphic if
and only if their associated action-equivalent invariant knots are equi-
variantly homeomorphic.

Proof. For j = 0, 1 let 7J be the semifree action, TJ the free ac-
tion, Xj the knot complement, and XJ the derived knot complement.
(Recall Ts\x = Tf\χ.) Suppose the fixed knots (J0,K0; Tξ) and
(J\, K\ Tf) are equivariantly homeomorphic via a map φ: Jo ̂  J\.
Then

extends to the normal bundles of the invariant knots, if and only
if these bundles are Γ^-equivariantly isomorphic [N]. Note that a
twisting τ corresponding to the generator of π\(SO(2n)) will not oc-
cur, since ψ is the restriction of an isotopy. Conversely, suppose
the invariant knots (JQ , Ko 7^) and (J\, K\ τ{) are equivariantly
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homeomorphic via a map ψ: Jo —> J\ . Then φ — ψ\^x jdX^ ex-
tends to the normal bundles of the fixed knots, if and only if these
bundles are Ts equivariantly isomorphic, since again the twisting τ
cannot occur. But the fixed knot normal bundles will be equivariantly
isomorphic if and only if the normal bundles of the derived knots
are isomorphic. Since the derived knots are codimension 2 spherical
knots, their normal bundles will always be trivial, hence isomorphic
to each other. D

For equivariant cobordism, let (/, K) be a knot admitting a free
Z m action T^ and associated semifree action Ts denote by T the
common restriction of these actions to an equivariant knot comple-
ment. We say (/, K\ T) is free null-cobordant if (/, K\ T-f) is
null-cobordant and semifree null-cobordant if (/ , K \TS) is null-
cobordant.

THEOREM 2.5. A knot admitting Z m actions is free null-cobordant
if and only if it is semifree null-cobordant.

Proof. It follows from the definition of the derived knot for free
actions, that an invariant knot is free null-cobordant if and only if
the derived knot complement X* is cobordant rel boundary to the
trivial knot complement; i.e. if and only if the derived knot is null-
cobordant. For the semifree case let (/ 5 K; Ts) be a fixed knot with
Ts -equivariant complement X, derived knot ( ^ , Σ), and derived
knot complement X*. Then an equivariant null-cobordism of X is
the same as a null-cobordism of X*. The theorem now follows from
the fact that the derived knot complements are the same in the free
and in the semifree case. D

3 Classification and realization of fixed knots. We now give the
classification and realization theorems for fixed knots in terms of
Seifert type invariants. An equivariant Seifert surface for a fixed knot
(/, K\ T) is a Seifert surface V which is disjoint from its translates
except on the boundary:

VnTi{V) = dV, /= 1, . . . , m- 1.

PROPOSITION 3.1. A fixed knot has equivariant Seifert surfaces.

REMARKS.

• We work with the truncated Seifert surface, i.e. the intersection
of the Seifert surface with a closed knot complement.
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• We could prove the result by lifting a Seifert surface for the
derived knot to the m-fold cover. However, for reasons which will
soon become clear, we use the associated invariant knot instead.

Proof. Let (/, K\TS) be a fixed knot with associated invariant
knot (/, K; Γ^), and knot complement X. Let V be a truncated
equivariant Seifert surface for (J, K; T-f). (This always exists [St].)
Then, since Ts\x = Tf\χ, V is also a truncated equivariant Seifert
surface for (/, K\TS). Extending V radially throughout the fixed
knot normal bundle gives the result. D

REMARK. The proof of Proposition 3.1 shows that all algebraic in-
variants defined for invariant knots on truncated Seifert surfaces can
also be defined for fixed knots. Moreover, these will have the same
properties in both cases.

Let (J2n+ι, K2n~ι Ts) be a fixed knot with derived knot ( ^ , Σ),
equivariant Seifert surface V2n , and derived Seifert surface V*2n . A
derived Seifert form will be the Seifert linking 3S for the derived knot

, Σ) with Seifert surface V* (compare [N] for invariant knots).

£ϊ:Hn(V*)®Hn(V*)->Z9

x,y) = L(x, v+y).

Here L is the linking in the derived knot complement, and v+ is a
small push in the positive normal direction. Note that, since V and
F* are homeomorphic, S3 is defined on Hn{V). It follows from our
construction and the definition of linking numbers that

where Bf(x, y) = L(x, Γ{u+y), / = 0, . . . , m - 1 [St], [N].
We now show that the notion of ^-equivalence of Seifert matrices

[L2] suffices for the classification of simple fixed knots up to equivari-
ant homeomorphism.

