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THE INTRINSIC GROUP OF
MAJID'S BICROSSPRODUCT KAC ALGEBRA

TAKEHIKO Y A M A N O U C H I

A precise description of the intrinsic group of a Kac algebra consid-
ered in the recent work of Majid associated with a modular matched
pair is given. By using the result, a detailed computation is done to
produce an interesting pair of nonisomorphic Kac algebras.

0. Introduction. In [Ml], [M2] and [M3], Majid studied the notion
of a matched pair of locally compact groups and their actions. He
exhibited plenty of examples of such pairs, relating them to solutions
to the classical Yang-Baxter equations. Among other things, he showed
in [M3] that every matched pair gives rise to two involutive Hopf-
von Neumann algebras which are not commutative or cocommutative
except in the trivial case. Moreover, he proved that, if a matched
pair is modular in his sense, then the resulting von Neumann algebras
turn out to be Kac algebras, dual to each other. (See [E&S] and §1
for definitons of an involutive Hopf-van Neumann algebra and a Kac
algebra.) He called these algebras bicrossproduct Kac algebras. Thus
his result furnishes abundant examples of nontrivial Kac algebras. It
should be noted that, through his construction, one can even obtain
a noncommutative, noncocommutative, self-dual Kac algebra. All of
these would suggest that matched pairs of groups and bicrossproduct
algebras deserve a further detailed investigation.

In the meantime, the notion of the intrinsic group C?(K) of a Kac
algebra K was introduced by Schwartz in [S]. Roughly speaking, it
consists of "group-like" elements of the given Kac algebra. Thus the
group (J(K) can be considered as a natural kind of invariant attached
to each Kac algebra K. In fact, if a Kac algebra K is either commu-
tative or cocommutative, then the intrinsic group of K (or that of the
dual Kac algebra K) completely determines the structure of the given
algebra K (see [Ta]). So it is one of the important things in the theory
of Kac algebras to know the intrinsic group, once one is given a Kac
algebra, although it is known (see [DeCl]) that the intrinsic group is
not a complete invariant for general Kac algebras. In this direction,
De Caniere's work [DeCl] should be noted as one of the significant
achievements.
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The purpose of this paper is to give a precise description of the in-
trinsic group of a bicrossproduct Kac algebra associated with a mod-
ular matched pair, in terms of the given data. Our main tool is De
Caniere's characterization of an intrinsic group as a certain group of
automorphisms of the dual Kac algebra.

The organization of the paper is the following. In § 1, we recall some
facts on the theory of Kac algebras, relevant to our later discussion.
We then review the notion of a matched pair of locally compact groups
and their actions, following [M3]. Section 2 is devoted to investigat-
ing the intrinsic group of a bicrossproduct Kac algebra of a matched
pair (G\, G^, a, β). We shall completely describe it in terms of the
system (G\, Gi, a, β). It turns out to be the semi-direct product of
the character group of G2 by the action β of a subgroup G<f of G\.
In the final section, as an application of the result of the preceding
section, we carry out a detailed computation of the intrinsic group of
a bicrossproduct Kac algebra that arises from Majid's example of a
modular matched pair. As a result, we obtain an interesting example
of nonisomorphic Kac algebras K and Ki for which G(K) = G(Ki),
G(K) = (?(Ki) and the associated bicharacters do not coincide. It
should be remarked that the above Kac algebra K is a noncommuta-
tive, noncocomuutative, self-dual one.

This work was done while the author stayed at Centre de Recherches
Mathematiques, Universite de Montreal, and at University of Toronto.
The author would like to thank the staffs of these institutes for their
kind hospitality extended to him. He also expresses his sincere grat-
itude to Professors David Handelman and George Elliott, who gave
him an opportunity to visit these institutes and supported him during
this period.

