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ON THE IDEAL STRUCTURE OF POSITIVE,
EVENTUALLY COMPACT LINEAR OPERATORS
ON BANACH LATTICES

RUEY-JEN JANG-LEWIis AND HAROLD DEAN VICTORY, JR.

We study the structure of the algebraic eigenspace correspond-
ing to the spectral radius of a nonnegative reducible linear opera-
tor T, having a compact iterate and defined on a Banach lattice £
with order continuous norm. The Perron-Frobenius theory is gen-
eralized by showing that this algebraic eigenspace is spanned by a
basis of eigenelements and generalized eigenelements possessing cer-
tain positivity features. A combinatorial characterization of both the
Riesz index of the spectral radius and the dimension of the algebraic
eigenspace is given. These results are made possible by a decompo-
sition of T, in terms of certain closed ideals of E, in a form which
directly generalizes the Frobenius normal form of a nonnegative re-
ducible matrix.’

I. Introduction. Let £ be a Banach lattice, and T, a positive re-
ducible linear operator mapping E into itself and having a compact
iterate. Suppose, in addition, that r(T), the spectral radius of T, is
positive. The primary purpose of this research is to ascertain, under
what conditions on the Banach lattice E, a decomposition of T is
possible, which turns out to be a natural generalization of the Frobe-
nius normal form for reducible matrices. These properties will be
seen to generalize those deduced by U. Rothblum [13] for the matrix
setting, and those by H. D. Victory, Jr. for integral operators on L?-
spaces, 1 < p < oo, with the underlying measure being o-finite [16,
17] on a domain set Q.

We refer the reader to the treatise by H. H. Schaefer [15] for an
explanation of the notation used in this work and of the lattice con-
cepts of ideals, order convergence and completeness, bands, projection
bands, operator-invariant ideals, and (uniform) mean ergodicity of an
operator T. By £(E), we mean the Banach space of bounded linear
endomorphisms of E.

The underlying Banach lattice E will be assumed equipped with an
order continuous norm. In such Banach lattices, every filter that order
converges norm converges. Such lattices are characterized by the fact
that every closed ideal is a band [15, Theorem 5.14 (Chapter II)]. Since
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E is a fortiori order complete, this means that every closed ideal is a
projection band by the Riesz Decomposition Theorem. The work by
T. Ando, W. A. J. Luxemburg, and A. C. Zaanem [9, 10] indicates that
any norm closed (and complemented) ideal J is a Banach sublattice
of E which is also order closed, and hence can be regarded in its own
right as a Banach lattice with order continuous norm.

For T irreducible with a compact iterate, a cyclic-type Frobenius
decomposition was carried out by D. Axmann [2]. He used very cru-
cially results by H. P. Lotz [7, 8] refining the assertions of the Niiro-
Sawashima Theorem, whereby the peripheral spectrum of any positive
operator consists of poles of its resolvent, once its spectral radius is
assumed a pole with finite-dimensional residuum. With £ having an
order continuous norm, Axmann’s results can be summarized as:

(A) The Banach lattice £ can be decomposed into an order-direct
sum of p closed ideals {J,;: 1 < g < p} which, foreach n € N,
are minimal T?" ideals and moreover TJ,; C J,41, ¢ mod p;

(B) quTl’qu is irreducible with spectral radius unity, 1 <g <p,
and there are no other eigenvalues of modulus one;

) T is irreducible whenever r is not an integer multiple of p;
(D) Let x € E and denote x,; := qux as the band component
of x in J,. If we let f be a normalized eigenelement of T
corresponding to unity, we have that

(1.1) Tfy = fg+1, gmodp.
We are able to deduce that
D
(1.2) yi=Y exp(-2ni(g - 1)/p)fy

g=1
generates the totality of eigenelements associated with the pe-
ripheral spectrum of T. It is easy to verify that, in particu-
lar, Ty, 0 < j < p —2, is an eigenelement associated with
exp(2(j + 1)).
In 1985, B. de Pagter [12] settled a long-standing conjecture by show-
ing that every positive compact irreducible operator is guaranteed to
have a positive spectral radius whenever the underlying Banach lattice
has dimension greater than one.

The decomposition of a reducible operator T in §II will be ac-
complished by using and refining a bit the techniques, employed by
H. P. Lotz [7], to show that an operator, with its spectral radius a pole
of the resolvent, is (G)-solvable [15, p. 326]. Moreover, some of the
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analysis will be reminiscent of that in [8] concerning the proof of the
fundamental Niiro-Sawashima Theorem. We define in §III accessibil-
ity relations between the closed ideals of E, constructed in §II, which
generalize the graph-theoretic concepts expounded by S. Friedland and
H. Schneider [4] and by U. Rothblum [13]. In §IV, we characterize the
distinguished eigenvalues of T (i.e., those positive eigenvalues with an
eigenelement in the positive cone E, ). The concluding §V investigates
the algebraic eigenspace of T belonging to its spectral radius.

I1. The Frobenius decomposition of T. We now turn to general re-
ducible T having a compact iterate on a Banach lattice with an order
continuous norm. We shall effect a decomposition of E into bands
such that T restricted to each is either irreducible with a positive spec-
tral radius or is quasi-nilpotent. Subsequently, we examine the role our
decomposition plays in characterizing the distinguished eigenvalues of
T and in describing the positivity structure of the algebraic eigenspace
associated with 7(T) = 1. An operator in £(E) is termed uniformly
mean ergodic (respectively, mean ergodic) if the Cesaro means con-
verge in the uniform (respectively, strong) operator topology.

We first consider the case when the spectral radius is a first order
pole of the resolvent R(A, T) = (A - T)~! and label the residuum at
A=1 as Q, i.e., in the uniform operator topology,

(2.1) Q:=1lim(3 - R, T).

Let n denote the dimension of the fixed space of T, and observe that
Q is itself a positive linear operator of finite rank satisfying QT = Q.
Define now

(2.2) J:={x€E:Q|x| =0},

and observe that J is a closed, operator invariant ideal of E and, a
fortiori, a projection band. Accordingly, the Banach lattice E can be
expressed as E = J® J+, where J* is the kernel of the projection of
E onto §J. Welet T, := TSL and T, := T3 be the induced operators
on Jt and J respectively, ie., T; := P..TP;. and T, := P;TP;
where P;. and P; are respectively the band projections of E onto
J* (along J), and onto J (along 3+ ). Relative to this decomposition,
we can schematically represent T as

T, O )
2.3 T= ,
(2.3) (TZI T,

where T1 € S(JJ‘) N T2 (S 2(3) s T21 = PJTP3L € 2(3"' ’ 3) .
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We can deduce by positivity of T; and T, that »(T;) = 1, with
unity a first order pole k£ with finite-rank residuum of R(4, T)),
whereas r(T;) < 1. This is due to the fact that, for an operator T so
decomposed as in (2.3), the order of Ay € C as a pole of R(4, T) can
be bounded by the orders k; and k, of Ay as poles of R(4, T;) and
R(4, T,) respectively, by the inequality

(2.4) sup(ky, k) <k < ki +k;

[15, p. 330].
The (finite-rank) residuum Q; of R(4, T;) at A = 1 can thus be
expressed as

(2.5) Q:=P,.QP,.

and is easily seen to be strictly positive on Jt. Indeed, let x €
3+, x>0, and consider Q;x = P,.QP,.x = P..Qx. If Q;x =0,
then Qx € J and Q%*x = Qx = 0, whence x € J, a contradiction.
It is well known that the fixed space, ker(I — T), in J* is a sublat-
tice of J1, since T, as defined is uniformly mean ergodic (cf., e.g.,
Proposition 8.4, p. 188, of [15]).

