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STRONG INTEGRAL SUMMABILITY AND
THE STONE-CECH COMPACTIFICATION
OF THE HALF-LINE

JEFF CONNOR AND MARY ANNE SWARDSON

An f-measure is a finitely additive nonnegative set function de-
fined on a collection of subsets of [0, co) which vanishes on bounded
Lebesgue measurable sets. We define statistical convergence and con-
vergence in density relative to an f-measure and use nonnegative reg-
ular integral summability methods to generate f-measures. We ob-
serve that, for a large class of regular integral summability methods,
the notions of strong integral summability, convergence in density
and statistical convergence (relative to the f-measure generated by
the method) coincide for bounded functions.

The support set of an f-measure is a subset of the Stone-Cech
compactification of [0, co) that is generated by the measure. We
characterize f-measures that generate nowhere dense support sets
and f-measures which have P-sets for support sets. The support
set of a nonnegative regular integral summability method is used to
introduce some summability invariants for bounded strong integral
summability. We show that the support sets of f-measures gen-
erated by some summability methods are compact zero-dimensional
F-spaces of weight ¢ without isolated points, but that they need not
be P’-spaces.

0. Introduction. Over the years a number of authors have discussed
bounded strong summability, convergence in density and statistical
convergence, where each of these notions is defined relative to a non-
negative regular matrix summability method. Each of these notions
of convergence extends the usual definition of the limit and, it turns
out, they are nicely related to one another. The pivot of most of these
discussions is either the finitely additive measure generated by the
matrix or the support set of the matrix. In this paper we adopt cor-
responding definitions for regular integral summability methods and
show that, under necessary restrictions, many of the results known
for matrix summability carry over to integral summability and can be
used to establish summability invariants for bounded strong integral
summability.

Curiously, although used in harmonic analysis [20] and differential
equations [19], there does not seem to be a standard introduction to
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integral summability. Most discussions of integral summability are
centered on a collection of particular methods (cf. [4], [12], [16])
and, beyond the basics, little is known (to the authors, at least) of
a general theory. In this paper we attempt to provide a framework
for the study of strong integral summability and its relation to the
Stone-Cech compactification of [0, o).

The necessary definitions and results from integral summability the-
ory are given in the first section of the paper. This section is also used
to introduce f-measures and some properties of integral summability
methods which will figure in the discussion of the support set. We
also establish some sufficient conditions for an integral method to ex-
hibit these properties and we give some examples of regular integral
methods.

In the second section we establish a result in strong integral summa-
bility and, in the third, we introduce the support set of a regular inte-
gral summability method. In the fourth section the support set is used
to introduce some summability invariants for bounded strong integral
summability, and, in the fifth, we discuss some topological aspects
of the support set. These last two sections of the paper can be read
independently of one another.

Most of the technical difficulties encountered in establishing results
in integral summability analogous to those of matrix summability the-
ory are due to the different topological properties of N and [0, o0).
In particular [0, oo) is connected, N is extremally disconnected and
these properties carry over to their Stone-Cech compactifications. We
overcome these difficulties by introducing the appropriate definitions,
which, as it turns out, are not excessively restrictive and therefore
our results include a large collection of regular integral summability
methods.

1. Strong integral summability and f-measures. In this section we
introduce f-measures and some of their properties while paying par-
ticular attention to f-measures generated by regular integral summa-
bility methods. The aim in this section is to show how a regular inte-
gral summability method gives rise to an f-measure and how proper-
ties of summability methods give rise to properties of f-measures.

We let R and H denote, respectively, the real numbers and the
half-line [0, co) and let m denote Lebesgue measure. We also let N
denote the natural numbers and let w denote the nonnegative integers.

To move on to the substance of this section, we recall the defini-
tion of a regular integral summability method. If K: Hx H — R
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is Lebesgue measurable, if K(s, ¢) is Lebesgue integrable for every
s € H and if K has the property that, for a Lebesgue measurable
function f and a real number L,

zlim f(t) =L implies Slim/ K(s,t)f(t)ydt=1L,
—00 —00 0

then we say that K is a regular integral summability method. Some
examples are given in 1.8. If K(s, ¢) > 0 forall (s, t) € HxH, we say
that K is nonnegative. It can be shown that K is a nonnegative regular
integral summability method if and only if K is nonnegative and
lims_ [7 K(s, t)dt =1 for all T >0 [7, page 351]. In this paper,
we henceforth assume that all regular integral summability methods
are nonnegative.

An f-measure is a monotone nonnegative finitely additive set func-
tion defined on a collection of subsets I' of H which has the following
properties:

(1) u(B) =0 for any bounded member B of T',

(2) uH) =1,

(3) If A is Lebesgue measurable, 4 C B and u(B) = 0, then
A€l and u(4)=0.

Note that the u-null sets and their complements form an algebra of
sets. We say that an f-measure u is collapsing if, whenever m(A4) <
oo, then u(A4) = 0; u is fine if every unbounded open subset of H
contains an unbounded open set of u-measure 0; u is separating if
every open set of u-measure L contains a closed subset of u-measure
L; u is strongly separating if for every closed subset F C H there is
a closed subset £ C H such that ENF =@ and u(EUF)=1. It
is clear that strongly separating f-measures are separating. We also
note:

1.1. LEMMA. Strongly separating f-measures are fine.

Proof. Let u be a strongly separating f-measure, let D =
Unen, n+ 3] and let E be a closed set such that END = @ and
WEUD) =1. Set W = H—(EUD) and note that W is an unbounded
open u-null set.

Now let U be an arbitrary unbounded open subset of H and select
a closed subset 77 of U such that (7T U (H — U)) = 1. Observe
that either U — T is unbounded or, since H is connected and U is
unbounded, there is an a > 0 such that (a, c0) C U. In the first
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case, U — T is an unbounded open u-null subset of U, and, in the
second case, W N (a, oo) is an unbounded open u-null subset of U.

