ERRATA
 CORRECTION TO POINCARÉ COBORDISM EXACT SEQUENCES AND CHARACTERISATION

Himadri Kumar Mukerjee

Volume 146 (1990), 85-101

In view of the remarks of the reviewer (cf. MR 91j: 57021) we give the following clarifications for the benefit of the reader:

1. Theorem (B) page 86 remains true.
2. Theorem (D) page 87 now states the following: An element $[X] \in \Omega_{n}^{\text {P.D. }}$ is zero if and only if
(i) $n \not \equiv 0(\bmod 4)$ and all integral as well as \mathbb{Z} / p-normal spherical characteristic numbers of X, \forall prime p, are zero.
(ii) $n \equiv 0(\bmod 4)$ and all integral and \mathbb{Z} / p-normal spherical characteristic numbers of X, \forall prime p, and index of X are zero.
3. The arguments on lines 17 to 19 of page 97 should be given as follows:
and integral as well as \mathbb{Z} / p-normal spherical characteristic numbers \forall odd prime p, and index of X are zero (x being a 2 -torsion element) hence ($Z, \tilde{g} \times \lambda, \tilde{c} \times \tilde{\lambda}$) determines (X, f, b) up to oriented cobordism by 2 above.

Justification of 1 . First of all the Proposition (5.2) page 94 now remains valid for n odd only. This change however does not affect the definition of ∂ as given in (5.4), (5.5) page 95 and (5.6) page 96 as injectivity of P of Proposition (5.2) is not needed anywhere.

Next, proofs of parts (i) and (ii) of Theorem (B) page 96 do not need injectivity of P of Theorem (5.2) page 94 . Lastly, the proof of Theorem (B) part (iii) page 97 for $n \equiv 0(\bmod 2)$ can be made free from Proposition (5.2) page 94 by using the following purely geometrical arguments: The proof of $\partial \circ r=0$ is the same as in the paper. Let $\left[\left(X^{n}, f, b\right)\right] \in \operatorname{Ker} \partial$. Choose a representative $\left(Z^{n-1}, f, b\right)$ of $\partial([(X, f, b)])$ such that Z^{n-1} is an oriented P.D. space Poincaré embedded in X^{n}. (In fact $f: X \rightarrow \operatorname{BSG}(k-1) \times S^{1} \xrightarrow{\pi_{2}} S^{1}$ is

Poincare splittable by the first remark of the Reviewer. So f can be homotoped to a map transverse to $p t \subseteq S^{1}$. One can then take $Z \subseteq X$ to be the inverse image of the point under this transverse map.) By hypothesis Z^{n-1} is an oriented boundary, so we have a triple $\left(\left(Y^{n}, Z^{n-1}\right), g, \beta\right)$ where $\left(Y^{n}, Z^{n-1}\right)$ is an oriented P.D. pair with $g\left|Z^{n-1}=\bar{f}, \beta\right| \nu_{Z}=\bar{b}$. If we now cut X along Z (along which the orientation of X changes) we get an oriented P.D. pair ($\bar{X}^{n}, Z^{n-1} \cup-Z^{n-1}$). Glue one copy of (Y^{n}, Z^{n-1}) along each copy of Z^{n-1} in the pair $(\bar{X}, Z \cup-Z)$, respecting orientation, to get an oriented P.D. space \tilde{Y}^{n}. So $[(\tilde{Y}, f \cup g, b \cup \beta)] \in \Omega_{n}^{\text {P.D. }}$.

Now consider the triple

$$
\left((\tilde{Y} \times I, \tilde{Y} \times\{0\} \cup \tilde{Y} \times\{1\}),(f \cup g) \times 1_{I},(b \cup \beta) \times 1_{I}\right)
$$

and glue the two copies of $\left(Y^{n}, Z^{n-1}\right)$ in $Y \times\{1\}$ together to get a triple

$$
\left(\left(W^{n+1} \tilde{Y} \times\{0\}, X\right), \overline{(f \cup g) \times 1_{I}}, \overline{(b \cup \beta) \times 1_{I}}\right) .
$$

This gives a cobordism between $(\tilde{Y}, f \cup g, b \cup \beta)$ and (X, f, b) in $\tilde{N}_{n}^{\text {p.D. }}$. So $r([(\tilde{Y}, f \cup g, b \cup \beta)])=[(X, f, b)]$.

Justification of 2 . On pages 98 and 99 wherever statements involving cohomology with \mathbb{Z} coefficients alone are used we should change it to statements involving cohomology with \mathbb{Z} as well as $\mathbb{Z} / p, \forall$ prime p, as coefficients. So in particular on page 99 the first diagram should be supplemented with a similar diagram involving cohomology with \mathbb{Z} / p-coefficients, \forall prime p. So $\Lambda=\mathbb{Z}$ or $\mathbb{Z} / p, \forall$ prime p if $[(y, g, b)] \in \Omega_{n}^{\text {P.D. }}$.

Finally we thank the reviewer Ian Hambleton for bringing the inaccuracies to our notice.