There exists, then, a lattice isomorphism of ker(I — T{) onto R,
with m = dimker(I — T;) (cf,, e.g., Corollary 1, pp. 69-70 of [15]).
From such an isomorphism, we can find a basis of ker(I-T;) residing
in 3+ denoted as {b;,..., b,}. Each b;, i=1, ..., m, is positive
with b; Ab; =0, i # j. Let J; be the closure of the principal ideal
Eh, generated by b;, that is, b; is a quasi-interior element of J;.
Since Ebi = U;z“;l n[—b;, b;] and T;[-b;, b;] C [-b;, b;], T1J; C J;.
Because b; Ab; =0, 1<i#j<m, J;LJ;, 1<i#j<m. We
write

(2.6) Fri=kerI-T)OI =310 - ®In @5,

and T, ; = P3 TPa , where P is the lattice projection of E onto
Ji. If we let Q; ; be the correspondmg finite-rank residuum of
R(A, T, ;), we observe that Si,i={T} ;,n€ N} has nonzero fixed
vectors and that T; ; is umformly mean ergodic with associated pro-
jection Q; ;. Since Qq ; is strictly positive on J;, with range spanned
by a quasi-interior element of J;, we conclude from [15, Proposition
8.5 (Chapter III)] that T, ; is irreducible on J;, 1 <i<m.
Suppose now there are two lattice isomorphisms A and B from
ker(I-T;) onto R™. Then AB~! is a lattice isomorphism from R™
into itself, and is representable as a product of a diagonal matrix, with
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positive diagonal elements, and a permutation matrix [15, p. 44]. This
implies that the decomposition of J+, and hence the representation
of T;, is unique up to permutations.

We summarize the above discussion as the following proposition.

ProrosITION I1.1. Let E be a Banach lattice with order continuous
norm and T € £(E) be positive, reducible, eventually compact with
spectral radius equal to unity. If A =1 is a simple pole of the resolvent
R(A, T), then we can decompose E into a direct sum of bands of E,

(2.7) E=303=30- - 0®In®3z 037,

such that Py TPy is irreducible with spectral radius unity, 1 <i<m,
with Py denotmg the band projection onto 3;. With respect to this
decomposmon of E, T can be represented as

TTio| 0 0 oo ooeee 0 0 0
Ty O
(2.8) T=
O Tl,m 0
| T, T, |

The decomposition of T is unique up to permutations of T; ;’s, 1 <i <
m, where Tl 0= P .LTP , T1 i = P3TP3 , Trp = P;]TP;}, T2’1 =
P;TP,. and r(T,) < 1 r(Tl 0)<1.

We now proceed to treat the general case when T € £(E), r(T) =1,
with unity a pole of order k£ possessing a residuum of finite rank.
In the following discussion, we shall produce a sequence of ideals
E D3y D3In_1 D - D3I D0 which are T-invariant closed ideals such
that the operator T}, induced on 3;&_1 NJx , has unity as a first order
pole of its resolvent. The preceding analysis then allows us to effect
a further decomposition of J;_, NJx. A decomposition of T finally
results which generalizes the Frobenius normal form of a reducible
matrix. At this juncture, we should point out that our arguments
are somewhat similar to those used by H. Lotz [7] in showing that
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a nonnegative operator whose resolvent has unity as a pole is (G)-
solvable.
We express R(4, T) as a Laurent series

o0

(2.9) RA,T)= Y (A-1)"Qu,

n=—k

and we observe that

(2.10) Qi =(T-D"'P, Q4T=Q,

where P is the projection onto ./ (I — T)* along #Z(I — T)*, with
() and Z(-) respectively denoting the nullity and range of an op-
erator. Define now

(2.11) Sy :={x€E:Q_|x| =0},

and we immediately see that &, is a T-invariant closed ideal, and a
fortiori a projection band. Therefore E can be decomposed as

(2.12) E =3, © 6

where J; = 6,-(L. Next, we let T(lk) be the operator T induces on J;
and denote {Qgcl)n} as the corresponding coefficients in the Laurent
representation of R(4, T(lk)) .

LeEMMA 11.1. The spectral radius is a simple pole of R(A, T(lk)) .

Proof. Let P; be the canonical band projection of E onto Ji.
We set Q_, := (T-I""1Q, 1 <r < k, with Q the residuum of
R(A, T) at A = 1. The corresponding coeflicient Q(_l,) in R(4, T(lk) )
is determined by

(2.13) QY oPy =P 0Q_.

Suppose that R(4, T(lk)) possesses unity as a pole of order my > 1,
and thus

(2.14) Q) 0Py =P; 0Q_p,
is positive. For x € E, , we see that
(215)  Qumx =Py, (QupmX) + (I~ Py)(Qomx);

and for some y € &, y = (I-P; )(Q-m x), we have
(2.16) QX ¥ =Py, Q%) 2 0.
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So

(2.17) |Q-m x| <Qomx =y + ¥

and hence

(2.18) Q_i|Q-m x| £ Q_rQ-m,x + Q_i(l¥| -

for my > 1. We conclude Q- x € &, for every x € E;. So
ngQ_mo =0 if mg>1 and Q(_l,)n0 =0, mg > 1. This completes the
proof.

Corresponding to the representation of E as

(2.19) E =3, ® 6,
T can be decomposed as
™™ 0
(2.20) T= ( L . )
T, T

where T( = Py TP; , TY" = P TPs , Ty, = Pg TP; and r(T{")

=1 is a simple pole of R(4, T(lk )) .

We apply the preceding discussion to &, . Because &, is a closed
ideal of E, then every closed ideal of &, is a projection band of & .
Let

(2.21) Q2 = = lim(i. - DFIR(A, T
and define
(2.22) &1 = {x € 6 : Q%) _ x| =0}

Note that &;_; is a T ).ideal of S, , and the Riesz Decomposition
Theorem assures us that S, can be decomposed

(2.23) Sk =6k—1 ® Jg-1-
(k=1)._ (k) (k=1)._

Let T, =P; TP; (=P; T,'P; ), T, ":=Ps_TPg, _
(= Pg, T(k)PG ) and T(k D = PGk_lTPC‘k_w where Pg _ and
Py are the lattlce prOJectlons of E onto S;_; and J;_; respec-
tively. The precise same arguments as used in Lemma II.1 allow us to

deduce that 4 =1 is a simple pole of R(4, T(lk—l)). With respect to
the decomposition of &, = &;_; & Jx_;, we see that

T(k—l) 0
(2.24) Té"’=( e e | -
Ty T
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Continuing this procedure k times, we are able to represent E as
(2.25) E=3,03-19- - ®3196;

with each T(li), i=1,2,...,k, induced on J; by T having the
property that A = 1 is a simple pole of R(A, T(l") ), 1 <i<k.
Applying Proposition II.1, we can further decompose J; into closed
ideals such that the restriction of T(l’) to any one is irreducible. These
closed ideals of J; are closed ideals of E, and we label these as

(2.26) {3i:1=1,2,...,N@W), i=1,2,...,k}
and
(2.27) {3l,0:1<i<k}

for which the associated induced operators have spectral radius less
than unity. With respect to this decomposition of E, T can be
schematically represented as

(2.28)
™, 0 o0 0
: T(lk,)l 0 : 0
0
T(Ik,)N(k]
™" 0 o 0 0
ST o 0 0
T= 0 0
T M-y

(1)
1_'15 J

where r(T{)) < 1,1< i<k, r(TM) <1,rT) =1, 1<j<
k, 1 <1< N(k), and the dots in the off-diagonal (block) positions



IDEAL STRUCTURE OF POSITIVE LINEAR OPERATORS 65

denote nonnegative and possibly nonzero operators. The operators
occurring in the off-diagonal positions are in general nonzero, as T is
not hypothesized to be radical-free (i.e., that the intersection of all the
maximal T-ideals is trivial (cf., e.g., [14, p. 526; 15, p. 223])).

