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EQUIVARIANT NIELSEN NUMBERS1

PETER WONG

In this paper, we introduce equivariant Nielsen type numbers which
estimate the minimal number of fixed orbits and fixed points of a G-
map f:X—*X in the G-homotopy class of / . As an application,
we relate the equivariant Nielsen theory to the Nielsen theory for
iterates of maps.

1. Introduction. Let f:X—+X be a self map of an ENR X so
that the set of fixed points Fix/ is compact. In topological fixed
point theory, the fixed point index If ([D2]) is an algebraic count of
the number of fixed points of / so that If Φ 0 implies Fix/ Φ 0.
When X is compact, this algebraic count is given by the Lefschetz
number L(f) which can be expressed as a trace. However L(f)
does not usually give much information about the size of F i x / . A
more subtle invariant N(f), namely the Nielsen number of / , gives
a lower bound for the minimal number of fixed points of maps in
the homotopy class of / . In many situations, N(f) is a sharp lower
bound (e.g. when M is a compact connected manifold of dimension
> 3 ) .

Fixed point theory can be generalized to the study of periodic points,
i.e., fixed points of fn = / o o / . In [D3], Dold established a com-
binatorial relation among the fixed point indices of iterates of / . It
was shown by Komiya [K] that Dold's relation can be derived from a
similar congruence relation on the fixed point indices of equivariant
maps. Nielsen fixed point theory was generalized to iterates of maps
by Jiang [J], Heath-Piccinini-You [HPY], Heath-You [HY] and some
earlier work of Halpern. The objective of this paper is to develop an
equivariant Nielsen theory for G-maps. As an application, we indi-
cate how the equivariant theory generalizes the periodic point theory
in a similar fashion as [K] extends [D3].

For background in Nielsen fixed point theory, we refer the reader
to [Br] and [J]. For equivariant topology, the basic references are [B]
and [tD]. This paper is organized as follows.

1 The results in this paper were announced at the Special Session on Nielsen Fixed Point
Theory in the Pre-Congress Topology Conference held at the University of Hawaii, August 12-
18, 1990.
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In §2, we define equivariant Nielsen type numbers via the cover-
ing space approach following [J] (compare [FW] and [W2]). The ad-
vantage of this approach is to be able to consider the empty fixed
point classes which play an important role in relative Nielsen fixed
point theory ([Z]). We show that these Nielsen type numbers enjoy
the usual properties of the classical Nielsen number, in particular, the
G-homotopy invariant property. In §3, we prove minimality theorems
for fixed orbits (orbits of fixed points) and for fixed points. We also de-
scribe a procedure for computing the minimal number of fixed points
in the G-homotopy class. Techniques employed here are those of the
Wecken method used in relative Nielsen theory ([S], [Z]) with a mod-
ification to the equivariant setting. Computations of the equivariant
Nielsen numbers are carried out in §4 by introducing an equivariant
analog of the Jiang condition. Under such condition we relate the
equivariant Nielsen numbers to the equivariant fixed point indices in
[K] (e.g. 4.12) and the ordinary Nielsen numbers {N(fn)} . In §5, we
indicate how the Nielsen theory of periodic points developed in [J],
[HPY], [HY] relates to the equivariant Nielsen theory. We conclude
in §6 with some final remarks.

The author would like to thank Jerzy Jezierski for pointing out an
error in the definition of NOo(fH) and the referee for a number of
helpful suggestions.

2. Equivariant Nielsen type invariants. Let W be a finite group and
Y be a connected compact PF-ENR. let η: Y —> Y be the universal
cover of Y and Cov(τ/) be the group of deck transformations. We
also identify Cov(^) with the fundamental group π = n\{Y) of Y.
Consider the group

W = {γ e Homeo(y)|?/}> = γη for some γ e W}

consisting of homeomorphisms of Y covering the ίF-action on Y.
Therefore we have a short exact sequence of groups

1 -+π^W Λ W -> 1.

DEFINITION 2.1. Let h: Y —> Y be a J^-map. Two lifts h and hf

are said to be conjugate if there exists γ e W such that h' — γhγ~ι

Denote by [h] = {γhγ~~ι\γ e W) the conjugacy class of h .

