ERRATA
 CORRECTION TO DENTABILITY, TREES, AND DUNFORD-PETTIS OPERATORS ON L_{1}

Maria Girardi and Zhibao Hu

Volume 148 (1991), 59-79

Abstract

A Banach space has the complete continuity property if all its bounded subsets are midpoint Bocce dentable. We show that a lemma used in the original proposed proof of this result is false; however, we give a proof to show that the result is indeed true.

1. Introduction. Throughout this paper, \mathfrak{X} denotes an arbitrary Banach space, \mathfrak{X}^{*} the dual space of $\mathfrak{X}, B(\mathfrak{X})$ the closed unit ball of \mathfrak{X}, and $S(\mathfrak{X})$ the unit sphere of \mathfrak{X}. The triple (Ω, Σ, μ) refers to the Lebesgue measure space on $[0,1], \Sigma^{+}$to the sets in Σ with positive measure, and L_{1} to $L_{1}(\Omega, \Sigma, \mu)$. The σ-field generated by a partition π of $[0,1]$ is $\sigma(\pi)$. The conditional expectation of $f \in L_{1}$ given a σ-field \mathscr{B} is $E(f \mid \mathscr{B})$.

A Banach space \mathfrak{X} has the complete continuity property (CCP) if each bounded linear operator from L_{1} into \mathfrak{X} is Dunford-Pettis (i.e. carries weakly convergent sequences onto norm convergent sequences). Since a representable operator is Dunford-Pettis, the CCP is a weakening of the Radon-Nikodým property (RNP). Recall that a Banach space has the RNP if and only if all its bounded subsets are dentable. A subset D of \mathfrak{X} is dentable if for each $\varepsilon>0$ there is x in D such that $x \notin \overline{\mathrm{co}}(\{y \in D: \quad\|x-y\| \geq \varepsilon\})$. Midpoint Bocce dentability is a weakening of dentability. The subset D is midpoint Bocce dentable if for each $\varepsilon>0$ there is a finite subset F of D such that for each x^{*} in $B\left(\mathfrak{X}^{*}\right)$ there is x in F satisfying:

$$
\text { if } x=\frac{1}{2} z_{1}+\frac{1}{2} z_{2} \text { with } z_{i} \in D \text { then }\left|x^{*}\left(x-z_{1}\right)\right| \equiv\left|x^{*}\left(x-z_{2}\right)\right|<\varepsilon .
$$

The following theorem is presented in [G1].
Theorem 1. \mathfrak{X} has the CCP if all bounded subsets of \mathfrak{X} are midpoint Bocce dentable.

Our purpose in writing this note is to show that Lemma 2.9 in [G1] (which was used in [G1] to prove Theorem 1) is false and to provide a proof of the theorem. Lemma 2.9 asserts that if A is in Σ^{+}and f in $L_{\infty}(\mu)$ is not constant a.e. on A, then there is an increasing sequence $\left\{\pi_{n}\right\}$ of positive finite measurable partitions of A such that $\sigma\left(\bigcup \pi_{n}\right)=\Sigma \cap A$ and for each n

$$
\mu\left(\bigcup\left\{E: E \in \pi_{n} \text { and } \frac{\int_{E} f d \mu}{\mu(E)} \geq \frac{\int_{A} f d \mu}{\mu(A)}\right\}\right)=\frac{\mu(A)}{2} .
$$

Example 2 shows that Lemma 2.9 is false.
Example 2. Let $f=3 \chi_{\left[0, \frac{1}{4}\right)}-\chi_{\left[\frac{1}{4}, 1\right]}$. Then $\int_{\Omega} f d \mu=0$. Suppose that $\left\{\pi_{n}\right\}$ is an increasing sequence of positive finite measurable partitions of $[0,1]$ such that for each n

$$
\mu\left(\bigcup\left\{E: E \in \pi_{n} \text { and } \frac{\int_{E} f d \mu}{\mu(E)} \geq 0\right\}\right)=\frac{1}{2} .
$$

Then $\sigma\left(\cup \pi_{n}\right) \neq \Sigma$.
Proof. Consider the martingale $\left\{f_{n}\right\}$ given by

$$
f_{n}(\cdot)=E\left(f \mid \sigma\left(\pi_{n}\right)\right)=\sum_{E \in \pi_{n}} \frac{\int_{E} f d \mu}{\mu(E)} \chi_{E}(\cdot)
$$