THEOREM 3.2 {Equivariant Homeomorphism). Two simple fixed
knots are equivariantly homeomorphic if and only if their derived Seifert
forms are s-equivalent.

Proof. Notice that if (/, K; Ts) is a fixed knot with associated
invariant knot (/, K\ T f), the derived Seifert forms for these two
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triples are the same. (Compare above with [N].) The result now fol-
lows from Theorem 2.4 together with the classification theorem for
simple invariant knots [N]. D

Similarly, for equivariant cobordism of fixed knots we have:

THEOREM 3.3 (Equivariant Cobordism). A fixed knot is null-cobor-
dant if and only if its derived Seifert matrix is null-cobordant.

Proof. This follows from Theorem 2.5 and [St]. D

The question of existence of semifree actions on a given simple
knot, is answered by using the following invariants determined by
the Seifert forms (compare [St] for free actions). Given a fixed knot
(/, K Ts) with Seifert form B and derived Seifert form 33 for the
Seifert manifold F , define the isometric structure (Q; So, S\) by:

(1) Q= intersection form on F , (Q = B±BT),
(2) Si e Endz{Hn(V)) i = 1, 2 defined by:

B(x,y) = Q(sox,y),

Note that since Q is unimodular, Si is well defined. If SQ and S\ are
injective, we can also define the knot isometry (Q SQ , S\) where

Si = I-s;\ ι = l , 2 .

In order to avoid the ambiguities caused by working over Q, we regard
these invariants as matrices in Jf*(Q). If so, Q = B ± Bτ e Jf*(Z),
so = (Qτ)-ιBτ, s{ = (Qτ)-ι^τ,and St = I-s^1 eJί*(Q). Notice
then that

B = (I-Sξ)~ιQ, ^ = (I-Sf)-ιQ

so that, as matrices, (Q; So) determines the original knot (J, K),
and (Q,S\) determines the derived knot.

PROPOSITION 3.4. Whenever it is defined, the isometry (Q\ SO, S\)
for a fixed knot satisfies properties:

(i) SJ* = So,
(ii) SJQSX = Q,
(iii) (/-SΌ^eΛ

Proof. Properties (i) and (ii) were proved in [St] for knots invariant
under free actions. The proof for fixed knots is identical, hence we
omit it. Property (iii) follows from the definition. D
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We now show that (Q SQ , S\) can always be defined for a simple
fixed knot; equivalently the isometric structure (Q So, s\) can always
be assumed to be injective. A Seifert surface for a simple knot is mini-
mal if ambient surgery cannot reduce its genus. An equivariant Seifert
surface for a simple fixed knot is equivariantly minimal if ambient
surgery cannot reduce its genus without producing a #6w-equivariant
Seifert surface. Let ( / , K\ Ts) be a simple fixed knot with isometric
structure (Q;SQ9S\) for the equivariant Seifert surface V.

PROPOSITION 3.5. (a) V is minimal if and only if SQ is injective,
and it is equivariantly minimal if and only if S\ is injective.

(b) V is minimal if and only if it is equivariantly minimal

Proof. See [N] Theorem 3.1 for the case of simple invariant knots
with free cyclic actions. D

Hence given a simple fixed knot, the isometry (Q SQ , S\) can al-
ways be defined. Notice that, since the Seifert matrices (B 9 3$) can
be recovered from the isometry, the isometry determines the fixed
knot up to equivariant homeomorphism.

THEOREM 3.6. Let ( / , K) be a simple knot with isometry (Q, So)
for the Seifert manifold V. Then (J, K) admits a semifree Zm ac-
tion with equivariant Seifert manifold V', if and only if there exists a
rational matrix S\ €Jf*(Q) such that:

1. S™=So,
2. S
3. (

Proof. If an action exists, then S\ exists by Proposition 3.5, and
properties (i), (ii) and (iii) must be satisfied by Proposition 3.4. Sup-
pose conversely that S\ exists. By [St] and [N], ( / , K) admits a free
Zm action Tf with isometry {Q\ So, S\). by Theorem 2.3 we can
let Ts be the associated semifree action on ( / , K), and its isometry
will still be (Q'9 SQ, S\). (See Remark after Proposition 3.1.) D

It is worth mentioning the special case of the trivial knot:

COROLLARY 3.7. The trivial knot admits a unique semifree Ίjm ac-
tion for each m.