1. Preliminaries. In this section, we first recall some of the most
important facts on the theory of Kac algebras, introducing notations
used in our later discussion. For the general theory of Kac algebras,
we refer the reader to [E&S] and [S]. Our notations will be mainly
adopted from these literatures. Secondly, we review relevant results
concerning matched pairs of locally compact groups due to Takeuchi
[T] and Majid [Ml], [M2], [M3]. Then we recall Majid's bicrossprod-
uct construction from a modular matched pair.

A Kac algebra K is a quadruple (</#, Γ, K , φ) in which
(Ki) («jf, Γ, K) is an involutive Hopf-von Neumann algebra (Def.

1.2.1 of [E&S]);
(Kii) φ is a faithful, normal, semifinite weight on </#
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(Kiii) (ι^ ® φ)(Γ(x)) = φ{x) 1 for all x e / + ;

(Kiv) {u®9)((l®y*)nx)) = κ{(iM®9)(Γ(y*){l®x))) for all
x, ye Nφ

(Kv) σf oκ = κoaφ_t for all ί e R.
Here Λ^ = {x e Jf: φ(x*x) < 00}, and σφ is the modular au-
tomorphism of φ. The symbol ijξ is the identity morphism of
Jΐ. We will always think of Jί as represented in a standard form
on the Hubert space %?φ associated with φ. Given a Kac algebra
K = («/#, Γ, K , φ), there canonically exists another Kac algebra K =
JF, f9ίc9φ), called the dual Kac algebra of K [E&S]. The pair

β^φ) is again a standard representation. The intrinsic group, de-
noted by G(K), of the Kac algebra K consists of all non-zero solutions
to the equation Γ(x) = x®x (x e Jf) (see [S] for the details). Every
member in G(K) is automatically a unitary operator. Thus G(K) is
a closed subgroup of the unitary group of Jf, when equipped with
the weak topology. It was shown in [S] that, if w e G(K), then Ad w
induces an automorphism of K. De Caniere obtained in [DeCl] the
complete characterization of the automorphism of K that arises in
this way. Since we will make use of this characterization in a crucial
manner later, we state it here.

THEOREM 1.1 (Theorem 2.3 of [DeCl]). Let v be a unitary oper-
ator on β%p . Then υ belongs to the intrinsic group G(K) if and only
if βv = Adw induces an automorphism of K in such a way that the
unitary operator v is the canonical implementation of βυ in the sense
ofHaagerup [H], and that βv satisfies

Thanks to the above theorem, the group ^(K) of all automorphisms
γ of Jf satisfying the identity

is topologically isomorphic to the intrinsic group G(K).
To any locally compact group G, one can associate two canon-

ical Kac algebras. One is the commutative Kac algebra KA(G) =
(L°°{G),ΓG,jG,τG) in which

TG(f)(s, ί) = f(st), jG(f)(s) = f(s-1),

τG{f) = Jf(s)ds, (feL°°(G)fs9 teG),
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where ds is a left Haar measure of G, and L°°(G) is the algebra of
all (equivalence classes of) essentially bounded measurable functions
on G with respect to the left Haar measure class. The other is the
system KS(G) = (&(G), δG, κG, ΨG) , where £%{G) is the group von
Neumann algebra of G. The morphisms δG and κG are characterized
by the following identities:

δG(λ(s)) = λ(s) ® λ(s), κG(λ(s)) = λ(s~ι) (s e G).

Here λ denotes the left regular representation of G. The weight φG

is the so-called Plancherel weight of G that is derived from the left
Hubert algebra 3?{G), the set of all continuous functions on G with
compact support, with the usual convolution as its product. The Kac
algebra KS(G) is cocommutative in the sense that the comultiplica-
tion δG is symemtric. KA(G) and KS(G) are dual to each other.
The intrinsic group G(KA(G)) of KA(G) is the set of all continuous
homomorphisms (i.e. characters) from G into the unit circle, with
the topology of compact convergence. The intrinsic group G(KS(G))
of KS(G) is precisely the set λ(G) (see [Ta] for example). Hence it is
topologically isomorphic to the original group G. This is why G(K)
is called the intrinsic group.

