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ON ORTHOMORPHISMS BETWEEN VON NEUMANN
PREDUALS AND A PROBLEM OF ARAKI

L. J. BUNCE AND J. D. MAITLAND WRIGHT

A problem of Araki concerning the characterization of orthogo-
nality preserving positive maps between preduals of von Neumann
algebras is solved in a general setting.

Introduction. In an interesting recent article, Araki [1] initiated the
study of orthogonal decomposition preserving positive linear maps
(o.d. homomorphisms) between preduals of von Neumann algebras.
(See below for definitions.)

Let M and N be von Neumann algebras and let ¢: M, — N, be
a linear mapping. When either M or N is of Type I, with no direct
summand of Type I,, Araki proved that ¢ is a bijective o.d. homo-
morphism if, and only if, ¢* = zzn where z is a positive invertible
element of the centre of M and #n: N — M is a Jordan isomorphism.

Araki posed the problem of establishing an analogous characteriza-
tion when M and N were of Type II or Type III.

Araki used delicate Radon-Nikodym methods which seem very dif-
ficult to generalize to algebras which are not of Type I. However, by
adopting a different approach, we are able to show, for arbitrary von
Neumann algebras M and N, that if ¢: M, — N, is an o.d. homo-
morphism then ¢*n = zid,, where z is a positive central element of
M and n is a Jordan * homomorphism, and we obtain a character-
ization in these terms. If ¢ is an o.d. isomorphism, we find that z
is invertible and that 7 is a Jordan * isomorphism. This proves that
Araki’s characterization of o.d. isomorphisms is valid for arbitrary
von Neumann algebras M and N.

1. Preliminaries. Two positive linear functionals p, 7 in the pred-
ual M, of a W*-algebra M are said to be orthogonal, written p L 7,
if the corresponding support projections s(p), s(t) are orthogonal ele-
ments in the algebra M . Every hermitian functional p in M, admits
a unique orthogonal decomposition p = p.—p_, where p,, p— € M}
and p, L p_. On the other hand every hermitian element x in
M has a unique orthogonal decomposition x = x; = x_, where
Xy, Xx->0and xy-x_=0.

265



266 L. J. BUNCE AND J. D. MAITLAND WRIGHT

In the language of orthogonally decomposable (0.d.) Banach spaces
[1, 2, 6], given W*-algebras M and N, a continuous linear map
M, — N,,or M — N, is said to be an 0.d. homomorphism if it pre-
serves both order and the orthogonal decomposition, and to be an o.d.
isomorphism if it is also bijective (and hence an order isomorphism,
as is easy to see).

The dual ¢*: N — M of an 0.d. homomorphism ¢: M, — N, isnot,
in general, an 0.d. homomorphism (see the example at the end of this
section). But there is, nevertheless, a “duality” between the o.d. ho-
momorphisms of preduals of W *-algebras and the weak * continuous
o.d. homomorphisms of W*-algebras. The latter, in fact, are positive
central multiples of Jordan * homomorphisms. Before considering
maps between preduals, we need the following characterization of o.d.
homomorphism between von Neumann algebras.

ProposITION 1.1. Let w: N — M be a linear map between W*-
algebras. Then y is a weak * continuous o.d. homomorphism if and
only if w = n(z-) where n: N — M is a weak * continuous Jordan *
homomorphism and z € Z(N)*.

Moreover, y is an o.d. isomorphism if and only if m can be chosen
to be a surjective Jordan x isomorphism and z to be a positive central
invertible element of N .

Let w:N — M be a weak * continuous o.d. homomorphism be-
tween W*-algebras. We may suppose without loss that |y| = 1.
The o.d. property implies that ¥ > 0 and that yw(a)wy(b) = 0 if
a,b>0 and ab = 0. In particular, given any projection p of N,

y(p)y(1—p)=0 so that
(*) y()v(1) =w()?=yw() v().

Since, as a Banach space, N is generated by its projections, it follows
that y(1) € Z(W), the centre of the W*-subalgebra W of M gen-
erated by y(N), and that the range projection r(y (1)) = e, where e
is the identity element of W .