Let us denote by § the family of all bands J, such that: (i) Py TPy
is irreducible, and (ii) (Py TP; ) > 0. The discussion above and
preceding Proposition II.1 have shown that this family is nonempty
under the hypothesis that unity is a pole of the resolvent R(4, T) with
finite-rank residuum. Any such J, satisfying (i) and (ii) will be called
a principal T-band; and, for brevity, we denote r(Py TPy ) as d(Ja).
Any principal T-band J, for which a(J,) = 1 is called a basic T-
band.

At this juncture, we would like to utilize the compactness proper-
ties of T. The most immediate conclusion from such features of T
is that the above constructive procedure terminates after at most a
countable number of steps (cf., e.g., Proposition II.2). Another fact,
used crucially in §§IV and V, is that the operator Py T Py itself has
a compact iterate where %, and ‘B, are any two bands of E. In-
deed, if we let /; be the power for which T’ is compact, we see that
(Py TPg ) < Th, since Py , i =1, 2, are lattice projections. Then
a beautiful result by C. Aliprantis and O. Burkinshaw [1, pp. 277-278]
assures us that (P%ITP%Z)ZIO is compact. We note that the power 2/,
is independent of the selection of the bands B; and B,.

We now turn to defining a partial ordering on the principal T-bands
before investigating the cardinality of the family F. This partial or-
dering is by means of an accessibility relation.

DEerFiNITION II.1. Let B be any band of £. We denote by B_ the
(norm) closure of the smallest operator-invariant ideal containing 5.
For brevity, we say that B_ is the T-closure of ®. A band B is said
to be T-closed if B_ =B.

Let %8, and 9B, be any two bands of £ . We say that ®B; has access
to B, (or, equivalently, B, has access from 9,), if the dimension
of B,- NVB, is positive. The following lemma is useful.

LEMMA I1.2. Let B, be an arbitrary band of E and B, be a prin-
cipal T-band. Then B, has access to B, if, and only if, B, C B,-.

Proof. The proof of sufficiency is trivial. To show necessity, we
suppose B; has access to B,. Let % :=B,- NB, with dimA > 0,
and observe that 2f is a nonempty closed ideal. Then Py TPy A C 2
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and thus A = B,, as Py TPy is irreducible. So B, C B,- and the
proof is complete.

We next turn to characterizing the T-closure of principal T-bands;
in particular, we define a partial ordering on the principal T-bands in
terms of the accessibility relation. For principal T-bands J,, we can
describe J - in the following manner: Let f, be the fundamental
eigenelement to Py TPy , ie. r(Py TPy )f, = Py TP; f,, which is
a quasi-interior element of J,. Form, now, the cyclic semi-group
6 = {T": n € N}. Consider the ideal generated by the orbit &f, :=
{fo, Tfo, T2 £y, ..., T"f,, ...}, labeled as J,. Of course, this ideal
is precisely the ideal generated by the solid hull S(&f,) (since any
ideal is solid).

Next, recalling that the solid hull of the orbit &f,, is characterized
by

S(6f,) :={y € E: there exists n € N such that [y| <T"f,},

we see that J, perforce contains all the symmetric order intervals
{[-T"fa, T"fa], n € N}, and hence the principal ideals Ep-; . The
ideal J, then lies within J_-, as it must lie in every operatorainvari-
ant ideal containing J,. Moreover, J, is invariant under powers of
T, and its closure contains J, itself as f, is quasi-interior to J,. So
Jo=73,--

With these deliberations, we are able to describe J_ - in a more
succinct fashion. Toward this end, let

(2.29) y=Y @"T L)' T fa;
n=0

we claim that E, = J,. For one thing, it is easy to see that E, :=

aeon[—y, y] contains S(6f,) and thus the ideal J, so generated.
Certainly J, contains E,. So J, = E, and E, = J, . We easily see
that J - = Ey is invariant under T; and Proposition 8.3 of [15, pp.
186-187] indicates that if the ideal generated by &/, intersects any
other principal T-band Jz in a nontrivial fashion, then Jz is wholly
contained in J_- . The irreducibility of J, per se can be exploited in a
straightforward manner to show that if J; C J,- for which TJ; C Js,
then 33 NJ,- contains J,, where J; is a band of J - . Therefore,
JaCIENI,--

The concept of accessibility enables us to define a partial ordering
on the collection of principal T-bands. Indeed, if J, and Jg are any
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two such bands, we say that
(2.30) Je <138

if, and only if, J - 2 J g+ In the following, we show antisymmetry,
as the reflexivity and transitivity properties are trivial. Suppose that

(2.31) Ja <1Jp and Jg <t Jo-

Then J,- = J;-; and any band in J,- and Js- has access from J,
and Jg respectively. Thus we can conclude that J; must have access
from J, and vice versa.

Now, the representation of J - = Fy means that the smallest band
will be generated in a natural manner, which contains all the bands of
J,- having access both 70 and from J, . For example, this band, which
we label as €, will contain both J, and Jg. To show that P¢TP¢ is
irreducible, we see that, by definition, ¢+ N ¢_ is a maximal P; _T-
ideal, since no band therein will have access to €. By [15, Proposition
8.2 (Corollary), p. 186], we can deduce that P¢TP; is irreducible, and
=3 -.

We gmst therefore conclude that € is a principal T-band. This
is easily seen by the following argument. The procedure for describ-
ing the Frobenius decomposition of T, when applied to J - = €_,
will produce those bands J, C €' N €_ such that each P; TP; is
irreducible, or a quasi-nilpotent Y,, and € itself will be generated
since P¢TP; is irreducible. The band ¢ is, of necessity, a principal
T-band, as seen from applying Lemma II.2. But the presence of ¢
as a principal T-band contradicts the fact that principal T-bands are
disjoint. So J, = Jz and antisymmetry is shown.

With respect to <y, we say that a principal T-band J is minimal
in a T-closed band J if no other band in J has access to J. We also
call J an initial band in J. Similarly, we say that a principal T-band
J is maximal in a T-closed band J if no other band in J has access
from J. In J_ -, where J, is a principal T-band, we see that J, is
minimal; moreover, we see that the band J NJ,- isleft invariant by
T, if dim(3inJ,-) > 0.