We now review the notion of a matched pair of locally compact
groups. For the details of this concept, we refer readers to [Ml,2,3]

Let G\ and G2 be locally compact groups with left Haar measures
μ\ and μi, respectively. The first assumption is that G\ acts on, and
is at the same time acted on by, G2 continuously and nonsingularly.
By nonsingularity of a group action, we mean that the action preserves
the measure class in question. We denote by a (resp. β) the action
of G\ (resp. G2) - We shall still use the letters a and β for the
induced actions of G\ and G2 on algebras L°°(G2) and L°°(G\),
respectively. We put

^ A {geGuseG2).

The Radon-Nikodym derivatives / and Ψ are cocycles on G\ x G2,
and are assumed to be jointly continuous. Following Takeuchi's ter-
minology [T], we say that such a system (Gi, G2, a, β) is a matched
pair if the actions a and β satisfy the following compatibility con-
ditions:

ag{e) = e, βs{e) = e,

ag(st) = aβt{g)(s)ag(t), βs(gh) = βah{s)(g)βs(h)
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for any g ,h € G\ and s,t e G2. Majid showed in [M3] that, if the
system (G\, G2, α, β) is a matched pair, then the ordinary crossed
products L°°{G2) x α Gi and L°°{G\) XβG2 both come equipped with
a structure of an involutive Hopf-von Neumann algebra. He called
these algebras bicrossproduct Hopf-von Neumann algebras associated
to (G\, G2 5 α, β). With the additional condition that the matched
pair is modular (see Definition 2.3 of [M3])? he also proved that the
bicrossproduct algebras are in fact Kac algebras, and that they are
dual to each other. What one should note is that bicrossprodcut Kac
algebras are noncommutative and noncocommutative, except in the
trivial case.

2. The intrinic group of a bicrossproduct Kac algebra. This section is
concerned with investigation of the intrinsic group of the bicrossprod-
uct Kac algebra associated with a modular matched pair. We shall
show that the intrinsic group can be completely described by the given
system.

In what follows, we fix a modular matched pair (G\, G2, α, β).
We shall retain all the notations introduced in the preceding section.
Let K = (./#, Γ, K , φ) be the associated bicrossproduct Kac algebra
in which ^# = L°°(G2) xa G\. By Majid's result mentioned in the
previous section, the dual Kac algebra K = (*•#, Γ, K , φ) is the other
bicrossproduct Kac algebra, where ^£ = L°°(Gι) Xβ G2. Let J% =
L2(Gi) (/ = 1, 2). Then put X = %f\ ® %?2, which is regarded as the
set of all L2-functions on G\ x G2. Note that both ^ and */# act on
%f in a standard form. Abusing notations, we still employ the letters^
and β for the imbeddings of L°°(G2) and L°°(Gι) into Jf and Jί,
respectively. Namely, a (resp. β) are injective *-homomorphisms
of L°°((J2) (resp. L°°{G{)) into L°°(Gi x G2) defined by

{a(k)η}(g9s) = k(ag(s))η(g,s)9 {β(f)η}(g, s) = f(βs(g))η(g, s),

where k e L°°(G2), / e L°°{Gι), η e & and (g, s) e Gx x G2. Let
A/ (/ = 1, 2) denote the left regular representations of G7 . We now
introduce a unitary operator W on %? ® %?, which we regard as the
set of L2-functions on G\ x G2 x G\ x G2, given by

See the proof of Theorem 2.6 of [M3] for this operator W. The
inverse W* is given by

{W*ξ}(g, s, h, ί) = £(j8β ^-..(A)^, 5, A, ag(s)-ιt).
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The coproduct Γ of K is then defined by the equation

Γ(JC) = W(\®x)W* {xeJ?).

We now observe what the morphism Γ does to generators of

LEMMA 2.1. With the notations as above, we have

{Γ(a(k))ξ}(g,s,h,ή = k(ag(s)ah(t))ξ(g9s9h9t)9

for any k e L°°(G2), p e Gx and ξe^®%". The first identity can

be summarized to the following:

Toa{k) = (a®a)oΓi

Similar identities hold for Γ, β and λ2 after an appropriate change.