We note that if y(1) =e, then y preserves projections as well as
orthogonality and hence is a Jordan * homomorphism by elementary
spectral theory. Consequently, in the case that y(1) is merely invert-
ible in W, we see that v = y(1)n, where 7 is a weak * continuous
Jordan * homomorphism. (We note here that if ¥ is an o.d. isomor-
phism then (1) must be invertible in M (= W). This is because,
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then, the condition (%) implies that the two-sided ideal w(1)M is
norm dense in M, and hence equals M as M is unital.)

In general, upon identifying Z(W) with C(X) and w(1) with
f € C(X) accordingly, where X is some compact hyperstonean space,
we see that 0 < f < 1 and that {x:f(x) > 0} is dense in X
(we had r(w(1)) = e). For each n let K, be the closure in X
of {x:f(x) > 1/n}. Then each K, is a clopen subset of X. The
characteristic functions Xk , when translated back into Z(W), give
rise to an increasing sequence (e,) of projections in Z(W) converg-
ing strongly to e with the property that each e,y (1) is invertible in
e W .

By the remark above applied to the 0.d. homomorphism e,y: N —
e, W , this means that, for each n, there is a weak * continuous Jordan
* homomorphism 7z,: N — e, W such that e,y = e,y (1)n,. So, as
S (en —en—1) = € where ¢y = 0, we have y = y(1)n where m is the
weak * continuous Jordan * homomorphism from N onto W given
by n(x) = > (en — ey—1)mn(x), x € N. Since n(N) = W we have
n(Z(N)) = Z(W), as in [5, Remark, p. 135]. Therefore choosing
z € Z(N) with n(z) = w(1) we have ¥ = n(z-). The converse being
obvious, this completes the proof.

The following example shows that a naive approach to duality of
o.d. homomorphisms does not work.

We observe that given a W*-algebra N without minimal central
projections and any fixed p € N, then, for all » > 1, the map
¢: M, (C), — (M,(C) ® N), defined by ¢(1) = 7® p is an o.d. ho-
momorphism but its dual ¢* is not. In fact, there are no non-trivial
weak * continuous o.d. homomorphisms at all from M,(C)® N into
M,(C).

2. o.d. homomorphisms of preduals. Given p € M, , where M is a
W*-algebra, and a central projection e of M let p, € M, be defined
by pe(x) = p(ex), forall x in M. If p € M}, then p, € M},
s(pe) =e-s(p) and {p.: p € M.} is identified with (eM),.

PROPOSITION 2.1. Let M and N be W*-algebras and let ¢: M, —
N, be an o.d. homomorphism. Then ker¢ is a norm closed invari-
ant subspace of M.. Hence ker¢ = ((1 — e)M)., for some central
projection e of M, and ¢ is injective on the complement (eM). .

Proof. We make use of fundamental results of Effros, as related
in [4, 1I1.4]. Recall, in particular, that each p € M, has a polar
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decomposition, p(-) = |p|(-u) where u is a partial isometry in M,
lpl € M and w*u = s(|p]).

Put K = (ker¢);. Then K is a norm closed convex cone in M.
The norm closed left invariant subspace of A, generated by K is
given by V = {p € M,:|p| € K}, and V; = K. We will show first
that V C ker¢.

Let, then, p € M, such that |p| € K. We may suppose that
llpll = 1. Given x in N, where x > 0, we then have |p|(¢*(x)) =
o(lp|)(x) = 0. Thus ¢*(x) is a positive element in the left kernel
of |p|, as therefore is ¢*(x)2. Hence |p|(¢*(x)?) = 0. But, by [4,
I11.4.6], |8(p)(%)1* = |p(¢*(x)1* < |pl((¢*(x))?). So ¢(p)(x) =0 for
all x € N, implying that p € ker ¢, as required.

On the other hand, since ¢ > 0, given p = g + it € ker¢ where
o =0* and T = 7%, we have that o, 7 € ker¢. The o.d. condition
now implies that o1, 74 € ker¢. Hence p € lin(K) C V. Therefore
V =kero.

But, as is easy to see, p € ker¢ if and only if p* € ker¢. So ker¢
is also a right invariant subspace of M, , completing the proof.

Notation. In the remainder M and N are (arbitrary) W*-algebras
and ¢: M, — N, is an 0.d. homomorphism. We will also write

é(p)=p', forall pin M,.