If K is a regular integral summability method, then the f-measure
associated with K , denoted ug , is a partial function on & (H) defined
by

() = lim [ K(s, Dzato)dt

whenever this limit exists, in which case we call A ug-measurable.
Note that ug is an f-measure, that Lebesgue null sets are also ug-null
sets and if K is regular and T € H, then lim;_, fOT K(s,t)dt=0.
We will sometimes say that K has a property (e.g. K is collapsing)
if the associated measure has the property.

Recall that a collection & of sets in H is discrete if every point in
H has a neighborhood which meets at most one member of & .

1.2. LEMMA. Let G be an open set in H. Then thereisan F C G
such that F = 52, [cn, dn] where {[cn,dn] : n € w} is a discrete

SJamily of closed intervals such that m(G — F) < co.

Proof. We assume that G is unbounded and for all n € w, let
Gn=06N(n,n+1) =Ujcqn(an, b,j) where the intervals are pairwise
disjoint. For each n € w, let J, be a finite subset of @ such that
m(Gn) < m(Ujcs (@nj» bnj)) + 27D, Let g, = 1/]J,[2"*2 and let
H, = Ujejn[a,,j +”e,, , buj — €x] and note that

1
m ((U (anjg bnj)) ""‘Hn) S 2lJn|8’l = W‘
jel,

Let F = J,¢, Hn. Now F is the union of a discrete family of closed
intervals and m(G — F) < 2 since

> m(Gy—Hy) <> |m (U(a,,,-, bn,-)) +2—:ﬁ} — m(H,)
n=0

n=0 jed,

= 1
=Zm (U(anj,bnj)"Hn> +§7JTS2'
n=0

jed,

1.3. THEOREM. (1) If K is a bounded nonnegative regular integral
summability method, then ug is collapsing.



STRONG INTEGRAL SUMMABILITY 205

(2) If u is any collapsing f-measure, then u is strongly separating
and hence fine.

(3) If u is any collapsing f-measure, then every Lebesgue measur-
able set A C H with u(A) = L contains a closed set F with u(F)= L.

Proof. First we establish (1). Suppose that K is bounded by M and
let 4 C H with m(4) < oo. Let ¢ > 0 be given. Since m(4) < oo,
there is a T € H such that m(AN|[T, o0)) < &¢/(2M). There is also
an S € H such that fOT K(s, t)dt < ¢/2 whenever s > .S. Now, for
all s > 5,

0o T [e3)
/ K(s,t)xA(t)dtS/ K(s,t)dt+/ Mya(t)dt <.
0 0 T

Since ¢ was arbitrary, it follows that ug(4) =0.

Next we establish (2). Let F be closed in H and let E C H- F
be asin 1.2. Then m((H—- E) — F) < oo; hence u(H—- (EUF)) =0
and so u(FUE)=1. Then, by 1.1, u is fine.

(3) follows from the fact that any Lebesgue measurable set 4 con-
tains a closed set F such that m(4— F) < oco. Since u is collapsing,

u(A) = u(F).

In the spirit of 1.3(2), we give a sufficient condition for ug to be
fine and separating. If K is a regular integral summability method,
we say K has bounded columns if sup;cy{K(s,?):0<t<x} <o0
forall x e H.

1.4. THEOREM. If K is a nonnegative regular integral summability
method with bounded columns, then ug is fine and separating.

Proof. First we establish that ug is fine. Set z, = sup;cu{K(s, ?):
0 <t < n} foreach n € N, let U be an unbounded open set and
let Uy =Un(n-1,n). Foreach ne N, let , =2 if U, =2
and V,, = (a,, b,) where (a,, b,) C U, and z,(b, — a,) < 27" if
Up#@. Let V ={J;, V». Note that, since U is unbounded, V is
also an unbounded open set.

We claim that ug (V) =0. Let ¢ > 0 be given and select N such
that ), ~27" < &/2. Select S € H such that s > § implies that
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f(va(s, t)dt < ¢/2. Now, if s > S, then

n

/OOOK(s, Hxv(t)dt<e/2+ Z 1K(s, Hxv(t)dt
n>NY"—
<e/2+ Z Zn(by —ay) < &
n>N

and hence ug is fine.

Next we establish that ux is separating. Let U be an open set and
suppose that ux(U) = L. Set U, =UnN(n—-1,n) forall n € N.
Using a procedure similar to the one used in 1.2, for each n € N we
can construct W, c U, such that W, is the union of a finite number
of disjoint closed intervals and such that m(U, — W,) < 1/(z,2").
Set W =, Wn. Then W c U, W is closed and we claim that
ux(W) = ug(U). In order to see this last claim, let ¢ > 0 be given
and select N € N and S € H such that ), _, 27" < ¢/2 and such

that s > S implies [ K(s, t)dt <¢&/2. Now, if s > S,

*® € 1
A K(S,l)XU_W(t)dt<§‘+Zzn—z—n7{<8.

n>N

Since & was arbitrary, ug(U— W) =0 and hence ugx(W) = ux(U) -
ux(U = W) = pug(U).

We say that an f-measure has the APO if, whenever (4, : n € w)
is a sequence of closed subsets of H such that u(A4,) = 0 for each
n € w, there is a sequence (B, : n € w) of closed sets such that
AnABy is bounded for each n and u(clU,c,Bn) = 0. A regular
integral summability method K is said to be thinning if for every
e>0 and Se€H thereisa T € H such that | [°K(s, t)dt| < & for
every s <S.

The above definition of the APO property is a modification of a
similar definition for the density generated by a nonnegative regular
summability matrix which was introduced by Freedman and Sember
in [10] and which has been further developed in [2]. Our definition
generalizes that of Freedman and Sember, but, in practice, the follow-
ing characterization is sometimes more convenient.