Proof. The proof of the first two assertions is implicit in that of
Theorem 2.6 of [M3]. Thus we leave the verification to the reader.
For the third assertion, we first note that a is "implemented" by a
unitary operator U on %? as follows:

a(k) = C/*(l^ ®k)U (ke L°°(G2)),

where U is defined by

{Uη}(g,s) = χ(g-1, sγl2η{g, ag-,(s)) (η

In fact, we have

= χ(g,s)^2k(ag(s)){Uη}(g,ag(s))

= X(g, s)ι'2k(ag

= {a(k)η}(g,s).

= X(g, s)ι'2k(ag(s))χ(g-1

Here we used the cocycle identity: χ(g, s)χ(g~ι, ag(s)) = 1. Thus
the operator (α ® α) o Γ^ (k) can be expressed as

(a ® a)(ΓGi(k)) = (U ® UyΓGi(k)iι4(U ® U),

where Γ^ (k){ 4 is the operator on %f ®%f = %[®%2®%[®%Ί given
by

Γσ2(A:)i ,4 = ( 1 ^ ® σ ® l^2)ΓG2(k)(ljη ® a <g> 1^).
Here σ in general denotes the unitary between the tensor products

and Jfy ®Jt\ of Hubert spaces Jί\ and Jfy , given by flipping
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vectors: σ(η\ ® η2) = η2 ® Y\\ {r\χ e 3?ι (i = 1, 2)) . Recall that
Γtf2(fc)($, ί) = fc(sί) ({s ,ήeG2x G2) Thus, for any ξ e
we have

, t)l/2k(ag(s)ah(t)){(ϋ

, h,ah{t))

It follows from the first assertion that Γ(a(k)) = (a ® α)(Γ^ (fc)). By

symmetry, we may obtain similar identities for Γ, β and Λ,2 D

We now introduce two closed subsets (?f and G2 of Gi and G2 ,
respectively, as follows.

Gβ

χ={geGx: βs(g) = g for any s e G2},

G^ = {s e G2: ag(s) = s for any g eGi}.

They are in fact subgroups of relevant groups. Indeed, if g, h e Gf ,
then, for any s e G2 , we have

which implies that gh e Gf. Moreover, the identity βs(gg~ι) = e
yields

Thus g~ι eGf . Similarly, one can see that G^ is a subgroup of

LEMMA 2.2. Γ/ze jMfcwte α(G(KA(G2))) αnrf Ui(^) ® 1: ^ f}
contained in the intrinsic group G(K) of K= (J? ,Γ,κ, φ). By

symmetry, the subsets β(G(KA(G2))) and {1 ® λ2(s): s e G%} are
included in G(K).

Proof. It suffices to prove the first assertion.
Let k e G(KA(G2)). Then, by Lemma 2.1, we have

T(a{k)) = (α ® α)(ΓG (k)) = (α ® α
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Thus a{k) belongs to G(K). Let p e Gf . Then Lemma 2.1 shows
that, for any ξeβ

= {(λx(p) ® 1 ® A ! ( p ) ® l)ξ}(g,s9h, t).

Thus Γ(λi(p) ® 1) = λi(/?) ® 1 ® λi(p) ® 1, from which it follows that
λ\(p)® 1 lies in G(K). D

In the next lemma, recall that ^(K) is the group of all automor-
phisms γ of J[ satisfying the condition: (γ <g>ij?)oΓ = Γoγ.

LEMMA 2.3. Let γ be in &(K). Then γ leaves a(L°°(G2)) globally
invariant Moreover, there uniquely exists an element SQ in G^ such
that

Here a\^ denotes the restriction of a to a subset si .