For each $n \in \mathbb{N}$ put

$$
P_{n}=\bigcup\left\{E: E \in \pi_{n} \text { and } \int_{E} f d \mu \geq 0\right\} \text { and } Q_{n}=P_{n} \cap\left(\frac{1}{4}, 1\right] .
$$

Since $\mu\left(P_{n}\right)=\frac{1}{2}$, we have that $\mu\left(Q_{n}\right) \geq \frac{1}{4}$. Thus

$$
\begin{aligned}
\int_{\Omega}\left|f_{n}-f\right| d \mu & \geq \int_{Q_{n}}\left|f_{n}-f\right| d \mu \geq \int_{Q_{n}}\left(f_{n}--1\right) d \mu \\
& \geq \int_{Q_{n}} 1 d \mu=\mu\left(Q_{n}\right) \geq \frac{1}{4}
\end{aligned}
$$

We know that such a martingale $E\left(f \mid \sigma\left(\pi_{n}\right)\right)$ converges in L_{1} norm to $E\left(f \mid \sigma\left(\cup \pi_{n}\right)\right)$. But $E(f \mid \Sigma)=f$. Thus $\sigma\left(\cup \pi_{n}\right) \neq \Sigma$.

The error in the proof of Lemma 2.9 occurred in assuming that if A is in Σ^{+}and $\left\{\pi_{n}\right\}$ is an increasing sequence of positive measurable partitions of A such that for each n and each E in π_{n} the $\mu(E) \leq \varepsilon_{n}$ with $\lim _{n} \varepsilon_{n}=0$, then $\sigma\left(\cup \pi_{n}\right)=\Sigma \cap A$. This seemingly sound assertion is not true as shown by the following counterexample.

Example 3. For $n \in \mathbb{N}$ and $1 \leq i \leq 2^{n}$, define

$$
E_{i}^{n}=\left[\frac{i-1}{2^{n+1}}, \frac{i}{2^{n+1}}\right) \cup\left[\frac{1}{2}+\frac{i-1}{2^{n+1}}, \frac{1}{2}+\frac{i}{2^{n+1}}\right)
$$

and

$$
\pi_{n}=\left\{E_{i}^{n}: 1 \leq i \leq 2^{n}\right\} .
$$

Clearly $\left\{\pi_{n}\right\}$ is an increasing sequence of positive measurable partitions of $[0,1]$ such that $\mu(E)=2^{-n}$ for each n and each $E \in \pi_{n}$. Let $f=\chi_{\left[0, \frac{1}{2}\right)}$. An easy computation shows that $E\left(f \mid \sigma\left(\pi_{n}\right)\right)=$ $\frac{1}{2} \chi_{[0,1]}$. We know that such a martingale $E\left(f \mid \sigma\left(\pi_{n}\right)\right)$ converges in L_{1} norm to $E\left(f \mid \sigma\left(\cup \pi_{n}\right)\right)$. But $E(f \mid \Sigma)=f$. Thus $\sigma\left(\cup \pi_{n}\right) \neq \Sigma$.
2. Proof of theorem. Our proof of Theorem 1 uses the following observations. For f in L_{1} and A in Σ, the average value and the Bocce oscillation of f on A respectively are

$$
m_{A}(f) \equiv \frac{\int_{A} f d \mu}{\mu(A)}
$$

and

$$
\text { Bocce-osc }\left.f\right|_{A} \equiv \frac{\int_{A}\left|f-m_{A}(f)\right| d \mu}{\mu(A)}
$$

observing the convention that $0 / 0$ is 0 .
Lemma 4. Fix A in Σ and f in L_{1}. There is a subset E of A with $2 \mu(E)=\mu(A)$ and

$$
\frac{1}{2} \text { Bocce-osc }\left.f\right|_{A} \leq\left|m_{E}(f)-m_{A}(f)\right|
$$

Furthermore, for each subset E of A with $2 \mu(E)=\mu(A)$,

$$
\left|m_{E}(f)-m_{A}(f)\right| \leq\left.\operatorname{Bocce-osc} f\right|_{A} .
$$

Proof. Without loss of generality, $A=\Omega$ and $\int_{\Omega} f d \mu=0$ and $\int_{\Omega}|f| d \mu=1$. With this normalization, Bocce-osc $\left.f\right|_{A}=1$ and $\left|m_{E}(f)-m_{A}(f)\right|=\left|m_{E}(f)\right|$. Let $P=[f \geq 0]$ and $N=[f<0]$.