PROPOSITION 2.2. Let h: Y -> Y be a W-map and h, h' be lifts
ofh.
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(1)//[A] = [A'] then W (ηFixh) = W (ηFixh').
(2) // [A] φ [A'] then W (ηFixh) n W(>/FixA') = 0.

Proof. (1) Suppose that A' = yAy"1 for some γ e W. Let x G
ηFixh and x G Fix A Π η~ι(x). Then A'(yx) = γhγ~ι(γx) = yhx —
γx => γx G Fix A'. Thus, f/yx = y>/x = yx G ηFixh' and hence
y^/FixA c 7/FixA'.

Conversely, let y G ηFixh' and j? G Fix A' Π ty"1^) Then y~ιy =
γ"ιh!y = y'HyAy"1)}; = hγ~ιy. Thus, y"1^ G Fix A and y~V =
γ~ιηy = ηγ~ιy G ηFixh. Hence j G γηFixh. The assertion follows
from the fact that γη Fix A = η Fix A7.

(2) Suppose that x 0 G fF(^FixA) n W(ηFixhf). Then there exist
ϊ\ 9 Ύi ^ W, X\ G Fix A and X2 G^FixA' such that 71̂ 7X1 = Xo =
Ji^xi Thus there exist yx.Ji^W with ηy\X\ — ηh*2 a n d hence
γ2x2 = αyiXi for some a G π . Let y = y ^ α y i . We have x2 —
γxu fhy~ι{xi) = yhy-χ{yxχ) = fhxx = yxx = x2 and Ar(x2) = x 2 .
By uniqueness of lifts, h! = γhγ~ι and hence [A] = [h']. D

DEFINITION 2.3. Let A: 7 —* Y be a W-map and A be a lift of
A. The W-subset W(ηFixh) is called the W -̂fixed point class deter-
mined by the conjugacy class [A] (or simply W-ϊpc).

PROPOSITION 2.4. Let x, y e Fix A ̂  0 . ΓA^π x αnrf y belong to
the same W-fpc if, and only if

(1) y = ax for some σ G W, or
(2) ίA^re exists a path a: [0, 1] —• Y such that α(0) = x, α(l) =

σ'y for some σ' G W and a ~ A o a (rel endpoints).
Hence, there are finitely many non-empty W-fpcs.

Proof. We proceed as in [J, 1.1.10 and 1.12]. D

Since each W-fpc N of A is open and closed in Fix A, we can
assign the usual fixed point index /(A, N) [D2] which is defined to
be zero if N is empty. If /(A, N) Φ 0 then N is called an essential
W-fpc of A.

Let G be a compact Lie group and X be a compact G-ENR. Let
SΓ = {(#) G Iso(X)| \WH\ < 00} where W # = NH/H is the Weyl
group and Iso(X) is the set of isotropy types of X. We assume (for
simplicity) that XH = {x G X\hx = x , VA G H} is connected for
each (H) e9~. For any G-map f\X->X and for each (H)e&*,
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we have the notion of (essential) WH-fpcs by setting W = WH,

Let / l ^ I b e a G-map. For any (H) e &, an (H)-fpc of
f(H) . χ{H) _, χ(H) i s o f t h e f o r m G i V w h e r e jy i s a ^///.fpc Of fH
determined by some [fH] and XW = {* € X|(Gx) > (77)}. Denote
by FPC(tf)(/) the set of (//)-fpcs of / W . We also let XH = {x e
X\GX = H} and fH = f\XH: XH ^ XH.

Let (K) € ^ and TV' be a H î̂ -fpc so that N' = WK{pκ Fix fκ)
for some lift / ^ of fκ . Suppose that H < K and (//) € ST. There
is a unique lift / ^ of fH such that ^ Fix fκ c ^7/ Fix / w . Thus
GN' c GW where N = WH(pH Fix f H ) . There is a (contravariant)
function τ{HK{K): F P C W ( / ) - , FPC ( / f )(/) for (H) <(K)ef.ln
this case, ?(H)<(K)(GN') = GN.