Proof, By Theorem 1.1, there exists a unique element w in G(K)
which gives the canonical implementation of γ, i.e. γ = Adw .
Let k G L°°((jr2) Then the element a(k), by definition, belongs
to Loo(C?i)®Loo(G2). Since w e G(K) and JF= L°°(Gι) xβ G2, the
unitary w lies particularly in Loo{Gχ)®^?{L2{G2)), where &{X)
stands for the algebra of all bounded operators on a Hubert space
X. It follows that

γ(a{k)) = wa(k)w* e Loo{Gι)®^f{L1{G2)).

By Lemma 3.5 (a) of [DeCl], the operator γ(a(k)) belongs to the alge-
bra a(L°°(G2)). Thus we get an inclusion 7(α(Loo(G2)))Cα(Loo(G2)).
By applying the same argument as above to the automorphism γ~ι e
^ ( K ) , we obtain the reverse inclusion. Hence γ leaves a(L°°{G2))
globally invariant.

By the first paragraph, γ induces an automorphism γ of L°°{G2)
so that y o a = ttoj). Then, due to Lemma 2.1, we get

(α ® α) o Γ(? oj) = Γoαoj) = Γ o y o α

= (y ® i^r) o Γ o α = (y ® z^) o (α ® α) o Γ ^

= (y o a ® a) o ΓG = (α ® α) o (γ ® / L - ( G 2 ) ) ° ΓG 2 .
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Since a is injective, it follows that

From Theorem 1.1 and the fact (mentioned in the last section) that
5?(KA(G2)) = G(KS(G2)) = λ2(G2), there exists a unique element s0

in G2 such that

γ = Adλ2(s0).

Our aim is to show that the element SQ really belongs to G^ . For this,
we first note that λι(g)L°°(Gι)λι(g)* = L°°(Gι) for any g e Gλ so
the fact that w e L™(Gι)&2?(L2(G2)) implies that

0

Accordingly, the element

tι;*

lies in L00(G1)®LSi?(L2(G2)). Since (A^g)* ® l)y(λi(^) ® 1) is, at
the same time, a member of J£ = L°°(G2) xa G\, it follows from
Lemma 3.5 (a) of [DeCl] that there exists an element kg e L°°(G2),
depending upon g e G\, such that

Since the left-hand side is a unitary operator, we have that \kg\ = 1.
Then, for any k eL°°(G2),we calculate

a o γ o ag(k) = γ o a o ag(k)

Since α is injective, it follows that γ o ag(k) = ag o γ(k) for any
g e G\ and k e L°°(G2). This is, in turn, equivalent to

k(ag(sόιs)) = k(sΰιag(s)) (g e Gu s e G2).

Here one can take k to be an arbitrary continuous function with
compact support. This means that

ag(sΰιs) = s~ιag(s) (geGuse G2).
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In particular, we have that ag(sQl) = s^1, which implies that s0 e G^ .
Moreover,

{(I®λ2(so))a(k)(l®λ2(soy)η}(g,s)

= {a(k)(l®λ2(s0)*)η}(g9sΰιs)

, s) = γ(k){ag(s))η{g, s)

= {a(γ(k))η}(g, s) = {γ(a(k))η}(g, s)

for any fc e L°°(G2) and η e ^ . Therefore, we conclude that

y|a(L°°(G2)) = Ad( l ®A2(ίθ))lα(L°°((?2))

This completes the proof. •

LEMMA 2.4. Let γ be in &(K) with γ\a(L°°(G)) = id (This assump-
tion makes sense due to Lemma 2.3.) Then there uniquely exists an
element f e G(KA(G{)) such that γ = Adβ(f).

Proof. Uniqueness follows from Theorem 1.1 and Lemma 2.2.
By Theorem 1.1, there is a unique element w in <7(K) such that

γ = Ad w . Let U be the unitary operator introduced before. Then,
by assumption, we have

ί/*(l ® k)U = a(k) = γ(a(k)) = wU*(l ® k)Uw*

for any k e L°°(G2). The computation shows that the operator Uw U*
belongs to ^f{L2(Gι))®Loo(G2). It is easy to see, by definition, that
[U9 a ® 1] = 0 for any a e L°°(Gι), where the symbol [p, g] stands
for the commutator: [/?, q]=pq-qp . Thus ί7GLoo(G1)®c5

ί?(L2(G2)).
Since w is in ^f = L°°(Gi)xpG2 , it lies also in L°°(Gi)®^(L 2 (G 2 )).
Accordingly, t/wt/* belongs to L O O (G 1 )®^(L 2 (G 2 )) . It follows that

C/wίΛ G Loo(Gι)^^(L2(G2))n^(L2(Gι))ΘLoo(G2)

= Loo(Gι)®Loo(G2).