The first claim now reads that $\frac{1}{2} \leq 2\left|\int_{E} f d \mu\right|$ for some subset E of measure one half. Wlog $\mu(P) \geq \frac{1}{2}$. Partition P into 2 sets, P_{1} and P_{2}, of equal measure such that $\int_{P_{2}} f d \mu \leq \int_{P_{1}} f d \mu$. Note that

$$
\begin{aligned}
1 & =\int_{\Omega}|f| d \mu=\int_{P} f d \mu+\int_{N}-f d \mu \\
& =2 \int_{P} f d \mu=2\left[\int_{P_{1}} f d \mu+\int_{P_{2}} f d \mu\right] \leq 4 \int_{P_{1}} f d \mu
\end{aligned}
$$

Since $\mu\left(P_{1}\right) \leq \frac{1}{2} \leq \mu(P)$, we can find a set E such that $P_{1} \subset E \subset P$ and $\mu(E)=\frac{1}{2}$. For such a set E

$$
\frac{1}{4} \leq \int_{P_{1}} f d \mu \leq \int_{E} f d \mu
$$

as needed.
Normalized, the second claim reads that for each subset E of measure $\frac{1}{2}$

$$
2\left|\int_{E} f d \mu\right| \leq 1
$$

Fix a subset E of measure $\frac{1}{2}$. Wlog $\int_{E \cap N}-f d \mu \leq \int_{E \cap P} f d \mu$. So

$$
\begin{aligned}
\left|\int_{E} f d \mu\right| & =\left|\int_{E \cap P} f d \mu+\int_{E \cap N} f d \mu\right| \\
& \leq\left|\int_{E \cap P} f d \mu\right| \leq \int_{P}|f| d \mu=\frac{1}{2},
\end{aligned}
$$

as needed.
A subset K of L_{1} satisfies the Bocce criterion if for each $\varepsilon>0$ and B in Σ^{+}there is a finite collection \mathscr{F} of subsets of B each with positive measure such that for each f in K there is an A in \mathscr{F} satisfying
(*)
Bocce-osc $\left.f\right|_{A}<\varepsilon$.
Lemma 4 provides an equivalent formulation of the Bocce criterion; namely we can replace condition (*) by the condition

$$
\text { if the subset } E \text { of } A \text { has half the measure of } A,
$$

$$
\begin{equation*}
\text { then }\left|m_{E}(f)-m_{A}(f)\right|<\varepsilon . \tag{**}
\end{equation*}
$$

We now attack the proof of Theorem 1. Our proof follows mainly the proof in [G1].

Proof of Theorem 1. Let all bounded subsets of \mathfrak{X} be midpoint Bocce dentable. Fix a bounded linear operator T from L_{1} into \mathfrak{X}. It suffices to show that the subset $T^{*}\left(B\left(\mathfrak{X}^{*}\right)\right)$ of L_{1} satisfies the Bocce criterion (this is a necessary and sufficient condition for T to be Dunford-Pettis [G2]). To this end, fix $\varepsilon>0$ and B in Σ^{+}.
Consider the vector measure F from Σ into \mathfrak{X} given by $F(E)=$ $T\left(\chi_{E}\right)$. For $\boldsymbol{x}^{*} \in \mathfrak{X}^{*}$

$$
m_{E}\left(T^{*} x^{*}\right)=\frac{x^{*} F(E)}{\mu(E)}
$$

since $\int_{E}\left(T^{*} x^{*}\right) d \mu=x^{*} T\left(\chi_{E}\right)=x^{*} F(E)$.

Since the subset $\left\{\frac{F(E)}{\mu(E)}: E \subset B\right.$ and $\left.E \in \Sigma^{+}\right\}$of \mathfrak{X} is bounded, it is midpoint Bocce dentable. Accordingly, there is a finite collection \mathscr{F} of subsets of B each in Σ^{+}such that for each $x^{*} \in B\left(\mathfrak{X}^{*}\right)$ there is a set A in \mathscr{F} such that if

$$
\frac{F(A)}{\mu(A)}=\frac{1}{2} \frac{F\left(E_{1}\right)}{\mu\left(E_{1}\right)}+\frac{1}{2} \frac{F\left(E_{2}\right)}{\mu\left(E_{2}\right)}
$$

for some subsets E_{i} of B with $E_{i} \in \Sigma^{+}$, then

$$
\left|\frac{x^{*} F\left(E_{1}\right)}{\mu\left(E_{1}\right)}-\frac{x^{*} F(A)}{\mu(A)}\right| \equiv\left|\frac{x^{*} F\left(E_{2}\right)}{\mu\left(E_{2}\right)}-\frac{x^{*} F(A)}{\mu(A)}\right|<\varepsilon .
$$

Fix $x^{*} \in B\left(\mathfrak{X}^{*}\right)$ and find the associated A in \mathscr{F}.
At this point we turn to our new formulation of the Bocce criterion (whereas [G1] used the old formulation and Lemma 2.9).