These results allow us to prove the following:

ProvrosiTION I1.2. For arbitrary A € (0, 1], there are at most a finite
number of principal T-bands 3, for which r(Py TPy ) > A.
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Proof. We make crucial use of the eventual compactness of T at this
juncture. Suppose there is at least a countable infinity of such bands
Jo, enumerated as J;, i = 1,2,.... Let f; be the nonnegative
eigenfunction to P; TP; having r(P; TP;) as associated eigenvalue

and normalized by ||fi|| = 1, where f; is the trivial extension of f; to
E . Because T is compact for some integer Ny, we see that {T™ f;}
must contain a convergent subsequence. The antisymmetry properties
of “<r”, together with the fact that TN f; > (P; TPy )M f; > A% f;,
shows that ||T™ f; — T f;|| > A™ and hence no subsequence can be
Cauchy in E. This completes the proof.

We can reapply our constructive procedure to the operators T(ll,)o R
1 <i<k,andto T". For example, if 0 < 4; := r(T3)) (=
r(Pe TPg )), we can regard T(zl) as an eventually compact positive
linear operator on &;, a Banach lattice with an order continuous
norm. We further decompose &; into a direct sum of closed ideals
of &, (which are closed ideals of E a fortiori) such that T(zl) re-
stricted to these is irreducible with spectral radius A; or has spectral
radius less than 4;.

Similarly, we repeat this procedure as long as T, so restricted to the
sublattice of E generated in this manner, possesses a positive spectral
radius. After at most countably many steps, we are able to decompose
E into closed ideals so that T restricted to each is either irreducible
with positive spectral radius or is quasi-nilpotent.

The main result of this section is as follows:

THEOREM Il1.1. Let E be a Banach lattice with order continuous
norm, and let T be a positive, reducible, eventually compact linear
operator mapping E into itself. Suppose, in addition, that the spectral
radius r(T) of T is positive and normalized to unity. Then E can be
decomposed into a direct sum of bands such that T restricted to each
is either irreducible with positive spectral radius, or is quasi-nilpotent.

REMARK 1. The principal T-bands correspond to “equivalence
classes of communicating states” in the Markov chain context (cf.,
e.g., [5, pp. 59-60]). For a nonnegative, reducible, eventually com-
pact integral operator K defined on LP(Q, u), 1 <p < oo, with u
a o-finite measure on (2, the “significant k-components” determine
the principal K-bands [11, 16, 17].
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In finite dimensions, state i is said to have access to state j if there
exists an integer m such that (A™);; > 0, where A is the underlying
nonnegatve reducible N x N matrix. The totality of states having
access from a given class or state produces the smallest ideal, contain-
ing the class or state in question, invariant under A. In the integral
operator context, the “k-closure” of a o-finite subset C C Q, denoted
as C_, is a subset of Q. Such a subset has the property that func-
tions in L?(Q, u), with support thereon, constitute the smallest band
in IP(Q, u) invariant under K containing functions with support at
most C [17, p. 487].

Accessibility between classes J and K in the finite-dimensional
setting is defined by requiring that every state in class K has access
from every state in class J . For nonnegative reducible integral opera-
torson L7(Q, u), 1 < p < oo, we say that a o-finite set 4 has access
to a o-finite set B if u(4- N B) > 0. With these observations, it is
clear that our concept of accessibility between bands in this work, in
terms of operator-invariant ideals of E, is the appropriate generaliza-
tion of accessibility as discussed in [13] and [17]. We are presently in
a position to introduce the notions of a chain of bands, length of a
chain, etc. These are made precise in the following section.

III1. Accessibility relations. In §II, we have shown that there exists at
most a countable number of bands J; for which r(P; TP;) > 0. In
the lattice sense, then, £ can be decomposed in the natural manner
as

(3.1) E=) o}
k=1

where T := (332, @3k)l. On T, T must be quasi-nilpotent for oth-
erwise, we could repeat the procedure in §II on this particular band.
The operators {P; TPy, : k > 1} are irreducible, and the decomposi-
tion of the operator T is unique up to permutation of the J;’s.

DerFiNITION III.1. A chain of bands is a collection of bands such
that every band in the collection has access to or from every other
band . A chain with initial band J and final band J is called a chain
from J to J. The length of a chain is the number of the basic T-bands
it contains.

DEFINITION III.2. We say that a band J has access to band J (or,
alternately, band J has access from band J) in # steps, if the length
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of the longest chain from J to J is n. The depth of a band J is the
length of the longest chain in which J is initial.

Let J be a principal T-band, and observe that J_ itself is a Ba-
nach lattice with order continuous norm. We can decompose J_ into
a direct sum of bands {J,} of J-, such that Py TP; is either ir-
reducible with positive spectral radius or quasi-nilpotent. But, from
Proposition 8.3 of [15, p. 186], we know that any principal T-band
which intersects J_ is wholly contained in J_. This fact, in con-
junction with the observation that every band of J_ is also a band
of E, enables us to deduce that the constructive procedure in Section
IT when applied to J_ decomposes it into a direct sum of principal
T-bands and quasi-nilpotent bands.

Therefore, in discussing the depth of a principal T-band, we enu-
merate the principal T-bands in J_- as J.,1, 30,25 -5 Ja,ns ---
with the following arrangement:

(3.2) Ay = {Ja,i: Ja,i has access from J, in zero steps} ,
A; = {Ja,i : Jo,i has access from J, in exactly one step} ,

Am_ = {Ja,i: Jo,i has access from J, in exactly m_ steps}.

We let T, := TNJ,-, and partition this band into disjoint bands
Yo.05 Ta,15---> Ta,m_,ceach having access from J, as described for
the principal T-bands. We subdivide J_- in the following manner:

(33) ;‘BO :=Z€B{3a,i:3a,iem0}®ra,0
q31 = Z@{aa,i :3a,i eQll}@’ra,l
q32 = Z@{:‘a,i:qa,i € 22[2} ®Ta,2

mm_ = Z@{sa,l :3(1,[ c Q[m_}@’ra,m_ .

The closing paragraphs of this section will be oriented to showing
that B;, i=1, ..., m_, do in fact constitute bands of E. We givé
an alternate description of these sets. Toward this end, we list the basic
T-bands from 2; as J; ;, j=1,2,..., N(i), and those whose T-
closures contain basic T-bands in 2,4, as J} ;, j=1,2,...,7.
Then 9B; can be described more precisely as
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N(1)
(3.4) Poi=D J,-N@E ),
j=1
rl
(3'5) (’pi = Z Z [311’1— m (3;_‘_1 ,k—)l]
J=U{k:3,,,C3 -}
N(i)
® 3}j_,i=1,2,3,...,m_.
Jj=r+1 ’
It is clear that B;, i =0, 1, ..., m_, constitute bands of E. More-
over ¥, ;, i=0,1,2,..., m_, are merely the intersection of the

right hand sides of (3.4) and (3.5) with Y. It is clear that a chain
of length m_ can be constructed with J, as the initial band, and we
conclude that the depth of a principal T-band is well defined.