We define ¥ to be the weak * closed linear span of {s(p’):p € M}
and ny to be the W*-subalgebra of N generated by V. The identity
element of N, is 14 = sup{s(p’): p € M} . The central projection e
for which ker¢ = ((1 — e)M). (Proposition 2.1) will be denoted by
ey .
¢Reca11 that the projections s(p) where p € M} are precisely the o-
finite projections of M and that, by a standard argument using Zorn’s
Lemma, every projection in M is the sum of an orthogonal family of
o-finite projections.

LEMMA 2.2. (i) If p, € M} with p L7, then p' L 7.
(i) ¢*(1) = ¢*(1) and r(¢*(1)) = e;.

Proof. (i) This is a direct consequence of the o.d. property (as p—1
is an orthogonal decomposition in this case).

(ii) ¢*(1—14) = 0 because p(¢*(1—14)) = p'(1 —14) =0, for all
pEM;.

By Proposition 2.1, ¢*(N) C e,M and for any p in M/ with
p' # 0 we have p(r(¢*(1))) > p(¢*(1)) = p'(1) # 0, as required.
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LeMMA 2.3. (i) ¢*(s(p") = ¢*(1)s(p), for all p e M.
(ii) ¢*(1) e Z(M).

Proof. (i) By the remark above, given p € M} we can write 1 —
s(p) = Y_s(t;), where (t;) is an orthogonal family in M. We
have p L 1; for each i, so that p’ L 7 and hence t;,(¢*(s(p’))) =
75(s(p')) = 0. As ¢*(s(p’)) > 0, this means that ¢*(s(p’))-s(1;) =0,
for all i. Hence ¢*(s(p’)) - (1 —s(p)) =0. Also, p(¢*(1 —s(p’))) =
p'(1-s(p")) = 0, so that ¢*(1—s(p’))-s(p) = 0. Therefore, ¢*(s(p’)) =
¢*(1)s(p) .

(ii) By (i), ¢*(1) commutes with all support projections in M and
hence with all projections in M . It follows that ¢*(1) € Z(M).

The following is an immediate consequence of [3, Lemma 4.1].

LEMMA 2.4. Let w:N — M be a positive linear map such that
lwll <1 and let e and f be projections in N and M, respectively,
such that y(e) = f. Then y(ex + xe) = fy(x)+ w(x)f, for all x
in N.

LEMMA 2.5. @™ is injective on V.

Proof. By Proposition 2.1 it can be supposed without loss that ¢ is
injective, so that e, = 1. We have ¢*(1) € Z(M) and r(¢*(1)) =1,
by (ii) of Lemmas 2.2, 2.3. Choose (see the proof of Proposition
1.1) an increasing sequence of projections (e,) in Z (M), converging
strongly to 1 and such that e,¢*(1) has an inverse, ?,, in e,Z(M)
for all n.

Now let x € ¥, such that ¢*(x) =0 and x = x*. Fixing »n, put
Y = the,¢*. Then yw: N — e, M is positive and y(1) = e,. Hence
lw|l=1. Let p € M. Then y(s(p')) = ess(p), by Lemma 2.3(i).
So using Lemma 2.4 in the second equation below,

thend*(xs(p’) +5(p")x) = w(s(p')x + xs(p’))
=ens(p) - w(x) + w(x)ens(p) =0,

as y(x) = 0. Hence e,¢*(s(p’)x + xs(p’)) = 0, for all n, which
implies that s(p’)x + xs(p’) € ker¢*, for all p in M, . Therefore,
xy +yx €ker¢*, forall y in V. In particular, x2 € ker¢*.

We now have x2 € Ny, x2 > 0 and p'(x?) = p(¢*(x?) = 0,
so that s(p’)x? = 0, for all p € M} . By the definition of N, this
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implies that x2 = 0. So x = 0 and it follows from this that ¢* is
injective on V.

We are now in a position to provide a detailed description of the
properties of ¢*.

THEOREM 2.6. There is a weak * continuous and surjective Jordan
homomorphism n: M — Ny such that ¢*(n(x)) = ¢*(1)x, forall x in
M . Moreover, = maps e,M isomorphically onto N, and ¢*: Ny —
e, M is an injective o.d. homomorphism with dense image. Also, V, =
Ny.