Since the fact that [U, a® I] = 0 (a e L°°(Gι)) and U(C®L°°(G2))U
= a{L°°(G2)) implies that

the operator ^ itself belongs to Loo(Gι)®Loo(G2). By Lemma 3.5
(a) of [DeCl] again, there exists an element / in L°°(Gi) such that

I/I - 1, w = /?(/).



THE INTRINSIC GROUP 195

Due to Lemma 2.1, we have that Γ o β = (β ® β) o Γ^ . Hence we
obtain

Since β is injective, we have ΓQ (f) = f ® f. Therefore, / e
) . l D

We are now in a position to prove our main theorem.

THEOREM 2.5. The intrinsic group G(K) of the bicrossproduct Kac
algebra K = (ΛΓ, Γ, K , φ), where Jt = L°°{G2) x α G\, associated
with a modular matched pair (G\9 G2, a, β) is topologically isomor-
phic to the semi-direct product G(KA(G2)) xa G\ /fere the product of
the semi-direct product is given by

Similarly, the intrinsic group G(K) 0/ ί/ze other bicrossproduct Kac
algebra K is topologically isomorphic to the semi-direct product

Proof. By symmetry, it suffices to prove the last half assertion.
Let w e G(K). We put γ = Adw e &(K). By Lemma 2.3, there

exists a unique element SQ in G£ such that

y\a(L°°(G2)) = 2

We set 7i = Ad(l ®A2(5o)*) BY Lemma 2.2 and Theorem 1.1, the
morphism γ\ belongs to ^(K) so 71 o γ also lies in ^ ( K ) . By
construction, the restriction of γ\ o γ to α(Loo(Gί2)) is the identity.
Thus, by Lemma 2.4, there is a unique element / in G(KA(G\)) such
that

γιoγ = Adβ(f).

It follows that

Adw = γ = y-χ oAdβ(f) = Ad(l ®λ2(s0))β(f).

Lemma 2.2 ensures that (l&^Cso))/?(/) is in G(K). From Theorem
1.1 and the uniqueness of canonical implementation, it results that

w = (l®λ2(s0))β(f).
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This shows that the map Φ from G(KA(G{)) xβG% into G(K) which
sends (f,s) to (1 <8> λ2(s)) β (f) is bijective. Since

(1 ®λ2(sι))β(fι)(l ®h{s2))β{fi) = (1 ®λ2{sxs1))β(βsAfι)f2)

for any f e G(KA(Gχ)) and st e G% (i = 1, 2), the map Φ is a
group isomorphism as well, when G(KA(G\)) Xβ G% is endowed with
the product

Bicontinuity of Φ can be proven exactly by the same argument as
in Proposition 3.4 of [DeCl]. D

REMARK 2.6. Let us consider the special case in which β = id (or
a = id). Namely, a is an action of G\ on G2 by automorphisms.
Such an example was treated in Example 5.3 of [DeC2]. Due to Theo-
rem 2.5, the intrinsic groups G(K) and G(K) are G(KA(G2)) xa G\,
G(KA(Gi)) x ^2 , respectively. Thus we can recover Proposition 3.4
and 3.6 of [DeCl] as a special case of ours, where K in these propo-
sitions should be taken as K = ( L 0 0 ^ ) , TG , j G , τg)

Before we state the following corollary to Theorem 2.5, we recall
the definition of the bicharacter of a Kac algebra K. (K is a general
Kac algebra for the moment.) For any u e G(K) and υ e G(K), there
exists a complex number Ω(u9υ) of modulus 1 such that

uv = Ω(w, v)vu.