1.5. LEMMA. Let u be an f-measure. The following are equiva-
lent:
(1) u has the APO.
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(2) If (G, : n € w) is a decreasing sequence of open subsets of H
with u(G,) = 1 for all n € w, then there is an open set G with
w(G) =1 and such that G — G, is bounded for each n € w.

Proof . First we establish that (1) implies (2). Suppose that (G, : n €
) is a collection of open sets that meet the hypothesis of (2). Then
(H—- G, : n € w) is a family of closed null sets and hence there is a
family (B, : n € w) and a sequence (j, : n € w) with (H-G,)AB, C
[0, j»] and wu(clU,c, Br) = 0. Let G = H - clU, ¢, Bn. Clearly
u(G)=1andfornew, G-G,c H-G,)- B, c (H-G,)AB, C
[O > Jn] N

Now suppose that (2) holds and let (4, : n € w) be a family of
closed null sets. For each n € w, let G, = H—-U;c,4;. Then
(Gn : n € w) is a decreasing sequence of open sets and u(G,) =1
for each n € w, and so there is an open subset G C H and there is
Jn € H such that u(G)=1 and G- G, C [0, j,] foreach ne€ w.

Let B, = (H-G)NA,. Since each B, CH-G, clU,,Br CH-G
and hence u(cl{,c, Bn) = 0. Now let x € B,AA4,. Since B, C 4,
X€A,—-B,,andso x € G. Now x € 4, and so x ¢ G, and we
conclude x € G- G, C [0, j.].

1.6. THEOREM. If K is a nonnegative thinning regular summabil-
ity method, then ug has the APO.

Proof. Let (G(n): n € N) be a decreasing sequence of open subsets
of H such that u(G(n)) =1 for all » € N. We will establish that
there is an open set G such that u(G) =1 and G — G(n) is bounded
for each n e N.

First set So = Ty = 1. Suppose Sy < --- < S,_; and Ty < --- <
T,_; have been selected. Now select S, > S,,_; such that s > §,
implies that

* 1
/0 K(s, Oxem(®)dt>1— 7T and

Tn—l 1
/0 K(s,t)dt<2n+l

and select T, > T,_; such that [°K(s, t)dt < 1/2" forall s<S,.
Set G=U;2, G(n)N(Tp-1, Tpy1). Observe that G is an open subset
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of H and that if §; <5 <5, then
T,
/T K(s, t)XG(j) dt

oo T}_l
=/0 K(s, t)XG(j)dt—/O K(s, )xg(j dt

—/T K(S,t)XG(j)dl

1 1 1
2 (1-z) - (574 37

and hence, if §; <5 <S4, then
o T, 3
/0 K(s,t)deIZ/T | K(s,t)xG(j)dtZI—W.

We conclude that ux(G)=1.

Finally, observe that G — G(n) is bounded by 7,,_;: If ¢t > T,_;
and t € G, then t € G(im)N (T}y—1, Tyy1) for some m > n. Since
m > n implies that G(m) C G(n), t must be in G(n).

Using an approach suggested in [20], we introduce a large class of
integral summability methods. We say that K is a y-means if there is
a nonnegative integrable function y: (0, co) — H such that K(s, t) =
(es)~1y(t/s) where ¢ = [;°y(u)du and K(s,t)=0 if s=0.

1.7. ProprosiTiON. If K is a y-means, then K is a thinning non-
negative regular integral summability method.

Proof. Suppose that K(s, t) = (cs)~!y(¢/s) where y and c are as
in the definition of y-means. Observe that, for a fixed s > 0, setting
u = t/s yields that [°K(s, t)dt = ¢! fﬁs y(u)du for all T > 0.
Since

lim/ K(s,t)dt:liml/ y(u)du =1
T §=00 € JT/s

§—00

for all T > 0 and y is nonnegative, K is nonnegative and regular.
The proof that K is thinning is similar.

1.8. ExAMPLEs. In this section we give a few examples to help
distinguish between thinning, separating, strongly separating and fine
f-measures.
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(1) The Cesaro, Abel and Gauss means. These classical methods
are all examples of y-means and hence are regular and thinning. The
Cesaro (K¢), Abel (K4) and Gauss (K;) means can be defined by

Ke(s, 1) =s5""%0.5(0); Ka(s,t)=s""e™"*; and
Ko(s, 1) = (sy/n)"12e~ W9’

respectively (with all being 0 if s = 0), and correspond to yc(x) =
X0, 13(x), y4(x) = e~ and pg(x) = e=x respectively. Observe that,
since each of these methods corresponds to a bounded y, 1.4 yields
that they are fine and separating. Also note that the Cesaro method is
collapsing.

(2) A method that fails the APO. This example indicates that a hy-
pothesis similar to thinning is required for Theorem 1.6. For each
(n,k) e wxw, let I(n, k) =[2"(k+1),2"(k + 1) + 1]. Define
K(s, t) by:

2k -1 2k+1 -1

ifse|n+——,n+

T —2"T> then K (s, 1) = X1(n k) -

In order to see that the f-measure associated with K fails to have
the APO, set G(n) = Uy, I(n, k). Observe that G(n + 1) C G(n)
and ux(G(n)) =1 for all n. Now suppose that ug(G) = 1. Select
N such that s > N implies that [~ K(s, t)xs(t)dt > 3/4. Note that
m(GNI(N, k)) > 3/4 for each kK € w and hence GNI(N, k) # @
for each k € w. But now we can conclude that G — G(N + 1) is not
bounded and hence ux cannot have the APO.

(3) A thinning and nonseparating method. For (n, k) € w x @ and
J€{0,..., 25— 1},set I(n, k, j)=[n+j/2K3 , n+(G+1)/2k+3).
Define K(s, t) by

K(S, Z) = 2k+3x1(n,k,j) when

k1 k1 j+1
S€ Nt —r—+53 "t St s

Observe that K is a thinning nonnegative regular integral summability
method and, if U is an open set such that ux(U) =0, then U must
be bounded.