Proof. We claim that for any x in M , there is a unique element x’
in V, such that ¢*(x’) = ¢*(1)x. Uniqueness follows directly from
the injectivity of ¢* on ¥V, (Lemma 2.5). Existence is explained as
follows.

First, let e be any projection in M. Then e = Y s(p;), for some
orthogonal family (p;) in M. By Lemma 2.2(i), (p}) is an orthogo-
nal family in N} . Therefore ¢’ =} s(p/) is a projection of N lying
in ¥, and, by weak * continuity together with Lemma 2.3(i), we have

¢*(e) =D ¢ (s(p))) =Y ¢*(1)s(pi) = ¢*(1)e.
Now let x € M. In order to establish the claim it is sufficient to
suppose 0 < x < 1. We can then write x = > (e,/2"), for certain
spectral projections e, of x.

By the above, there exist projections e, in ¥V}, such that ¢*(e;) =
¢*(1)ey , for each n. Thus x’ =} (e,/2") € V;, and

* /
Fhx =Y e = 3 ) oy,
thereby proving the claim.

So, in the notation of the previous paragraph, we see that we have
a well-defined function n: M — V;;, given by n(x) = x’, satisfying

(@) ¢*(n(x)) = ¢*(1)x, forall x in M.

(b) n(s(p)) =s(p’), forall p in M} .

(c) If (e;) is an orthogonal family of projections in M , then (n(e;))
is an orthogonal family of projections in ¥, and n(}_e;) = > =n(e;).
Furthermore,

(d) 7 is linear.

In order to see (d), let x, y € M. By (a),

P (r(x +y)) = ¢*(1)(x +y) = ¢*(n(x) + 7(y)).
So, n(x +y) =n(x)+ n(y), by Lemma 2.5.
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By (c) and (d) n: M — N is a linear map that preserves projec-
tions and is completely additive on projections. Hence 7 is a weak *
continuous Jordan homomorphism. Hence n(M) is a W*-subalgebra
of M. But now n(M) =V, by (b). Hence V3 = N;. By Lemma
2.2, ¢*(1) € eyM and r(¢*(1)) = e4. Thus ¢*(n(1)) = ¢*(1)ey =
¢*(n(ey)), by (a), so that n(1) = =m(ey), by Lemma 2.5, and so
n(egM) = Ny. If x € eyM are n(x) = 0, then ¢*(1)-x = 0 so
that x = egx = r(¢*(1))x = 0. This proves that 7 maps ez;M iso-
morphically onto N, . Finally, if y is the inverse of m:e,M — Ny,
then ¢* = ¢*(1)y on Ny, completing the proof.

For a W*-algebra M, z € Z(M)* and p € M,, the functional
pz € M, is defined by p.(x) = p(zx), for all x in M. We extract
the following characterisations.

COROLLARY 2.8. Let M and N be W*-algebras. Then a continu-
ous linear map ¢: M, — N, is an o.d. homomorphism if and only if
there is a positive central element z of M and a weak * continuous
Jordan * homomorphism n: M — N such that

o*n(x) = zx, forall x in M and
l¢(p)ll = llp-ll, forall pe M.

Proof. It remains only to prove the ‘if” part. Suppose then that the
stated conditions hold as written. Let p € M. Then

o)l = p(2) = p(¢™(n(1))) = &(p)(n(1)).
So ¢(p) € N} and further

o(p)(r(s(p))) = p(zs(p)) = p(2) = ¢(p)(1),

so that s(¢(p)) < n(s(p)), from which the orthogonality condition
follows.

COROLLARY 2.9. Let M and N be W*-algebras and let ¢: M, —
N, be a linear map. Then the following are equivalent:

(i) ¢: M, — N, is an o.d. isomorphism,
(i) ¢*: N — M is an o.d. isomorphism;
(iii) ¢* = zm for some positive invertible central element z in M
and a surjective Jordan * isomorphism n: N — M .
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Proof. (i) = (ii) If (i) holds then ¢*: N — M is a linear bijection
by duality which, by Theorem 2.6, restricts to an 0.d. homomorphism
on V;. But ¥y = N, by assumption. The implication (ii) = (iii)
follows from Proposition 1.1, and (iii) = (ii) is immediate.

Corollary 2.9. solves the open problem posed in [1].
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