IV. Results on the distinguished eigenvalues of T. In this section,
we show the role of the principal T-bands in characterizing the distin-
guished eigenvalues of T. We recall that the notion of a distinguished
eigenvalue of a positive operator was introduced by H. H. Schaefer
[14]. In this work, however, Schaefer considers radical-free operators
on C(X), where C(X) is the Banach algebra of continuous, complex
functions defined on the compact Hausdorff space X . (A generaliza-
tion of this work to general Banach lattices was indicated by Schaefer
in [15, pp. 223].) His results show that each distinguished eigenvalue
of the adjoint T* is a simple pole of R(4, T*), and that the geo-
metric eigenspace belonging to differing distinguished eigenvalues are
mutually orthogonal. His results are not difficult to understand, since
radical-free operators in some cases are completely reducible (i.e., are
the direct sum of irreducible operators).

The analysis in this work, on the other hand, characterizes the dis-
tinguished eigenvalues of T itself, in terms of the bands constituting
E, as described in Theorem II.1, without the restriction that T be
radical-free. In particular, we show that the dimension of the geomet-
ric eigenspace of T belonging to r(T) is equal to the number of basic
T-bands satisfying (4.1) below. We investigate the positivity features
in Theorem IV.2.

The next two results are needed for our study of the geometric
eigenspace belonging to r(T). Their proofs are straightforward and
rely on the fact that Py TP; possesses a compact iterate where, here,
Jo 1s a principal T-band.
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LEmMMA IV.1. Let 0 < Ay < 1 be a distinguished eigenvalue of T.
Then Ay = d(3a) for some principal T-band 3, .

ProrosITION IV.1. Suppose that J is a principal T-band, with o(3)
>4, 0<A<1. Thenforany 0<x ey, Y ;oA "T"x diverges.

The proof of Lemma IV.1 relies on the Frobenius decomposition of
the (closure of ) the principal ideal generated by a positive eigenele-
ment to Ay, by using the methods of §II. The proof of Proposition
IV.1 proceeds in a straightforward manner by using classical argu-
ments associated with the Neumann series of an operator.

We are now in a position to characterize those T-bands which ac-
count for the distinguished eigenvalues of T.

THEOREM IV.1. Let {J;:i=1,..., N(dg)} be the collection of all
principal T-bands for which o(J;) = A9, 0 < A9 < 1. Then Ay itself
is a distinguished eigenvalue of T, if and only if, there exists a J; for
some iy, 1<iy< N(Ay), such that

(4.1) J-N@)tc Y o33, <rJPUT.
a(J)<4,

Proof. Suppose there exists a principal T-band J;, such that (4.1)
is true. Observe that P;‘ioTP;(‘o is irreducible and A9 = o (J;)) . Let f;
be the fundamental eigenelement of P3,0TP3’0 belonging to 4g, i.e.
Py TP;,_ f,~ =l f,~ , where 0 < f; €3, is a quasi-interior element of

Ji, -
"Let 3 be the T-closure of Ji,- In order to show that Ao 1S a

dlstmgulshed eigenvalue of T, it suﬂices to show the existence of a
nonnegative and nontrivial eigenelement of TP3 _ belonging to Ag.

Since J;- is T-invariant, we have Py _TP; = TP3
0 10 x
We consider the operator equation

(42) Pglo_ TP:"O— g = ).Og

and let Paio g = g;, and P(C‘.o—mfo)g = g. We split up (4.2) into two
operator equations, by virtue of the minimality of Ji, in J i

(4.3) Py TPy &i, = 408,

and
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(4.4) P @an3, TPy fi, + P(a;n:s,o_ )TP(J;na,o-)g =408

We select g; as f; , the fundamental eigenelement to Py TP;  be-
1] o
longing to Ag. Moreover, by hypothesis,

(4.5) r(P(J,tHJ,O— )TP(a;ﬂs,o— ) <o

(since otherwise, we could apply the procedure in §II to produce a
principal T-band with spectral radius at least 4g)! Therefore (4.4) is
solvable for g via a Neumann series argument. So Aq is distinguished.

Conversely, suppose that Ay is distinguished. We let x be one
of the corresponding nonnegative and nontrivial eigenelements of T
belonging to A9, and let J be the closure of the principal ideal E,
ie. 3=, ;n[-x,x]. Observe that J_ = J and that x itself is
a quasi-interior element of J. From Theorem II.1, we know that J
can be decomposed into a direct sum of bands of J, such that T
restricted to each is either irreducible with positive spectral radius or
quasi-nilpotent.

We let I'; 5 be the collection of all principal T-bands J, in J
with o(J,) = Ao. We claim that at least one of the J, in F,lo,g is
minimal in J under <t. For suppose none of the Jj, in F%J is
minimal in I'; then there must exist a nontrivial band J € J, with
r(P3TP3) < Ag, and x must perforce satisfy

(46) PgTP:(X = l()P;;x s
(4.7) PJ_LHJTP"].X + PsLnJTP;Hme = loP;}LﬂjX.

Now, observe that Aol — P;TP; is invertible, and hence P3x = 0.
But Pj is positive and continuous on J with P;J dense in J. From
Proposition 6.4 of [15, p. 99], we can conclude that P;x is a quasi-
interior point of J. Now P3x = 0, which forces us to conclude J =0,
a contradiction. Therefore there exists at least one J; in I'; 5 such
that 3’;0 is minimal in J under “<g”.

We wish to show that all principal T-bands in the collection of
I;, .5 are minimal in J and hence (4.1) holds for all bands in I'; 5.
We are able to express Pglox =x; >0, PC‘.—f,ﬂ?f.-—x = X; and both are

0

quasi-interior elements of their respective bands. We have that x;
and x, must necessarily solve

(48) P;;lOTP;;IDX] = /loxl ,
(49) Pa,*oﬂ:},.-TP%xl = (AOP:],-J'QJ— - J,J'ﬁJA—TPJ;Lns,-— ).X2.
o (U} (U 0



74 RUEY-JEN JANG-LEWIS AND HAROLD DEAN VICTORY, JR.

Because X, is a quasi-interior element of the closed band Jt ng i We
see that it dominates the partial sums of the Neumann series, each of
which consists solely of nonnegative terms. The Neumann series must
perforce converge and yield a nontrivial and nonnegative element of
3i: NJ;- - Two cases arise:

Case L. r(PC‘.t”?LO—TP??;”C‘.(;) < Ag. Then the assertion (4.5) is shown.

Case1l: r(Pilf(; - TP3$”3.~0- )

mann series indicates that (P‘.]’LO - TPS; - )"PJ:) - TP%XI does not

= A¢ . Then the convergence of the Neu-

necessarily possess any component in any principal T-bands with spec-
tral radius Ay for any n. If we exploit the invariance of T on
3,4; nJ i » We can state more succinctly that for any positive integer 7,
TnPC‘fO n:(,_TPC‘.oxl possesses no nontrivial component in any principal

T-band with spectral radius Ag. This can be seen by the following
contradiction argument. Let J, C 31.0- with ¢(J,;) = 4p. Suppose that

(4.10) P; TP

3#.03 _TP;,loxl >0

0 )
for some integer Np. Then Pj x; can be seen, after a straightforward
manipulation of (4.9), to necessarily solve an equation of the form

4.11 Py xy — A0t p TP, oy — g
3, 0 3! 37

P;y > 0. Now the element P; x; > 0 dominates the partial sums
of the associated Neumann series which must diverge according to
Proposition IV.1.