We show that if ug is separating then every closed ug-null set is
bounded. Since ug(N) = 0, this is clearly a contradiction. Suppose
that A4 is closed and that ug(4) = 0. Observe that H — 4 is open
and that ux(H — 4) = 1. If ug is separating, then there is a closed
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set F, F CH- A, such that ug(F)=1. Now H — F is open and
uxg(H — F) = 0 and hence, from the construction of ux, H— F is
bounded. Since 4 ¢ H— F, A is also bounded. Hence ux cannot
be separating.

(4) A separating, not strongly separating, f-measure. Let I' = {4 C
H: A or H— A is bounded} and, forall 4 €T, let u(4) =0 if 4 is
bounded and let u(A4) =1 if H— A4 is bounded. It is clear that u is
separating. Note, however, that if F ={J,,[n,n+1/2] and E isa
closed subset of H— F, then EUF ¢ I and hence u is not strongly
separating.

2. Convergence defined by f-measures. If u is an f-measure, f:
H — R is a function and L € R we say that:
(1) f is convergent in u-density to L if there is a subset 4 C H
such that u(A4) =1 and lim;_(f(t) — L)x4(¢) =0, and
(2) f is u-statistically convergentto L if u({t:|f(t)-L|>¢})=0
forall ¢ >0.
If K is a nonnegative regular integral summability method we say that
(3) f is strongly K-summable to L if

lim [ K(s, 0lf()) - LIdt =0.
—00 0

We note that strong integral summability has also been discussed in
[13].

These definitions are similar to definitions which appear in matrix
summability theory (see [2]). It can be shown in the context of matrix
summability theory that for measures generated by nonnegative regu-
lar summability methods and for bounded sequences, each of (1), (2)
and (3) implies the others. The situation is similar for regular integral
summability methods.

2.1. THEOREM. Let f be a bounded measurable function on H and
K be a nonnegative regular integral summability method. Consider the
following statements.

(1) f is convergent in ug-density to L.

(2) f is strongly K-summable to L.

(3) f is uk-statistically convergent to L.

Then (1) implies (2) and (2) implies (3). If, in addition, K is thinning,
then (1), (2) and (3) are equivalent.

Proof. Without loss of generality, we assume that L = 0 and we let
sup{|f(x)|: x€eH} < M.
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First we establish that (1) implies (2). Let 4 C¢ H be such that
Ux(A4) =1 and lim;_, f(¢)x4(¢) = 0. Then

/OOK(s,t)lf(t)ldtS/K(s, t)]f(t)ldt+M/ K(s, 1) dt
0 A H—-A

and, since ux(H - A4) =0, lime_ M [; ,K(s,t)dt =0. Now let
€ > 0 be given and select 77> 0 such thatif t > T and ¢ € 4, then
|f(#)| < &. Note that

0< / T K, Ol Olxalr) de
0 T
ng K(s,t)dt+£/ K(s, Dzt dt.
0 T

Observe that, since K is regular, lim,_, . M fOT K(s, t)dt = 0 and
also that, since ug(4) =1, limy & [7° K(s, 1)x4(t)dt = . Hence
lims_.o [~ K(s, 0)|f(2)|dt =0.

Next we establish that (2) implies (3). Suppose that f is strongly
K-summable to 0 and let ¢ > 0 be given. Set A(e) = {¢:|f(¢)| > ¢}.
Now,

[ kG, o@idize [ K, 0xawde 20,
0 0

Since limy_., [3° K (s, t)|f(¢)|dt = 0, it follows that ux(A(e)) = 0
and so f is ug-statistically convergent to 0.

If K is thinning, then (3) implies (1) follows from the proof of 1.6.
Suppose that f is ug-statistically convergent to 0 and let G(n) = {t:
|f ()] < n~1} for each n € N. Note that ug(G(n)) = 1 for each
n. The proof of 1.6 yields that there is a ugx-measurable set G such
that ugx(G) = 1 and G — G(n) is bounded for each n. It is now
straightforward to verify that lim,_., f(¢)xg(¢) = 0 and hence f is
convergent to 0 in ug-density.

In §4 we will also establish that generating a fine f-measure is a
summability invariant for bounded strong integral summability. In
particular, we will show that if K and K’ are two regular integral
summability methods such that a bounded function is strongly K-
summable if and only if it is strongly K’-summable and ug is fine,
then uy is also fine. We will also establish that having the APO is a
bounded strong summability invariant for separating f-measures.

3. The support set of a measure. We turn now to questions about
the relation between f-measures on H and certain subsets of SH.
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We will show that in many cases the f-measure will be associated
with a large zero-dimensional nowhere dense P-set in SH — H. First,
however, we remind the reader of a few definitions and facts.

For a topological space X, C*(X) = {f: X — R: f is bounded
and continuous}. A subset A of X is C*-embedded in X if for all
f € C*A) thereis f € C*(X) such that f1d4=f. A zero-set
Z = Z(f) is a set of the form f<{0} where f € C*(X), and a
cozero-set is the complement of a zero-set. A z-ultrafilter on X is a
maximal filter in the collection of zero-sets of X .

The Stone-Cech compactification X of a Tychonoff space X can
be thought of as the collection of all z-ultrafilters on X, with the
fixed ultrafilters being identified with the points of X (and hence
X Cc BX), topologized so that X is dense and C*-embedded in X .
In the case of H (or any space in which closed sets are zero-sets) we
have, for closed 4, p € clgy 4 if and only if 4 € p (where in the first
occurrence p is a point in SH and in the second, p is a z-ultrafilter
on H), and hence p € H* if and only if forall T € H, [T, ) €p.
For A closed in H, we set A* =clgyd—A. If A and B are closed
in H, then A* N B* = & if and only if 4 N B is bounded. Recall
also that if # is any collection of closed subsets of H with the finite
intersection property, then there is p € (\{clgy F: F € & }; that is,
there is a z-ultrafilter on H containing & .