Let φ(m) be the Euler function and θ m the isomorphism classes
of free Zm actions on S2n~x.
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COROLLARY 3.8. The trivial knot admits φ(m)\Θm\ different free
Zm actions for each m.

Proof. Let (J, K\ T) be an invariant knot with quotient lens space
pair (Q,P). The action-equivalence class of (/, K; T) depends on
(see construction in Proposition 2.1) the action of T on K, together
with a choice of Euler class for the normal bundle v(P, Q). The result
now follows from the observation that each generator in H2(P Z) =
Z m provides such an Euler class. D

4. Calculations. Theorem 3.6 allows for concrete results through
matrix computations. The results on free Z m actions on fibered genus
1 knots carry over from [N], but we give here stronger results, solving
the problem for knots not necessarily fibered. Notice that in the fibered
case, condition 3 of Theorem 3.6 is equivalent to:

det(I-Si)~l =±l

since the knot fibers if and only if S\ e ^C(Z) [N]. For the general
genus 1 case, we use the weaker condition

(3") c h ( / _ ^ r l ( 0 e Z M , 7 = 0 , 1 ,

where ch.,j__Sy\(t) is the characteristic polynomial.

Symmetric case. It is easy to see that no matrix S e ^C(Q) satisfies
conditions (2) and (3) of Theorem 3.6, so there is nothing to check.

Skew-symmetric case.

0 1
- 1 0

We find triples (SQ , JSΊ m) such that:

2. s ! e S L 2 ( Q ) ,

Note that for Q as above 5,- G SL2(Q) if and only if Si is an
isometry for Q. Suppose (SQ, S\; m) is such a triple.

Claim 1. S\ is diagonalizable over C.

Proof. Suppose
ε A
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where " ~ " denotes similarity over C and, since det^Ί = 1, ε =
± 1 . But if ε = 1, then (/ - S\) is singular, and if ε = - 1 , then

D

Letting λ\, λι be the eigenvalues for S\, we conclude from (3")
that:

0 l) \0 λ2j) \0 a2

[ \ o l ) [ o λψ)) - { o b 2 ) '
where a\, #2 •> b\, and 62 are algebraic integers.

Letting /: = Q(a\, 2̂)» w ^ have [k : Q] = 1 or 2. Let ^ denote
the ring of integers in k and <̂ * the units.

Claim 2. αj* - (α; - l ) m G ^ * .

. Note that Z?7 = arjι{arjι-{aj-\)m)-χ. Since Z?7 is an algebraic
integer, we get (αj* - (α, - l)m) divides αj^. But a\ + a2 = 1, and
hence {arjι-(aj- \)m) also divides ( α 7 - l ) m . Since α, and ( α ; - l )
are relatively prime, the claim follows. D

Claim 3. [k:Q\φ\.

Proof. Otherwise α, e Z and aj1 - (aj - l)m = ±1. Let m = Ip,
p any prime. Then

±1 = [of - (aj - \)p][aι-χ + + (ay - I / " 1 ] .

Both factors are integers and units, so that

If /? = 2, then α7 = 0 or 1. Since αi +α2 = 1 ? (^-^l)""1 is singular,
which is impossible. If p is an odd prime, then

±l=apj- (aj - l)p = 1 (mod /?).

Hence

Hence
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Since p is prime, both factors are integers and units. In particular
cij• = ± 1 , which is impossible, since a\ + a2 = 1 O

Hence [k : Q] = 2.

C/α/ra 4. A7 = e ± π / / 3 , and m = ±1 (mod 6).

Proof. Let σ be the non-trivial element in Gal(fc/Q). Let m — lp
for any prime p. Since

(of - (α; - 1 ̂ [algebraic integer] = aj1 - (α,- - \)m e <?j*

we again conclude that Y\J = aP.-{aj-\)p e &£ . Note that σ(η\) = η2 >

hence r\\Y\2 = ±1
If /? = 2, then τ/i = -A/2 SO r\j = ±1 or Y\J = ±i. But if η} = ± 1 ,

then α7 G Q which is impossible, while if Y\J = ±z then Λ7- = l/2(l±z)
which is not an algebraic integer.

If p is odd, then η{ = η2 so σ fixes ?//. Hence r\}• = ± 1 . As in
Claim 3, since p is an odd prime, ηj- = 1, so

α7 [algebraic integer] = 1.

Thus aj e &£ and aχa2 = fliσ(αi) = ± 1 . Since a\ + a2 = 1, the
minimum polynomial for aj is:

μ(0 = t2 - t + 1 or i/(ί) = /2 - t - 1.