We conclude that there exists no principal T-band with spectral
radius Ay in 3* ng i - The precise same arguments can be utilized
to show that any principal T-band with spectral radius 4q is minimal
in J, with its T-closure satisfying (4.1). This completes the proof of
Theorem IV.1.

We next turn to describing the positivity features of the geometric
eigenspace of T associated with r(T). Let Ji, be a basic T-band
satisfying (4.1) for which dim(:(#; n3J;-) > 0. Condition (4.1) is of
course equivalent to requiring
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(4.12) r(Ps;na TPy )< 1.
N ) %
When we represent our eigenelement f; as f; = g + &, PJ‘O ﬂo =

8i,» Pyiny_fi, = &, via equations (4.2)-(4.4), we see that g; is
ip 1

quasi-interior to J; and g is nonnegative because of (4.12). From
the fact that 8, < fi,» we have that J; C E £, From the discus-
sion charactenzmg J;- following Lemma I1.2, and from the fact that
Tfi, = f,0 , We can coﬁ]clude that

(413) 3,’0— Cc (Ej;o)-= Ffio - 3{0- .

Hence E L= 3 _ and f, is quasi-interior to 3 - . We summarize
this discussion i m a stronger version of Theorem IV 1.

THEOREM IV.2. Let T := {J;: 1 < I < N} be the collection of all
basic T-bands and T'y := {3, : 1 <[ <'r, r(PJI ﬂC‘,—TPG/ ”31— ) < 1}.
Then each positive eigenelement of T, residing in the closed ideal J;-,
is, in fact a quasi-interior element of J;- .

V. Results on the algebraic eigenspace to r(T). We recall that the
Riesz index of an eigenvalue A, |A| # 0, of an operator T is the
smallest number v such that /(A1 — T)* = # (Al — T)**!, where
A(T) denotes the null space of an operator T. The subspace of
E, 4 (AI —T)”, is the algebraic eigenspace of T belonging to 4;
its elements are called generalized eigenelements of T belonging to
A, and its dimension is finite [18, pp. 330-344], since T itself pos-
sesses a compact iterate. We say that a generalized eigenelement y
belonging to A has index r, if and only if (AI - T)'y = 0, but
(AI-T)"ly #£0. Forany A # 0, v is well defined and we denote its
dependence on A by writing v (1) . We shall quote relevant facts from
the Riesz-Schauder theory of linear operators with a compact iterate
[18, Chapter 11] as they are needed in the ensuing discussion. We let
d(x, A) :==inf{||lx - y|lg, y € 4}.

We recall from Theorem IV.2 that a nonnegative eigenfunction can
be constructed as an element of the band J;- , where J; has the prop-
erty that r(P:(fn:{,- TP;.n; ) <1, and such an eigenelement is quasi-
interior to J;- . Theorem IV.2 is used very crucially in the proof of the
following result about some rather interesting features of the algebraic
eigenspace of T belonging to 7(T).
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THEOREM V.1. Let E be a Banach lattice with order continuous
norm, and T be a positive, eventually compact linear operator from E
into itself with spectral radius r(T) > 0 normalized to unity and having
Riesz index vy. Let T ={J;: 1 <1 < N} be the collection of all basic
T-bands with the following partition:

(5.1) Ty:={3;, 1<i<N:3nJ-nT=0};
Ty:={3i, M+1<i<N:@FfnJ-)nTcIy};
I3:={3i, M+1<i<N;:3fnJ-)nTcruls,
(3%031—)011275‘3};

m—1
{3“ ml+1<l<N 3J_n:‘ OFCUFU
j=0

@ N3-)NTmi #Q} ;

where here the notation 3,4 NJ;- NI indicates those basic T-bands be-
longing to 3+ N3J;-, etc. Then: (1) a basis for the algebraic eigenspace
of T with respect to r(T) = 1 can be chosen to consist of N general-
ized eigenelements f;, such that Py fi=0and 6(f;, Ey)<eéi, &
arbitrarily given, 1 < i < N; (2)'the Riesz index of r(T) = 1 is
m; (3) there is a generalized eigenelement f such that for n =
0,1,...,m—1, 6Px[(T-D"f], E:) < &, &, arbitrarily given,
if and only if the band B has access from some basic T-band in at
least n+ 1 steps.

Proof. We choose a basic T-band J; from I' and show that: (a)

there exists f; such that for some integer k(ip), (T — I)k() fi, =0
where P,. f- =0 and (b) 6(f; , E+) < & s &, arbitrarily given.

We let "m_ (i) be the depth of J; and (I';)- the collection of
elements of I' consisting of those basw T-bands in 3 - . We partition

(T'j,)- under the partial ordering “<r” as in (5.1), namely that
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(5.2)
Ti(io) :={3i, 1<i<r:@Fn3-)n({;)-=o};

Ty(io) :=={3i, n+1<i<r: (3 nJ-)NT;)- cTi(io)};
T3(io) :={3i, n+1<i<r:(JnJ-)NT;)-
c Iy (io) UT2(do), (37 NJ;-) NTa(ip) #2};

LCom_iy)-1(i0) == {3i, Tm_(ig—2+ 1 <0< P (i)-1: (37 NJ-) N (L)

0

- U j(i0), 37 NJ-) N (io)—z(io)sé@}-

We observe J; € Fm_(io)(iO)- From the fact that J; is the minimal
band under “<t”in J i and that m_(ij) is the depth of Ji, , we can
conclude that Fm_(io)(iO) = {Ji,} - With the partition of (I;)- asin
(5.2), we see that those basic T-bands in I';(i3) which form the final
band of a chain of length m_(ip)—i+1 with initial band J; will reside
in mm_(io)_iﬂ(io), 1 < i< m_(ip), where the bands PB;(ip), 1 <i <
m_(iy), are defined analogously to those bands B;, 1 < i < m_,
in (3.3). The number of basic T-bands from I';(iy) is positive, and
such bands constitute the only minimal bands in Py (; )-i+1(fo) with
respect to “<yt”. We observe that Py(ip) = 2.

On J i We construct our generalized eigenelement f; in an induc-
tive manner: first on those bands constituting 9(ip) ; then on those
bands constituting B (ip) ® P»(ip); and at the jth stage, 1 < j <
m_(ip), on bands constituting B (ip) & P2(ip) ® --- ® B,(io) -

From the definition of B;(ip), and the fact that J; 1is the only
minimal band in B,(iy), we want to show that Py (i) TPy (i) has
only a simple eigenvalue. Toward this end, we claim that the linear
form f* e (3° )L which coincides on (37 )+ with the fundamental ad-
joint linear form to Py TP; ,isan eigenelement to (Peg (i) TP (i)))"
belonging to unity. It behooves us to show for this linear form or
functional f* that

(5.3) (", Py i)(I-T)g) =0 for every g € P, (io).
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Toward this end, we note that
(54) (", Py ) A-T)g) = (f*, Py I-T)P; g)

since Pml(io)TJZ{; N3J;- NP1lio) C 314(; N3J;- NP1(io) . Thus, we see that

(5.5) (f*, Py )(I-T)g) =0 forevery g € Pi(ip),

and our claim is shown.