For a space X we define the weight of X, w(X), by

w(X) = min{|Z|: &Z is an open base for the topology on X}.

Returning now to f-measures, let 4 be any f-measure on H. We
define
Fu={A CH: Aisclosed and u(4) =1}

and we define S, the support set of the f-measure p by
Sy=[YclguA: A€ F}.

Note that S, = {p € fH: F, C p}. (See [15], [14] and [1] for a discus-
sion of the support set of a nonnegative regular matrix summability
method.)

Since u([T, 00)) =1 forall T € H, S, C H*. In this section we
shall be primarily interested in support sets that arise from f-measures
associated with regular integral summability methods. A support set
of an arbitrary f-measure can be trivial. For example, if F is any
closed set in H*, then F is the support set of some separating f-
measure: We define u(4) = 1 if there is a closed set B of H with
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B C A and F C B* while u(A4) =0 if u(H—A) = 1. But support sets
of f-measures associated with regular integral summability methods
are nontrivial. We show, for example, that they all have cardinality
2¢. First, however, we need some preliminary results.

3.1. LEMMA. Let K be a nonnegative regular integral summability
method and let A C H. If ux(A) = 1, then there is a discrete collection
(Fp: n € w) of closed intervals in H such thatif J C @ and |J| = w,
then Ay =,c; ANF, is not a null set. Moreover, if the complement
of J is infinite, then Aj is not ug-measurable.

Proof. Let So = Ty = 0 and select S; such that s > S; implies
that 17/16 > [°K(s, t)x4(t)dt > 15/16. Now select T; such that

fOT‘ K(S), t)xa(t)dt > 7/8. We proceed recursively: If Sy < S <
- < S,y and Ty < T} < --- < T,_; have been selected, select
Sy > S,-1 such that s > S, implies that

Tn—l+l
/ K(s, f)dt < 1/16.
0
We may then select 7, > T,,_{ + 1 such that

T
/ K(S,, t)x4(t)dt >7/8 and hence
T, ,+1

/OOK(S,,, )x4(t)dt < 3/16.
Tn

Let F, =[T,_1+1, T,] for n € N and let J be an infinite subset of
w. Since (F,: n € w) has been constructed to be a discrete collection
of closed intervals, we only need to establish the other conclusions.
To this end, observe that if n € J, then

n

| K ona0de> [T K oxade > 778
0 T, +1
and, if n ¢ J, then

| Ky 0,048

0

Tn~l+l &8}
S/ K(S,, t)dt+/ K(S,, t)x4(t)dt < 1/4.
0 T
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Note that if the complement of J is finite, then 4 — A; is bounded
and hence ug(Ay)=1. If the complement of J is infinite, then

lim inf / K(S;, x4 (1)dt>7/8 and
JeJ 0 J

lim sup / K(Sj, )1, (0)dt < 1/4
jew—-J JO

and hence A4; is not ugx-measurable.

3.2. PROPOSITION. Let u be any f-measure. If F is closed in H,
and F is not a u-null set, then F*NS, # @.

Proof. Since F is not a null set, then forall A%, FZH-A.
Then FNA# @ forall 4€.%,, and so there is a z-ultrafilter ¢ on
H which contains {F}U%,. Clearly g€ F*NnS,.

3.3. THEeoREM. If K is any nonnegative regular integral summa-
bility method, then S,  contains a copy of BN and hence |S, | = 2°.

Proof. Let (F,: n € ) be as in 3.1 (with 4 = H). Let & be an
infinite family of pairwise disjoint infinite subsets of @w. Let Fr =
Uneg Fn forall E€ & . By 3.2, (Fg)*NS, # @ forall E€ & and,
since FENFy =2 for E#J, (Fg)*N(F;)* = 2. We conclude that
ISy | > & > w. Then Sy is closed and infinite, and so by [11, 9.12],
Sy, contains a copy of BN.

3.4. CoroLLARY. If K is a nonnegative regular integral summa-
bility method, then w(S, )= c.

Proof. This follows from 3.3 and the fact that w(fN) = ¢ = w(fH).
(See [8, 3.6.12, 3.5.3].)

We will denote the boundary in X of a subset 4 of a space X by
bdyy 4, and we will make use of a function Ex that extends open
sets of H to open sets of SH defined as follows:

Ex(U) = BH — clgy(H — U)

for all U open in H. From [5, 3.1, 3.2] we have the following facts
about Ex.

3.5. ProrosITION. Let U be an open set in H.
(1) HNEx(U) = U; hence clgg Ex(U) =clgy U .
(2) bdygy Ex(U) = clgybdyy U .
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Itis evident that {Ex(U): U is openin H} is a base for the topology
on SH.

We now give some relations between properties of measures and
those of the support sets they generate. First we note the following.

3.6. PROPOSITION. If u is any f-measure and G is open in SH
with S, C G, then u(GNH) = 1.

Proof. Let G beopenin SH with u(GNH) # 1. Then u(H-G) # 0
and so, by 3.2, (H-G)*NS,#@. Then S, ¢ G.

3.7. PROPOSITION. Let u be any separating measure.

(1) If B is closed in H with p(B) =0, then B*NS, =@.

(2) If U is open in H with u(U) =1, then S, C Ex(U).

(3) If u is strongly separating, then for all closed subsets F of H,
Sy C F* ifand only if p(F)=1.

Proof. (1) Let p € S, and let B be closed in H with u(B) =0.
Now H — B is open and u(H— B) = 1. Since u is separating, there
isaclosed 4 C H— B with u(4) = 1. Then p € clgy 4, and so
D ¢ B*.

(2) Let u(U)=1. Then u(H-U) =0 and so, by (1), S, c Ex(U).

(3) Let F be closed inH and suppose that F does not have u-
measure 1. Let E C H— F with g(EUF) =1. Now E is not
u-null, and so, by 3.2, S, NE* # @. We conclude that S, € F*. The
converse is trivial.