In particular, either

aj = e±πi/3 or aj = ^ ^ - .

We now consider the Alexander polynomials of these knots to show
that a} = (1/2)(1 ± Λ/5) cannot occur, while α7 = e±πi^ occurs only
when m = ±1 (mod 6). Let chy (ί), j r = 0, 1, be the characteristic
polynomial for Sj , and Δ7 (ί) the Alexander polynomial of the knot
(Q, Sj) with Seifert matrix BJ . (Note that B° = B the Seifert matrix
for the original fixed knot, and Bι = 3S the derived Seifert matrix.)
Recall that Aj(t) = d e t ( ^ ) c h 7 ( 0 and that Δ/(l) = ± 1 . If chi(ί) =
t2-t-1 then chi(l) = - 1 , so άe\{Bι) = ± 1 . Hence the derived knot
is fibered, and hence so must the original (fixed) knot be. Similarly^f
chi (ί) = t1 - 1 + 1 both the derived and the original (fixed) knot muέt
be fibered. We could now invoke the results in [N] on fibered genus 1
knots, but we need not do so. For, since the knots are fibered,

±Δo(ί) = cho(ί) = t2 - t{λψ + λ%) + 1.
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But cho(l) = ±1 if and only if f{m) = λf + λψ = 1 or 3. If
α7 = (1/2)(1 ± \/5), then f(m) is increasing, with /(I) = 3. Hence
only the trivial group can act. If α, = e ± π ί / 3 then

if m = ±\ (mod 6),

if m = ±2 (mod 6),

if m = 0 (mod 3).

This finishes the proof of Claim 4 but we still must show that triples
(SO, Si w) with λ ; = e±πι^ and m = ±1 (mod 6) do in fact occur.
Note that, since

V/3 0

S\ is periodic with period 7. Notice also that

i\ 5 / o 1

0J 6 1 Vi o
Hence each m = ±\ (mod 6), m > 0, will occur (with original and
derived knot isotopic), as soon as *SΊ with properties (2) and (3) is
produced, such that

<eπiβ

We show that there exists a unique knot with the above properties.
Since the knot must be fibered, we may assume S\ e SL2(Z).

Claim 5. The matrix

satisfies the above mentioned properties, and every matrix S\ G S L 2 ( Z )

satisfying these properties is similar in SL2(Z) to £f.

Proof. It is easy to check that £? satisfies properties (2) and (3).
Notice now that in PSL2(Z) = SL2(Z)/{±/}, [±SX] and [±£f] are
similar. For the group of conjugacy classes in PSL2(Z) is {α, β\a2 =
β* = 1} with all elements of order 3 conjugate to each other. But
Sj = -I. Hence [±SX] - \±&\ in PSL2(Z). Equivalently Sx - &
or 5Ί - - ^ in SL2(Z). But tr(5Ί) = 1 and t r ( - ^ ) = - 1 , where
tr denotes the trace. Hence S\~& in SL2(Z). D

We summarize in the following:
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THEOREM 4.1. The generalized trefoil knot

Seifert matrix B = ί fl J

is the unique genus 1 knot admitting a semifree Z m action. This
occurs if and only if m = ±1 (mod 6), and for each such m the
action is unique. Moreover, the derived knot is also the generalized
trefoil knot

If (Q So, S\) and (Q S'Q, S[) are two simple Zm-fixed knots, we
define their connected sum to be the triple (Q Θ Q! So Θ SQ , SΊ Θ SJ")
where θ denotes block sum. We define n(Q; SQ9 S\) to be the con-
nected sum of n copies of (Q SO, S\). As in [N], we can construct
two different Z 5 actions on 4 (generalized trefoil knot)

The first is the natural Z 5 action

(OS S ) - 4 ί ( ° l λ ( ° ~ M (l 1

Here

and

where the third matrix is ^ of Claim 5.
The second Z5 action on 4 (generalized trefoil knot) is a fixed knot

which does not decompose equivariantly into a connected sum. (See
[N] for details in the case of invariant knots.)

We therefore conclude:

THEOREM 4.2. There exist knots admitting different semifree Z m

actions with non-isotopic derived knots. In particular, there exist con-
nected sums of knots admitting actions making them equivariantly in-
decomposable.