DEFINITON 2.5. Let / : X -»• X be a G-map. For each (H)eP',
define

NwH(fH) = #{essential ^//-fpcs},

NOG{fH) = #{tssmtia\WH-fpc N\τ(H)<(K)(GN') φ GN

for all essential WK-ϊpz N', (H) < (K)},

NG{fH) = \WH\ • #{essential WH-fpc N\τ{H)<{κ)(GN') φ GN

for all WK-fpc N', (H) < {K)},

NOG{fH) = min | #<g\<g c | J FPC{K)(f), for any essential
I (H)<(K)

WL-ϊpc N', 3 a WK-fpc N e g'such that

r{L)<(K)(GN) = GN'\

NG{fH) =

We now show the G-homotopy invariance and lower bound prop-
erties.

PROPOSITION 2.6 {G-Homotopy Invariance). Given any G-homo-

topy φ~G f>
(1) NWH{fH) = NWH{φH),
(2) NOG(fH) = NOG(φH),
(3) NG(fH) = NG(φH),
(4) NOG(fH) = NOG(φH),and
(5) Λ W ) = H

for every (H) e
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Proof. Let F: X x [0, 1] -> X be a G-homotopy with JF0 = / and
Fx = φ and let (H)e&~. Note that F / 7 : X7 7 -> XH is a ίF//-map
for / € [0, 1]. For / = 0, 1, let Nt be a nonempty WH-fpc of
F / 7 . We say that NQ and JVi are FH-related if there exists XQ G NO >
Xi G iVi and a path { Xf}ίG[o,i] in X7 7 such that {Ft

H(xt)} ~ {xj
(rel endpoints). Let F: X x [0, 1] -* [0, 1] be defined by F ( x , ί) =
(F(x,t)9t) and F 7 7 = F\XH x [0, 1].

It follows that No and JVi belong to the same (nonempty) WH-fpc
of FH if they are i^-related, in which case I(Ff, iV0) = /(Ff , Nx)
(see [J, 1.3.10]). If Λ̂o is not F^-related to any nonempty WH-fpc
of jFj^, then I{F^, NQ) = 0. Hence there is a one-to-one correspon-
dence between the essential WH-fpcs of F^ and those of Ff1. Thus,
(1) holds.

Let N be an essential WH-fpc of fH = FQ77 and Λf be the cor-
responding essential WH-fpc of φH = i 7/ 7 . Suppose that for some
(K)e&'9 (H) < (K) and τ{H)<{κ)(GMf) = GM, i.e., there exists a
lift 0 * of φκ such that Af; = WK{pκ Fix ^ ) . There exists a ho-
motopy Fκ: Xκ x [0, 1] —• X7^ covering i 7 ^ with Ff = φκ. Now
fK = Fo^ is a lift of fκ and iV; = WK(pκ¥ixfκ) is a H î̂ -fpc of
fκ. It follows that τ(H)<{κ)(GN') = GΛ̂  and (3) follows.

To prove (2), we need to show that if M' is essential then so is
N'. This is equivalent to stating that M1 and N1 are F^-related.
Assertion (4) follows from the fact that essential fixed point classes
do not disappear under homotopy and (5) follows immediately from
(3). D

DEFINITION 2.7. Let f: X -> X be a G-map. For each (H) e
Iso(X), define

MOG(fH) = min{# fixed orbits of φH\φ ~ G / } ,

M G ( f H ) = m i #

PROPOSITION 2.8 (Lower bound). For each (H) e / ,
(1) MOg{fH)>NOG{fH) [fixed orbits in X 7 7 ] .
(2) MG(fH) > NG(fH) [fixedpoints in XH].

Proof. (1) Let (H) G &. Choose an admissible ordering (H\)9 ... ,
(Hm) on {(K)\(K)>(H)} with the associated filtration of G-subspaces
X{ c -.. c Xm = X ( 7 / ) . If m = U then tfOG(/") = iVOG(///) =
NwH(fH) < MOG(fH). Assume that MOG(fHή > NOG(fHή for all
i9 ί < i < m. Suppose that φ ~G f such that φH has MOG(fH)



158 PETER WONG

fixed orbits in XH. Let & c {J(H)<(K)FFC(K)(f) such that NOG(φH)
= NOG{fH) = # ^ \ If GN' G &, then it corresponds to some essential
GN'. By the homotopy invariance of NWH{fH), φH must contain
at least # ^ fixed orbits.