Now any eigenelement x of Py (i) TPy (i) must have the prop-
erty that P3,-0x # 0, and moreover P;;'ox is a scalar multiple of the
fundamental eigenelement to PaloTP;}io. Thus, there is no way that
f* can annihilate all but one of the eigenelements, as predicted by
the Riesz-Schauder Theory [18, pp. 342-344, esp. Theorems 18 and
19], were the Riesz index of unity as an eigenvalue of Py ;) TPy (i )
greater than one. So one is a simple eigenvalue to Py (;\TPg (i ) - We
can appeal to both Theorems IV.1 and IV.2 to procure a quasi-interior
element y; of PB,(ip) such that

(5.6) Py (i) TPgp (i)y1 =1,
and y; € P1(ip) N E; . _
We proceed with our induction argument. Let L; = =", ®;(io)
and define the associated operators:
(57) Ri = PL' (T - I)PL‘ ,

(58) T,‘ = P“Bx(io)(T - I)P“Bz(io) 5 1<i< m_(io).

We assume that we have constructed an element y; such that (R;)'y; =
0 and 6(y;, LinE}) < sg) , and proceed to construct one with similar
propertieson L, .

Toward this end, we use the accessibility of L; to B;.1(ip) to ob-
serve that the operator equation

(59) Ri+lz =g, z,8¢€ Li+1
can be decomposed into the equations

(5.10) R;z) = g1, z1, &1 €L,
(5.11) P‘B,+1(io)TPLiZI +Tiizo=g.

Here Py z = z;, Py )z = 21, with g; and g, given in an analo-
gous manner. We define

(5.12) Qi :=Pg_i)TPy,



IDEAL STRUCTURE OF POSITIVE LINEAR OPERATORS 79

In order, then, to procure y;,; for which (R ;)*lyi; = 0 we let
PL Vi1 = Vi, Py (i)Vit1 = ¢i+1 and attempt to solve for ¢;,;. Of
necessity, y; and ¢;,; must solve

(5.13) Ritly; =0,
i
(5.14) (Tis1) ™' bis1 + D (Tir)' Qi(R) ~'yi = 0.
i=1

We consider the equation for ¢;,;, but first we make some observa-
tions.

Let us suppose there are r;,; basic T-bands in ;,(ip). Because
every basic T-band is minimal in PB;,,(iy) under “<t,” we can con-
clude, by an argument similar to that for 9B (iy), that unity is an eigen-
value with Riesz index one to Pm (, TPy i) - Indeed, enumerate

the basic T-bands in ;,,(ip) as 3 Theorems IV.1 and IV.2 as-

sure us that there is an eigenelement residing in 35/ ) e NP;,1(ip) , and
0 I

i, ,i+1

is a quasi-interior element of this band. Moreover, we have r;,; ad-
joint linear eigenelements to (Py_ ;) TPy ;)" with each residing in

the respective (3% ., )%~ and coinciding with the fundamental ad-

iy, i+l
joint linear form to (Pyi» TPy )* associated with one. The proof

iy, i+l ig, i+l

that unity is an eigenvalue of P‘Bl( ) TPy (i) With Riesz index one can
be applied here also: If the Riesz index of one as an eigenvalue of
Py ( io)TP‘ﬁ,+,(io) were greater than one, then the basis of generalized
eigenelements could not possess the annihilation properties as guaran-
teed by the Riesz-Schauder theory [18, pp. 342-344 (Theorems 18 and
19)]. This is because any eigenelement must coincide on at least one
of the 3(’ )l .1 With the fundamental eigenelement to P, TP

19, 1+1 3?,[-&-[

We have that the Riesz index of unity as an e(l)genvahfe of
P‘I’Hl(io)TP‘I’u.(io) is precisely one, and we can invoke Theorems IV.1
and IV.2 to obtain an eigenelement to Py (; TPy (i) which is quasi-
interior to P;,;(ip) . We label this eigenelement f;,; .

So, in (5.14), the range of (T;,)’ is precisely equal to the range of
T;;1,forany j=1,..., and we conclude that (5.14) is solvable for a
real ¢;,, residingin B;,;(ip). So, for any real number u, ufi 1+ois
solves (5.14). We may express y;,; as

(5.15) Yenr = { firt + uihdiet on Pii(io),
: i+1

-1
.ui+]yi on Li,
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and thus our eigenelement Xj €3J;- is precisely
0
(5.16) Xiy = VYm_(i,) 63,‘0“-

It is clear that x;, can be made as close to a quasi-interior element of
3,-0- as wanted by choosing the y;’s, [ =1, ..., m_(ip), large enough.

We now proceed to show that the generalized eigenelements, con-
structed in the manner just described, form a basis. Linear indepen-
dence follows from the same arguments used by U. Rothblum [13, p.
287] for the matrix setting, and the details are omitted. But we must
show that this set so constructed exhausts the totality of possible basis
elements. Indeed, suppose there is a generalized y which is not in the
linear span of the x;’s so constructed. Let .7 be defined by

N
(5.17) T =3

=1

Then (P TPy —1) is invertible on .7~ and thus for no » would
(518) (PyTPy - I)”Pyy =0

unless Psy = 0. So we conclude that Py =0.

It is clear that I+ = j-vzl J;- 1is a band invariant under T, with
some of the basic T-bands from I' constituting minimal bands in
J+. Suppose J+ = E|,. From Lemma IV.2, we know that P; |y|
is a quasi-interior element of J; € I',,, and hence is a multiple of the
quasi-interior element f; € J; determined by Py TPy fi = 0(3i) fi.
We may then subtract from y a suitable combination of x; € J;-,
where J; € I',,, to produce another generalized eigenelement, which
we label as y;. Using the indexing of the basic T-bands from (5.1),
we claim that Pygy; = 0, where B is the band given by

Nm—l
— 1 i
B:=()I- NIt
i=1
To see this, we know that by definition of y;, Pyy; = 0,7 =
Npy_1+1,..., N. Therefore, (PsTPs —I) is invertible where € :=
BN ( ?;Nm_ﬁl J+), and we can also deduce that Pey; = 0.

From y;, we can then subtract a suitable linear combination of
Xx; € J;-, where J; € I';,_;, to produce a generalized eigenelement
y> . By repeating this process, we ultimately subtract a combination
of x; € J,-, Ji € U/, T, to produce a generalized eigenelement y,,_;
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such that Pyy,,_; = 0, where 2 is precisely

Nl
A=[13-nT+
i=1
We can likewise conclude that we can subtract from y,,_; a suitable
linear combination of x; € J;-,i=1,..., N, J; €I'1, to produce a
generalized eigenelement y,, .
We may assert that Py.y,, = 0. Indeed, we have Pyym = 0,i=

1,..., Ny, by construction. On the band D := Zﬁl Ji- N 3’14, we
have r(P»TPp) < 1, and © is invariant under T (by virtue of the
minimality of each J; in the respectiveband J,-,i=1,..., N;, J; €

I'1 ). So we conclude here too that Ppy,, = 0 and thus Py.y, =0.
So y, = 0, which contradicts the assumption that y is not in the
linear span of x; € J;-,J; € I'. The general case where J* # E|y
follows easily, and the first part of the theorem is shown.

At this juncture, we see that we have shown the existence of a
basis for the algebraic eigenspace of T associated with unity as an
eigenvalue which does not lie in E,, but whose elements are very
close to E, . In proving part 2 of our theorem, we shall obtain some
rather interesting results concerning the positivity features of our basis
eigenelements on certain bands of E .