5. Classifying semifree actions on odd dimensional spheres. We con-
sider semifree Z m actions on spheres with fixed set a codimension two
knot. Given such an action T on a sphere / , define the knot of the ac-
tion to be (/, Jτ) a Seifert form will be the derived Seifert form for
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the fixed knot. Notice that two semifree actions are isomorphic if and
only if their knots are equivariantly homeomorphic. A semifree ac-
tion is highly connected if its knot is simple. It is worth reinterpreting
some of the fixed knots results in §3 and §4 in terms of classification
and existence results for semifree actions on spheres. Thus Theorem
3.2 becomes:

THEOREM 5.1. Two highly connected semifree actions on S2n+ι,
n > 2, are isomorphic if and only if their Seifert forms are s-equivalent.

Corollary 3.7 and the calculations in §4 can be summarized in:

PROPOSITION 5.2. For each m there exists a unique semifree TLm

action on S2n+ι with fixed set the unknot

PROPOSITION 5.3. S4n+ι admits no semifree Z m actions with fixed
set a genus one knot S4n~ι admits a semifree Zm action with fixed
set a genus one knot, if and only if m = ±ί (mod 6). Moreover, for
each such m the action is unique up to isomorphism.

6. Free Z m actions on links. Unlike the semifree case, where an
action T on a sphere / determines the fixed knot (/, Jτ), a free
Z m action T on J does not in general determine a unique invariant
knot.

EXAMPLE. Let Z 5 act freely on the unit sphere in Cn+ι by:

T(ZΪ9 ...9Zn, Zn+l) = (p3Zl, . . . , p3Zn, p2Zn+{)

where p — e2πi/5. Then T leaves the (trivial) knot zn+ϊ = 0 invari-
ant. T also leaves invariant the link of the singularity at 0 for the
polynomial equation:

which, when n is odd, is a spherical non-trivial knot [M2]. The latter
is in fact the Z 5 action on the generalized trefoil knot found in §4.
However, we can prove the following:

PROPOSITION 6.1. If T is a free Zm action on a sphere J then any
two T-invariant codimension two knots in J must intersect

Proof. Notice first that m may be assumed to be prime. For if p
is a prime dividing m, then the free Z m action T naturally restricts
to a free Z p action V for which KQ and Kγ are still invariant.
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Suppose (/, Ko; Tf) and (/, K\\ Tf) are such that KonKx = 0 .
Consider the associated fixed knot (/, KQ\ Tξ) where the action is
modified in a normal bundle of KQ disjoint from K\. The invariant
knot K\ is then contained in the complement of this fixed knot. The
same construction for (/, K\ Tf) yields the fixed knot (/, K\\Tf).
By Theorem 2.3, each one of the two semifree actions 7Q and Tf
agrees with the original free action Tf on an equivariant link com-
plement X. Hence we can construct a semifree Zm action:

ί Tf on X,
T I Tf o n ^ ), ί = 0 , l .

Hence τ is a (prime order) semifree Zm action with fixed set a disjoint
union of two spheres, which is impossible by Smith theory. (See also
[C].) D

Hence we conclude the following result for free actions on codi-
mension 2 high dimensional spherical links:

COROLLARY 6.2. Suppose Zm acts freely on a codimension two
spherical link. Then at most one component is invariant under this
action, the other components being permuted.

Let 3 be a link. Its order \Sf\ denotes the number of components
of the link. An isotopy partition of 3* is a partition into sublinks
L\, . . . , Lfc such that: (a) for each / the components of L; are iso-
topic to each other, and (b) the components of L, are never isotopic
to those of Lj for iφ j . We call the sublinks Lj of such a partition,
the isotopy sublinks.

PROPOSITION 6.3. Let Zm act freely on a link 3 with isotopy par-
tition L\, . . . , LK . Then either.

(a) m\\Li\ for / = 1, . . . ,k
or

(b) 3j such that m\ |L, | for i φ j , and m\ \Lj\ - 1.

Proof. If K is a component of S? and ( ^ is its orbit under the ac-
tion, then @κ is contained in an isotopy sublink. It now follows from
Corollary 6.2 that, with the possible exception of a unique component
K, every orbit (9κ must have exactly m components. D

Suppose T is a free Z m action on a link J ? with k components.
Regard an element t of T as a permutation on k letters (k link
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components), written as a product of disjoint cycles:

t = σι -σn.

It follows from the proof of Proposition 6.3 that order (σ/) = m for
each /, and that t fixes at most one letter (equivalently t leaves at
most one component invariant).

We study the case of links with four components £? = {K\, . . . , K4).

Caution. The sketches which follow are in the classical dimension
and are included only for the sake of clarity. The results are in high
dimensions.