A point p € H* is called a remote point (resp. far point) of H if
p ¢ clgy A for any nowhere dense (resp. closed discrete) 4 C H (see
[5, 1.4]), and p is a large point of H if p ¢ clgy A for any closed set
A C H where m(4) < oo (see [17]).

3.8. LeMMA. If u is collapsing, A is closed in H and u(A) =L,
then thereisa B C A with B closed and nowhere dense and u(B) = L.

Proof. Let ay =0 and, for n > 0, let a, be an irrational number
such that a,.; > a, + 1. Let the rationals in (a,, a,,1) be contained
in an open set G, of Lebesgue measure less than 27" with G, C
(@n, @ny1). Let B = U,e(ANlan, aps1]l — Gn). B is a closed set
and clearly BC 4.
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Now B contains no positive rationals, and therefore B is nowhere
dense. Since m(A—B) <> 2 m(Gr) <Y 72027 " =2, and, since u
is collapsing, u(A— B)=0. Thus u(4) =u(B)=1L.

3.9. ProposITION. If u is a collapsing f-measure, then every point
of Sy is large and no point of S, is remote.

Proof. Let pe S,. If A is closed and m(A4) < oo, then u(4)=0.
By 1.3(2), u is separating and so p ¢ clgy 4 by 3.7(1). We conclude
that p is large.

Now u(H) =1 and so there is, by 3.8, B € %, with B nowhere
dense. Since p € clgy B, p is not remote.

3.10. CoroLLARY. If u is a collapsing f-measure, then S, con-
tains no nonempty Gs-subsets of H* and hence is nowhere dense in
H*.

Proof. In [5, 4.2], it is shown that if G is a nonempty Gjs-subset of
H*, then G contains 2° remote points of H. By 3.9, none of these
isin Sy.

In fact, however, x does not have to be collapsing to guarantee that
S, is nowhere dense. We see that x4 can merely be fine.

3.11. ProposITION. If u is any f-measure, then the following are
equivalent:
(1) S, is nowhere dense in H*.

(2) u is fine.

Proof. (1) = (2) Let U be open and unbounded. Since S, is
nowhere dense, there is p € (H*NEx(U))~S, . Then p ¢ clgy(H-U)
and p ¢ Sy, and so thereis B € &, with p ¢ clgyB. Let V bea
neighborhood of p in BH that misses both (H— U) and B. Then
HNV Cc(H-B)NU and, since pe H*NV, HNV is unbounded.
Now u(H—B) =0 and so u(HNV) = 0. We conclude that u is fine.

(2) = (1) Assume (2) and suppose (1) is false. Then there is p €
inty- Sy = GNH* for some G open in BH. There is U open in H
with p € Ex(U) ¢ G. Now U is unbounded and so thereis V' C U
with V' open and unbounded with u(¥) = 0. Since V' is unbounded,
there is ¢ € H* NEx(V) ¢ H* NEx(U) Cc H*N G = inty-S,. Then
q ¢ clgy(H— V) since g € Ex(V) but u(H- V) = 1, contradicting
that g€ S, .



STRONG INTEGRAL SUMMABILITY 217

We remark that [18] contains a similar result for the support set of
a nonnegative regular matrix summability method.

For a topological space X, a subset 4 of X isa P-setin X if
every Gs-set in X containing A4 is a neighborhood of 4.

3.12. THEOREM. Let u be separating. The following are equiva-
lent.

(1) u has the APO.

(2) S, isa P-setin H*.

Proof. (1) = (2) Let S, € ,¢e, Gn Where each G, = P, NH* for
some open set P, of BH. Since S, is compact, there is an open
set V, Cc H with S, C Ex(V,) C P,. By 3.6, u(¥,) = 1 and so
uMH-V,) =0 forall n € w and H -V}, is closed. Since u has the
APO, there is a family (B,: n € w) with B,A(H - V},) C [0, j,] for
some j, € H and u(cluU,c, Brn) =0. Let G=H~-clyU,c, Bn- G
is open in H and u(G) =1. By 3.7(2), S, € Ex(G). We show that
H* NEX(G) C Nyeew Gn -

Let p e H*NEx(G) and let n € w. We will show that p € Ex(V},).
Since p ¢ clgy(H — G), there is a neighborhood V' of p in SH with
VN(H-G)=2. Then HNV c G. Since p ¢ H, p ¢ [0, j,].
Let W=V -[0, j,]. W is a neighborhood of p in fH. We show
next that WNH-V,) =o. Let x € WNH. Now x € G and so
x ¢ Bp. Since x ¢ [0, j,], x ¢ B,A(H-V,) D (H-V,)—B,. Then
x € (V,uB,)—B, CV,,andso WnN(H-V,)=2. We conclude that
pem*NEx(V,) cH*NP, =G,.

(2) = (1) Let (G4: n € w) be a decreasing family of open sets in H
with u(G,) =1 forall n € w. By 3.7(1), Sy C,ce, EX(Gn) and so
there is an open set G of H with S, ¢ H*NEx(G) C H*Nclgy Ex(G) C
Mnew EX(Gn) . By 3.6, u(G) = 1. We claim G — G, is bounded for
Al new.

Note first that H* Nclgy Ex(G) = (cly G)* and hence, forall n € w,
(cly G)*N(H - G,)* = @. Now suppose G — G, is not bounded. Pick
an increasing sequence (x;: j € w) C G — G, with x; /" co. Let p
be a limit point in BH of {x;: j € w}. Then p € H* Nclgy G N
clgy(H — Gy), a contradiction.

See [3] for a result similar to 3.12 in the matrix setting.