This $A \in \mathscr{F}$ satisfies the condition $(* *)$. For consider a subset E of A with $\mu(E)=\frac{1}{2} \mu(A)$. Since

$$
\frac{F(A)}{\mu(A)}=\frac{1}{2} \frac{F(E)}{\mu(E)}+\frac{1}{2} \frac{F(A \backslash E)}{\mu(A \backslash E)}
$$

we have that

$$
\left|m_{E}\left(T^{*} x^{*}\right)-m_{A}\left(T^{*} x^{*}\right)\right| \equiv\left|\frac{x^{*} F(E)}{\mu(E)}-\frac{x^{*} F(A)}{\mu(A)}\right|<\varepsilon .
$$

Thus $T^{*}\left(B\left(\mathfrak{X}^{*}\right)\right)$ satisfies the Bocce criterion, as needed.
3. Closing comments. A relatively weakly compact subset of L_{1} is relatively norm compact if and only if it satisfies the Bocce criterion [G2]. Thus our new formulation of the Bocce criterion provides another (perhaps at times more useful) method for testing for norm compactness in L_{1}.

Fix A in Σ^{+}and f in L_{1}. Put

$$
M_{A}(f)=\sup \left\{\left|m_{E}(f)-m_{A}(f)\right|: E \subset A \text { and } 2 \mu(E)=\mu(A)\right\}
$$

This supremum is obtained. For just normalize so that $A=\Omega$ and $\int_{\Omega} f d \mu=0$ and $\int_{\Omega}|f| d \mu=1$. As Ralph Howard pointed out, next find disjoint subsets E_{1} and E_{2} of measure $\frac{1}{2}$ and $a \in \mathbb{R}$ such that

$$
E_{1} \subset[f \leq a] \quad \text { and } \quad E_{2} \subset[f \geq a]
$$

Then $M_{A}(f)$ will be the larger of $\left|m_{E_{1}}(f)\right|$ and $\left|m_{E_{2}}(f)\right|$.
Basically, our Lemma 4 says that

$$
\frac{1}{2} \text { Bocce-osc }\left.f\right|_{A} \leq M_{A}(f) \leq \text { Bocce-osc }\left.f\right|_{A}
$$

These bounds are the best possible.

For the second inequality, consider the function defined on $A \equiv$ $[0,1]$ by

$$
f=\chi_{\left[0, \frac{1}{2}\right)}-\chi_{\left[\frac{1}{2}, 1\right]} .
$$

Straightforward calculations show that $m_{\left[0, \frac{1}{2}\right]}(f)=1$ and that Bocce-osc $\left.f\right|_{A}=1$. Thus

$$
M_{A}(f)=\text { Bocce-osc }\left.f\right|_{A} .
$$

As for the first inequality, consider the family of functions defined on $A \equiv[0,1]$ by

$$
f_{\delta}=\frac{\delta-1}{\delta} \chi_{[0, \delta)}+\chi_{[\delta, 1]}
$$

for $0<\delta<\frac{1}{2}$. Straightforward calculations show that

$$
M_{A}\left(f_{\delta}\right)=\frac{1}{2(1-\delta)} \text { Bocce-osc }\left.f_{\delta}\right|_{A} .
$$

Actually $M_{A}(f)=\frac{1}{2}$ Bocce-osc $\left.f\right|_{A}$ if and only if f is the zero function on A.

References

[B] R.D. Bourgin, Geometric Aspects of Convex Sets With the Radon-Nikodým Property, Lecture Notes in Math., vol. 933, Springer-Verlag, Berlin and New York, 1983.
[DU] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys, no. 15, Amer. Math. Soc., Providence, R.I., 1977.
[G1] Maria Girardi, Dentability, trees, and Dunford-Pettis operators on L_{1}, Pacific J. Math., 148 (1991), 59-79.
[G2] _, Compactness in L_{1}, Dunford-Pettis operators, geometry of Banach spaces, Proc. Amer. Math. Soc., 111 (1991), 767-777.

Received April 24, 1992.
University of South Carolina
Columbia, SC 29208
AND
Miami University
OXfORD, OH 45056