Let t be a generator of the free Z m action T on the four compo-
nent link S>.

Case 1. t fixes one letter.

Then t = ϋ\ - - - σn is a permutation on 3 letters, and since order(σ/)
= m for each /, t is a 3-cycle, t = (K\, K2, £3). Hence m = 3,
and the following hold:

(a) the components K\, Kj, and K3 are isotopic knots;
(b) the 2-component sublinks: (K{, K2), (K2, K3), and (K3, AΊ),

have the same link type;
(c) the 2-component sublinks (K4, K{), / = 1, 2, 3, have the same

link type; and,
(d) the 3-component sublinks (K4, Ki9 Kj), 1 < / < j < 3, have

the same link type.
An example of such a link in the classical dimension is:
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Case 2. t fixes no letter.

Then t is either (a) a product of two disjoint transpositions, hence
m = 2, or (b) a 4-cycle and m — 4.
(a) t = (Kl7K2)(K3,K4) gives:

(i) K\ and K2 are isotopic,
KT, and K4 are isotopic

and

(ii) (K\, JRΓ3) and (A 2̂, K4) are the same link type,
(K\, ΛΓ4) and (K2, ΛΓ3) are the same link type.

In the classical dimension an example is:

(b) t = (Kl9K3,K2,K4):
(i) K\, K2, AΓ3, and AΓ4 are isotopic,

(ii) ( # ! , K3), (^:2 , K3), (tf2, ^4) and (K4,
type.

In the classical dimension an example is:

are the same link

κΛ

κA
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Let £? = (K\, Kι, K3, K4) be a link whose sublinks of order 2
are: L\ ? L2, Z/j, £2 > ̂ 3 > a n c * ^4 Suppose Z4 and L2 have a
component in common, and suppose L/ and Ly are never the same
link type.

We then have:

PROPOSITION 6.4. Such a link S? with four components never ad-
mits free Z m actions.

Proof. Clearly J? does not satisfy the conditions in Case 1 or
Case 2 (a) or (b). D

An example of such a link in the classical dimension is:

Here we take Lx = (Kx, K2) and L2 = (Kx, K3).

REMARK. If & is any link with isotopy sublinks L\, . . . , Lk and
such that the union of several isotopy sublinks is a link of order 4 of
the type in Proposition 6.4, then 2* still will not admit any free Z m

actions.

REFERENCES

[B] W. Browder, Manifolds with π{ = Z, Bull. Amer. Math. Soc, 64 (1966),
238-244.

[CS1] S. Cappell and J. L. Shaneson, The codimension two placement problem and
homology equivalent manifolds, Ann. of Math., (2) 99 (1974), 277-348.

, There exist inequivalent knots with the same complement, Ann. of Math.,[CS2]

[C]
(2) 103 (1976), 349-353.
R. N. da Cruz, Periodic knots, Thesis, Courant Institute, 1987.



358 MONICA NICOLAU

[K] C. Kearton, Spinning, factorization of knots, and cyclic group actions on
spheres, Arch. Math., 40 (1983), 361-363.

[KW] C. Kearton and S. M. J. Wilson, Cyclic group actions on odd-dimensional
spheres, Comment. Math. Helv., 56 (1981), 615-626.

[LS] R. K. Lashof and J. L. Shaneson, Classification of knots in codimension two,
Bull. Amer. Math. Soc, 75 (1969), 171-175.

[LI] J. Levine, Knot cobordism in codimension two, Comment. Math. Helv., 44
(1969), 229-244.

[L2] , An algebraic classification of some knots of codimension two, Comment.
Math. Helv., 45 (1970), 185-198.

[Ml] J. Milnor, Infinite cyclic coverings, in Conference on the Topology of Manifolds,
Prindle, Weber and Schmidt, Boston, pp. 115-133.

[M2] , Singular Points of Complex Hyper surfaces, Princeton University Press,
Princeton, NJ, 1968.

[N] M. Nicolau, A classification of invariant knots, Duke Math. J., (1) 58 (1989),
151-171.

[St] N. Stoltzfus, Equivariant concordance of invariant knots, Trans. Amer. Math.
Soc, 254 (1979), 1-45.

[S] P. Strickland, Branched cyclic covers of simple knots, Proc. Amer. Math. Soc,
(3)90(1984), 440-444.

Received December 18, 1990. Partially supported by NSF grant DMS 84-21371.

UNIVERSITY OF ILLINOIS
URBANA, IL 61801