(See [S] for properties that Ω enjoys.) The map Ω is called the
bicharacter of the Kac algebra K.

COROLLARY 2.7. Let K be as in Theorem 2.5. Then the bicharacter
ΩofK is given by

f o r a n y ( k , g ) e G ( K ) a n d { f , s ) e G ( K ) .

Proof. This is easily verified by direct computations of

(λι(g)®l)a(k)(l®λ2(s))β(f)

and

l)α(fe). •

3. Calculation. In [M3] (see also [Ml,2]), Majid constructed a con-
crete example of a modular matched pair of Lie groups. His method
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shows that, to each group T\ (n, R) of n x n upper triangular matrices
in R with 1 on the diagonal, there corresponds a modular matched
pair (Gi, C?2, α, β), where Gx = G2 = TΊ(Λ, R) and α = β. In
particular, the resulting bicrossproduct Kac algebra K is self-dual. As
an application of the preceding section, we shall compute the intrinsic
group G(K) of K that arises in the case of 7i(3, R), the Heisenberg
group.

We let G = TΊ(3, R). We define an action a of G on itself by

a g ( s ) = (I + g(s~ι - l ) ) ~ ι (g,seG).

In terms of a matrix form, this is equivalent to

(
0 1 z

1
where

By Theorem 2.5, the intrinsic group G(K) where K = (L°°(G) xα

G, Γ, K , φ) as in the previous section, is isomorphic to G(KA(G)) xa

Ga . Thus we need to investigate what G(KA(G)), Ga and the action
a really are. First, by (3.1), it is not difficult to check that

G β = < 0 1 0 :x,yeR

which is known to be a closed, normal, maximal abelian subgroup of
G. It is clear that Ga is isomorphic to the additive group (R2, + ) .
Next we look at G(KA(G)). It is known in general (see §3 of [DeCl])
that G(KA(G)) = the set of "group characters" of G can be identi-
fied with the Pontryagin dual of the abelian group G/[G, G], where
[G, G] is the closed commutator subgroup of G. This identification
is a topological isomorphism in our case. So we first look at [G, G].
It can be verified that

[ G , G ] = { [ 0 1 0 : x e R
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which is the center of G. Thus the quotient group G/[G, G] is iso-
morphic to the additive group (R2, +) by the correspondence:

e G/[G,

Hence G(KA(G)) consists of functions Aλ μ (λ, μ e R) on G given
by

I a b
0 1 c
0 0 1

It follows that G(KA(G)) is isomorphic to the additive group (R2 , + ) .
Next we examine the action a of Ga on G(KA(G)). By (3.1), we
have

μ

= A

where g G Ga and ^ , ^ is as before. This means that the action a
on G(KA(G)) is trivial; so the semi-direct product G(KA(G)) xQ Ga

is in fact the direct product. Consequently, the intrinsic group G(K)
is isomorphic to (R2, +) x (R2, +) = (R4, + ) . Since K is self-dual,

Now it is obvious that, with Ki = ( ^ ( R 4 ) , δR*, KJR4 , φR4), G(KX) =
G(Kι) = (R4, + ) . Thus we have G(K) = G(K{), G(K) = G(Ki). We
now look at the bicharacters Ω and Ωj of K and Ki, respectively.
Let

u =

v=

i λ ι , λ 2 >

*μl9μ2>
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where Aλ >Λ , ^μ{,μ2 (̂ /> μ/ Ξ R (* = 1 > 2)) are as before. Then, by
Corollary 2.7, we have

In the meantime, under the isomorphisms G(K) = G(K\), G(K) =

G(K\)9 we have

Ω\{u, υ) = e-K^+^+xa+yb)^

Hence the bicharacters Ω and Ωi do not coincide. Therefore we have
established an interesting example of nonisomorphic Kac algebras K
and Ki for which G(K) = G(K{), G(K) = G(K{) and the associated
bicharacters do not coincide.
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