(2) If TV is an essential WH-fpc such that GN n X m ^ 0 for
some (H) <(K)e^9 then τw<(K)(GN') = GW for some fFAΓ-fpc
Nf (not necessary essential). Thus, for any φ ~G / , φ^ must have
at least NG(fH)/\WH\ fixed orbits in X(//) = XW - \J{H)<(K)X(K)

Hence in XH, we have MG(fH) > NG(fH). D

In classical Nielsen fixed point theory, the ordinary Nielsen number
possesses the commutativity and homotopy type invariant properties.
The following are the corresponding equivariant analogs of these two
properties. The proofs are straightforward so we leave them to the
reader.

PROPOSITION 2.9. Let X and Y be compact G-ENRs and %? =
{(H) e Iso(X) ulso(y) | \WH\ < oo}. Suppose that XH and YH are
connected for every (H) G ^ .

(1) (G-commutativity) Let f: X -*Y and g.Y^X be G-maps.
Then

for all (H)eJT.
(2) (G-Homotopy Type Invariance) Given the following commutative

diagram

X -±—> X

Y > Y
g

where all maps are G-maps and h is a G-homotopy equivalence with
inverse k. Then

NG{fH) = NG(gH)

for all (H)eJT.

3. Minimality theorems. For most of the results in this section, we
make the following Standard Hypotheses on G and X:
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STANDARD HYPOTHESES. Let G be a compact Lie group and X be
a compact smooth G-manifold. For each (H) e &, we assume that
XH is connected, d i m X " > 3 and d imX^ - d i m ^ -XH)>2.

Note that & = Iso(ΛΓ) when G is finite.
In classical Nielsen fixed point theory, the Wecken method for co-

alescing fixed points in the same class is crucial in proving the mini-
mality theorem. The following is the equivariant analog.

LEMMA 3.1. Assume the Standard Hypotheses. Suppose that f: X —•
X is a G-map, @\ and @2 are two distinct isolated WH-fixed orbits
belonging to the same WH-fpc of fH, for some (H) e &. Further-
more, we assume that G<f\ c X^H) , G@2 c X(κ) f°r some (K) e &~
with (H) < (K). Then there exists a G-homotopy {ft} relative to

X>{H) = | χ e χ\(Gχ) > (//)} such that fo = f and ¥ixf =

Proof Suppose that (H) < (K). There exist xx e @\, xi e ^2

and a path σ: [0, 1] -• XH such that σ(0) = xλ, σ(l) = x2 and
G ~ fH o σ (rel endpoints). Since x\ e XH and x2 € XH - XH and
dimX^ — άivcι{XH — XH) > 2, we may assume that σ can be chosen
so that σ([0, 1)) c XH - We coalesce x\ and x2 along σ as in [Wl,
1.1] (see also [S, 6.1]). Taking the (/-translates of N(σ), we move
G@ι to G@2 along the paths Gσ in GN(σ). For the case (H) = (K),
it follows from [W2, 5.4] since XH is a free WH-space. D

THEOREM 3.2. Assume the Standard Hypotheses. Given a G-map
f: X —> X, there exists a G-map h ~Q f such that

NOG{hH) = NOG(fH) = MOG(fH)

for all

Proof. First we can G-homotope / to / ' with only a finite number
of fixed orbits. If (H) e Iso(X) with \WH\ = oo, then we can
remove the fixed orbits in X^H) [FW, 2.3]. Thus we may assume that
Fix/' c \J(κ)e^^-(K) - Furthermore, if N is a fixed orbit in XH for
some (H) e &~ with I{fH, N) = 0 then we can remove N and hence
the entire G-orbit GN.