3.13. CoROLLARY. If u is a fine and separating f-measure with
the APO (e.g., if u is the f-measure associated with the Cesaro means),
then S, is a nowhere dense P-set in H* .
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4. Invariants for bounded strong integral summability. We return
now, as promised at the end of §2, to invariants for bounded strong
integral summability. Before we begin, however, we need to make a
few observations.

If K is a nonnegative regular summability method, we define

Ix = {f: H— R: f is bounded and strongly K-summable}

and we will note some relations that hold between Ix, ugx and S, .
First we note that if y, is a characteristic function, then yx, is strongly
K-summable to L if and only if ug(A4) = L. Furthermore, L must
be either 0 or 1.

In the remainder of this section, K and K’ will always represent
nonnegative regular integral summability methods.

4.1. LeMMA. If Ix = Iy, then pux(A) =1 ifand only if pg (A4) =
1 and hence K and K' have the same support set.

Proof. Assume that ug(A4) = 1. It suffices to show that ug(4) #0.
Suppose, on the contrary, that ug(4) = 0. Now by 3.1, there is
a closed set F C A such that F is not ug-measurable and hence
XxF & Ix. But ug(F)=0,and so xr € Iys. Then Ix # Iy . The
remainder of the claim follows from the definition of a support set.

The following theorem now follows immediately from 3.11, 3.12
and 1.6.

4.2. THEOREM. Suppose that Ix = I .

(1) If K is fine, then K’ is fine.

(2) If K and K' are separating and K has the APO, then K' has
the APO.

(3) If K and K’ are separating and K is thinning, then K' has the
APO.

A property (P) is said to be an invariant for bounded strong inte-
gral summability if, whenever K and K’ are regular methods such
that Ix = Iy, then K’ has property (P) whenever K has property
(P). The preceding theorem shows that being fine is a summability
invariant for regular methods and having the APO is a summability
invariant for separating methods.

We can also establish the following partial converse to 4.1.
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4.3. THEOREM. Let K and K' be collapsing and thinning. If
SﬂK = S#K' » then IK = IK’ .

Proof. Suppose that f is strongly K-summable to L. Theorem 2.1
yields that there is an 4 C H such that

ux(4)=1 and Lim(f(z) - L)xa(t) = 0.

Since K is collapsing, 1.3(3) yields that there is a closed set F C 4
such that ugx(F) = 1. Now, since F* contains the support set of
K'’, 3.7(3) yields that ug (F) =1 and hence f is convergent in uy-
density to L. Again by 2.1, f is strongly K’-summable to L.

We conclude this section by recording some connections between
the types of convergence discussed in §2 and the support set of a
measure. We recall that C*(SH) denotes the bounded continuous
real-valued functions on SH.

4.4. THEOREM. Let f € C*(BH). If u is any f-measure, then
S 1 H is u-statistically convergent to L ifand only if f|S,=L.

Proof. Without loss of generality, suppose that L = 0. First sup-
pose f | H is u-statistically convergent to 0. Let ¢ > 0 be given and
observe that F; = {x € H: |f(x)| < &} is closed and u(F;) =1, and
hence S, C (F¢)*. It follows that f(p) € [-¢, ¢] forall p €S, and
¢ >0, and hence f[S,=0.

Suppose next that f | H is not u-statistically convergent to O.
Then there is an € > 0 such that F = {x € H: |f(x)| > ¢} isnot a
u-null set. Now F* NS, is nonempty and hence there is a p € Sy,
such that F € p and thus |f(p)| > ¢. It follows that f S, #0.

The hypothesis of continuity on SH cannot be dropped from the
previous theorem. For instance, if we set f = yy, then f is lower
semicontinuous on BH and f | H is u-statistically convergent to 1,
yet f1S,=0.

The next result is an abstract version of 2.1.

4.5. THEOREM. Let f € C*(H). If u is a separating f-measure
with the APO, then f is u-statistically convergent to L if and only if
f is convergent in u-density to L.

Proof. Let f extend f to BH. If f is u-statistically convergent to
L then, by 4.4, f 1S, = L. Since u has the APO, S, isa P-set and
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hence there is an open set V' C H with S, C Ex(V) C f={L}. Now
u(V)=1 by 3.5and lim,_(f(¢)—L)xr(t) =0,i.e. f isconvergent
in u-density to L.

It is straightforward to verify that f is u-statistically convergent to
L if f is convergent in u-density to L.

5. Topological properties of support sets. A topological space X is
zero-dimensional if X has a base for its neighborhoods consisting of
clopen (=closed and open) sets.

We show next that if u is collapsing, then its support set is zero-
dimensional. First we need some preliminary results. Although the
first lemma is probably known, we do not have a reference for it, and
so we include a proof for completeness.

5.1. LeMMA. Every point of H* has a local base consisting of sets
of the form Ex(G) where G is the union of a discrete collection of open
intervals.

Proof. Let U be open in BH with p € U. Then there are open
sets V' and W in H with p € Ex(V) C clgyEx(V) C Ex(W) C U.
Let W = J,ce(an, by) where the intervals are pairwise disjoint. Let
V, = Vn(ay,b,). Let ¢, = infV, and d, = supV;,. Let & =
{(cn, dn): n € w} and G=J& . Then, since cly V' Ncly{a,, by: n €
w} = @, G is a union of a discrete collection of open intervals and
p€Ex(G)cU.

5.2. PROPOSITION. If u is separating and if every point of S, is a
Jfar point, then S, is zero-dimensional.

Proof. Let p € S, and let & = {4 C H: A4 is the union of a
discrete collection of closed intervals and p € Ex(inty 4)}. Let & =
{intsﬂ A*: A€ D}. By 5.1, & is alocal base in S, at p. Now let
B =intg A* € # . To see that B is clopen in S, , we note that if
q € bdyg B, then g € clgy AN clgy(H — inty 4) = bdy gy Ex(inty 4) =
clgy bdyy inty A by 3.5(2). Then g € S, N (bdyg A)* but bdyy 4 is
closed discrete, contradicting that g is a far point.