It is enough to show that if J; is a basic T-band with depth m_(i),
and if x; is a generalized eigenelement for which Py yxi= 0, and
6(x;, Ey) < ¢, g arbitrarily given, then for every k = 1,2,...,
m_(i),

(5.19) Pp[(T-1)'x;]=0, >k, for any closed band B C P, (i);
whereas
(5.20) Py y[(T—D* 'x;]is a quasi-interior element of By (7).

We assume that the bands of J,- have been partitioned in terms of
accessibility from J; as was done in the proof of (1).

We show (5.19) and (5.20) by induction on k. For k =1, Py (5X;
is quasi-interior to B;(i) as seen in the proof of (1). In order to verify
(5.19), we note that

(5.21) Py () [(T - D) x;] = Py (T —= )Py (x; =0,

for every [ > 1, since the Riesz index of one, as an eigenvalue of
Pml(i)Tngl(i) , is unity.
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Suppose now for some integer 79, 1 < o —1 < m_(i), (5.19)
and (5.20) are true for k =1,2,...,n — 1, and consider k = 7.
Because (T — I)*ox; = 0, where 1y is the Riesz index of one as an
eigenvalue of T, and by the induction hypothesis,

(5.22) 0=Py [(T- I)/xi]=R] P i,
for every j > n9— 1, we can conclude that
==y +1 _
(523)  0=Py [(T-Dx]= T, " {Py_ (T D" Lx;}.
To see this, we note that when utilizing the accessibility of L, _; to
“Bﬂo(i) ’
(524) 0= P“Bvlo(i)[(T — I)"ox,-] = (TﬂO)V‘JPg‘p"O(i)xl'

v,~1

+ ) (Ty)" 7' Qpo1 Ry [P, Xi]
=0

=y =1
= (Tno)”o fot+1 {ng ng (i)Xi

”0_2
+ Z(T,,O)"O“I”ZQqO—IRf,O_l[PL,,O_,XI']}

1=0
= (Ty,)"o 0 Py ()[(T — D) \x;).

Because the Riesz index of one as an eigenvalue of Py (7 TPg ;) is
Mo no
unity, it follows from (5.22), (5.23), and (5.24) that for every j > 1o,

(5.25) 0= (T,,O)f‘”OHPm”O(,-)[(T — D)% 1x;]
= Pspm(i)[(T -y x;]

and (5.19) is shown.
We now proceed to show (5.20). By the first equality in (5.25), we
have that
(5.26) Py (T~ D)~ x;]
= (T,,o)no_lpmﬂo(,‘)xi + [Z (Tno)”o_l_ano~lR£,0—1[PL”O_‘xi]
=0
is an eigenelement to Py (yTPyp (;) associated with one. Now let
no no
31,is--- > Im,i be the M, say, basic T-bands in P, (i). Because the
Riesz index of unity to Py TPy (;) is one, we may apply The-
ny ny
orems IV.1 and IV.2 to deduce the existence of positive eigenele-
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ments {;,{, ..., Ly 1O P“pm(")TP“Bno(") associated with one such
that each {; is quasi-interior to (J; ;)- NPy (7)), 1 < j < M; and
/V(ng”o(i)(T - I)P‘pm(i)) is spanned by {;, ..., {3r. There exist then
real numbers b;, ..., bys such that

M
(5.27) Py oUT—D""'x] =} bl
j=1
We next show that all the b;’s are positive, and then
Py ol(T~ D)%~ 1x;]

is a quasi-interior element of B, (/). Toward this end, we observe
that adjoint eigenelements residing in

(5'28) (3(},1')-‘_5 1 S .] S Ma

span the adjoint eigenspace to Py (s TPy (;) belonging to unity, as
no mo

earlier deliberations show, and we denote these respectively by Cj,

1 <j < M. Moreover

(5.29) (&G, i) =dij-
Thus,
(5.30) b= (¢}, QuRP I[P xi]).

In order to deduce that b; > 0, we first note that
(531) (C* s P3J“Tngm_l(,-)y) >0

for every y > 0 for which qu (DY i quasi-interior to By, 1) 5
o

since otherwise, the J; ;’s would be minimal in P, _;(i). By the

induction hypothesis,

-2 _
(532) P‘qu—l(i)[RZZ"lquo—l'xi] = P“Brlg—l(i)[(T — I)”o le']
is quasi-interior to PBy,-1(i) , and, moreover,

-2 -
(5:33) Py Ry Pr, X =Py [(T-D"x] =0,
j= 1,2, ...,7]0—2.
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So, we can deduce that
(5:34) b =(, Q- RPP _ xi])
= (&> Py TP, IRZE__j[PLﬂo_lxiD
M—1

. 02
=Y (¢, P‘Bﬂo(i)TP‘.BI(i)RZO_1[PL,’0_1xi]>
I=1

* '70-2
= (& Py TPy _ Ry [Pr, _ xil)
. -2
= (L7, PngPm%_l(i)RZE_l[PL"O_ix,-]) > 0.

So, b; >0, 1 < j < M, and we can easily see that Ej-”:lbjé’j is
quasi-interior to P, (i) . The proof of (2) is complete.

With the partitioning of the basic T-bands in (5.1) and (5.2), and
with our concept of accessibility between principal T-bands as formu-
lated in Definition II.1 and Lemma II.1, we can use the exact same
arguments as U. Rothblum [13, pp. 290-291] for the matrix case to
prove assertion (3). The straightforward details are omitted, and proof
of the theorem is complete.

REMARK 2. We can see that the results of Theorem V.1 general-
ize those by H. D. Victory, Jr. [17] for the integral operator setting
and the fundamental analysis carried out by U. G. Rothblum [13]
for the matrix case. Indeed we can briefly summarize our results in
this paper by stating that the algebraic eigenspace consists of a ba-
sis, whose elements can be chosen arbitrarily close to a quasi-interior
element of (the closure of) the respective principal ideal so gener-
ated by the eigenelement itself. From (5.16), we see that in each
YVir1, i =1,2,..., m_(ip), ul;llgé,-ﬂ can be made so small so that
the generated x; is arbitrarily close to a quasi-interior point of J i -
This accounts for the presence of sets, with total measure less than
some arbitrarily given number, where nonnegativity may be absent in
each basis element in the integral operator context [17]. In the finite-
dimensional context, on the other hand, the positive cone possesses
a topological interior, and our treatment produces a basis for the al-
gebraic eigenspace of T belonging to 1 = r(T), consisting entirely
of nonnegative vectors. A recent publication by K.-H. Forster and B;
Nagy [3, pp. 164-165] provides an example in /7, 1 < p < oo, which
shows that the generalized eigenelements do in general lie outside E ,
thereby indicating that the results of Theorem V.1 are sharp.

After this work was refereed and accepted for publication, we
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learned of similar results which had been obtained earlier in 1987
by J. Koélsche [6] of the Technische Universitit Berlin in her Doctoral
Dissertation. As far as we can ascertain, her results are still in Thesis
form and are unpublished. Our treatment differs slightly from hers
in obtaining the Frobenius decomposition of T in §II. Our results in
Theorem V.1 are stronger, especially assertions (5.19)-(5.20) obtained
in the proof of part (2).
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