Fix an (H) € & and choose an admissible ordering on {(//,•) €
&\(H) < (Hi)} with Xx c C Xm = X ^ ) . If m = 1, then the
assertion follows by removing the inessential fixed orbits and by ap-
plying 3.1 to those orbits of the same class. Suppose that NOG(fHi) =
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MOG{fHr) for I < i < m. Let φ ~G f such that MOG{φH-~ή =
NOG{φH™-^) and ψπ — ψn has only isolated fixed orbits of nonzero

m

index in XH. Apply 3.1 to these fixed orbits in XH. We arrive at
a G-map h ~G f such that NOG(hHή = MOG{fH>) for \ < i < m
and hπ has exactly NOG(fπ) fixed orbits that cannot be coalesced
with any of the essential fixed orbits in XH - XH. Hence NOG{hH)
is mininal. D

THEOREM 3.3. Assume the Standard Hypotheses and let f: X —• X
be a G-map. For each (H) e Iso(X), there exists a G-map h ~G f
such that

MG(fH) = #(FixhH) = \ .
L 0 otherwise.

Proof. If \WH\ = oc then the assertion is obvious. Suppose that
(H) G &. We can G-deform / to a G-map φ such that φ has only
isolated fixed orbits. Proceed as in the proof of 3.2. We then arrive
at a G-map ψ ~G f so that ψπ has exactly NOG(fπ) fixed orbits in
XH We can further unite those essential W//-fρcs to the inessential
W^-fpcs that they correspond to for some (H) > (H) by applying
3.1. (It should be noted that if the inessential WK-fpc is empty, we
need to "create" a fixed orbit of index zero [Wl, 1.1] before applying
3.1.) It then follows that #(FixhH) = NG(fH). D

REMARK 3.4. In general, we may not be able to find a G-homotopy
h ~G f such that MG(fH) = NG(fH) for all (H) e i ^ simultaneously.
For example, take G = Z 2 acting on X = S4 as an involution so that
XG = S3 . Let f:X—>X be the identity map. It is easy to see that
MG(fG) = 0 = Ma(f(i)) but the minimal number of fixed points in
the G-homotopy class of the identity is equal to 1.

We now describe a procedure of computing the minimal number of
fixed points in the G-homotopy class of a G-map when G is a finite
group.

Let G be a finite group and X be a compact G-ENR. Given a
G-map / : X -> X, for each (H) e Iso(X), let

Jίf{H) = {GN\I(fH ,N)φO and for all (K) > (H),

I(fκ ,N')ΪO=> τ{H)<{κ)(GN') φ GN}

and

&f(H) = {(K) > (H)\3GNeyrf(H),τ{H)<{κ)(GNf) = GN

for some N' with I(fκ, N') = 0}.
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For any {Kx), (K2) e &>f{H), we write (Kx) <f (K2) if
(1) (t f i)<(tf 2 ) and
(2) there exists a GN e > / ( # ) such that τ{H)<(Kι)(GNx) = GN =

τ{H)<{K){GN2) for some (jfiΓi)-fpc GNX and (K2)-fpc GN2.

Let

Jtf(H) = {(K)e 9°f{H)\{K) maximal with respect to <fπ}.

For any (Kι), (K2) e Jtf(H), we write (Kx) < (K2) if \KX \<\K2\.

DEFINITION 3.5. For any (Kx) < (K2) e Jtf(H), let

ζ{H)((Kx) ,(K2))

= #{GN e yyf{H)\3GNx such that τ{H)<{Kχ){GNx) = GN

and τ{H)<{Ki)(GN2) φ GN for all

Note that

is the number of N e Λf(H) that contain a j^-fpc but not an L-fpc
for any (L) y (K).