The next corollary follows from 5.2 and 3.9.

5.3. CoROLLARY. If u is a collapsing f-measure, then S, is zero-
dimensional.
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5.4. CoROLLARY. if K is a nonnegative separating regular integral
summability method, then S,  is zero-dimensional.

Example 1.8(4) shows that 5.4 is not true for an arbitrary separating
f-measure, and thus the hypothesis that every point of S, is a far
point cannot be dropped in 5.2.

5.5. ProrosiTiON. If K is a collapsing nonnegative regular inte-
gral summability method, then S,  has no isolated points.

Proof.Let p € Ex(V)NS,, . By 5.1, we may write V'=U,,(an, by)
where {(a,, b,): n € w} is a discrete collection. Now by 3.7(1), V is
not a null set, and so there a partition of w into disjoint sets, J and
I, such that neither 4 =, ;(@n, bn) nor B = J,c;(an, by) is anull
set. Since clgy ANclgy B = @, we may assume that p ¢ clgy 4. Now
Su,Neclgy 4 # @, but S, N(bdyy 4)* = @, and so {p} # Ex(V)NS,, .

A space X is an F-space if cozero-sets are C*-embedded in X (see
[11, 14.25]). It is well known that H* is an F-space (see [11, 14.27])
and clearly C*-embedded subsets of F-spaces are F-spaces. Thus
for any f-measure u, S, is an F-space. A space X is a P'-space if
nonempty Ggs-subsets of X have nonempty interiors. H* is known to
be a P’-space ([9, 3.1]). A space X is called a Parovicenko space if X
is a compact zero-dimensional F-space of weight ¢ without isolated
points that is also a P’-space. ParoviCenko spaces are of interest,
among other reasons, because the continuum hypothesis is equivalent
to the statement that every ParoviCenko space is homeomorphic to
N* ([6]). The following question, then, arises: If u is a collapsing
f-measure, is S, a P’-space? We will show that this need not be the
case, but first we need a lemma.

5.6. LEMMA. Let K be a collapsing regular nonnegative integral
summability method. Suppose there exists a sequence (G,: n € N) of
open sets in H with the following properties:

(1) {Gp: n € N} isdiscrete in H,

(2) for each n € N, cly G, is not a u-null set, and

(3) for all sequences (s;: k € w) C H,

*° 1
sup [ K5k, 0x6,(0dt < 55
kewJO

Then S, is not a P'-space.
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Proof. By 1.2, we can find, foreach n € N, aset Fy, = J;enlcn)s dnjl
where {[c,;, dn;]: j € N} is a discrete family of closed intervals and
m(G, — F,) < co. Then ug(G,—F,) =0 and so F, isnota ug-null
set. For all n, j €N, pick &,; with ¢,j < cpj+&nj < dyj—&nj < dy;
and such that 37 3 icnénj is finite. Let

H, = U[an +&nj, dnj — &nj].
jEN
Then H, is not a ug-null set. We can define a continuous function
f:H — (0, 1] with the following properties:

1. f=1/n on H,,

2. f=1o0n H-,nFn,and

3. f is piecewise linear on Un,jeN(c,,j, Cnj+enj)U(dnj—€nj, dnj).

Let f extend f to BH. Since H, is not ug-null, there is p, €
Sy, Nclgy Hy and p € S, such that p is a limit point of {p,: n € N}
in BH. Clearly p € S, N Z(f). We claim that ints, Z( f) =
@ . Suppose not. Then there is, by 5.1, an open set VCH with
m(bdyy(V)) = 0 and ¢ € Ex(¥) NSy, C Z(f). Since g ¢
cly(H — U,en Fn) , we may assume that V C (J,ninty F,. We note
that ug(V Ninty F,) =0 forall n € N.

We will now show that ux(V) = 0. Let ¢ > 0 and let (s;: k €
w) be any increasing sequence from H. Let N € N be such that
Yoasn1/2"<e.Let F=,.nyFn and G=U,, 5 Gn.

Now ug(U,<yVNF,) =0, and so

limsup/ K(s, t)xy(t)dt—hmsup/ K(si, Oxyvnr(t)dt
0

k—o0

< lim sup / K(se, Dxa(t) dt

k—o0

slimsupZ/ K(si, xe (1) dt

k—oo SN

<Z—-—<s

n>N

Since m(bdyy V) =0, ux(clu?V) =0, and so Ex(V)NS,, =2, a
contradiction.

5.7. PROPOSITION. Let K be the Cesaro means. There is a se-
quence (Gy: n € N) of open sets satisfying all the properties of 5.6.
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Proof. We first select, for all n € N, open intervals (a,, b,) satis-
fying:

Lo 1 q 1”“‘b 1
b—n(n—an)>1—2ﬁ an aZ(k—ak)<2W.
k=1

This can be done by a construction similar to that of 3.1.

Now for each n € N, we select, by recursion on the set {(1, n),
(2,n-1),...,(n, 1)}, s(k, j) (for k+j = n+1) with the following
properties:

(1) s(1, n)e(an, by) and s(k+1, j—1) € (s(k, j), by); and

(2)

1 . . 1 1 1 1
ST Itk ) € (5 97 g~ 330

The intermediate value theorem guarantees that this recursion process
is possible. .

Set Ty, n = (an,s(1,n)) and T ;= (s(k—-1, j+1), s(k, j)). Let
Hy, =2, T, foreach neN.

The collection (H,: n € N) is not quite discrete, but we can easily
find, as in the proof of 5.6, G, C H, with ux(H,— G,) = 0 such that
(Gn: n € N) is a discrete collection of open intervals with endpoints
satisfying 1 and 2.

One may verify that (G,: n € N) satisfies all the properties of 5.6.

5.7. CoRrOLLARY. If K is the Cesaro means, then S,  is a compact
zero-dimensional F-space of weight ¢ with no isolated points that is
not a P’-space.
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