DEFINITION 3.6. Let (H) e Iso(X). The minimal number of fixed
points in X^ in the G-homotopy class of a G-map / : X -> X is
denoted by

In the proof of 3.2, we showed that / is G-homotopic to a G-
map h with exactly NOG(fH) fixed orbits in X ^ (or in XW) in
which h has at most NOG(/H) fiχed orbits in X # . In order to min-
imize the number of fixed points we should further coalesce those
(i/)-fpcs among the NOG(/H) ones, to the inessential (ϋΓ)-fpcs that
they contain for (K) > (H) as in 3.3. For each (H), there are ex-
actly (NOG(fH)-NG(fH)/\WH\) WH-fpcs that can be further united
to some lower strata. These fixed point classes can be coalesced with
some inessential (ϋΓ)-fpc where (K) e Jtf{H). Since it is possible that
some GN e Λ/(H) can contain a (Kx)- and a (K2)-fpc for distinct
(K\)9 (K2) G Jff(H), we use the partial ordering •< on JPf{H) to
decide where GN should be moved to. Thus for each (K) e J?f(H),
we should move to X^ those fixed point classes that contain a (K)-
fpc but not an (L)-fpc for any (L) y (K). This procedure can be
summarized by the following
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THEOREM 3.7. Assume the Standard Hypotheses with G finite.
Given any G-map f: X -»• X and (H) e Iso(X),

, NG(fH) ,

and

NG(fκ)-[G:NK)

+ Σ Σ

REMARK 3.8. A similar but simpler formula for mc(/ ( ί ί ) ) was also
obtained in [Wl, 2.2] for the special case / = \χ. From 3.7, we
obtain the following inequality

[G: K].

EXAMPLE 3.9. Let X = S1 x Sι x S1 x Sι x S1 x S2 and G = Z 6 =

(α) x (β) where Z 2 = (a), Z 3 = (^). Let G act on X via

α ( e / β , ... , eiθ* , ( x , y , z ) ) =(e'θ>, eWι, ^ , ^ , eiθ*, ( x , y , - z ) ) ,

β • ( e i θ > , . . . , eiθ> , ( x , y , z ) ) = ( e ' \ eiθ2, eiθ>, eiθ>, eiθ*, ( x , y , z)).

Then

χ(a) = {(βiθ ^ eiθ ^ eiθ, f eiθ4 ^ eiθs ^ (χ f y ^ 0 ) ) } ^ T5 ^

χ(β) = {(eiθ<, eiθ*, eίθ, eiθ, eiθ,(x,y, 2))} ^ T3 x S2,

XG = {(eia, eia, eib, eib, eib, (x, y, 0 ) ) } « Γ 3 .

Let f: X -+ X be the G-map defined by

f ( e i θ > , . . . , e i θ > , { x , y , z ) )

= ( e i 2 θ > , eι2θι, em^, em*, eι2θs , ( x , - y , - z ) ) .

Then / has eight fixed points given by

Fix/ ={(m,m2, 1 ,1, 1, (», 0, 0))|m3 = 1; « = 1 , - 1 } .

Furthermore,

Fix/ G = Fixf^ = { ( 1 , 1 , 1 , 1 , 1 , m)\m = 1 , - 1 }
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and Fix fW = Fix / . The ordinary Nielsen numbers are given by

N(f) = 3 N(f^) = 2 N(f^) = 3 N(fG) = 2.

Let us compute the minimal number of fixed orbits and of fixed
points in the G-homotopy class of / .

First of all, F ix/ consists of three distinct essential (ordinary) fixed
point classes of / with NG(fG) = NG(fG) = N(fG) = 2, NG(f{a)) =
0, Naifa) = 4 and NG(fw) = 0.

Furthermore, Jtf{{\)) = {(β),G}9 Jtf((α)) = {G} =
= 0 and

NOG(fG) = 2; NOG(f{α)) = 0; NOG(f{β)) = 2;

NOG(f{1)) = 0 and all ζ{H)((K), (L)) = 0.

Hence, by 3.7,

^ ^ = 2 + 0 + 2 + 0 =
(77) ' '

and

= mG(fW) = 2- 1 + 0 1 + 4 - 1 + 0 - 1 = 6

since [G: NK] = 1 for all (K) e Iso(X).
We conclude that / is minimal in its G-homotopic class and /

has exactly four fixed orbits in which two lie in XG and the other two
lie in X^. Equivalently, / has two fixed points in XG and four
fixed points in X^ which form two distinct W(β) = (α)-orbits.

4. Computation. As we have seen in §3, the Nielsen type invariants
NOG(fπ) and NG(fH) are the basic ingredients in obtaining the min-
imality Theorems 3.2, 3.3 and 3.7. However they are in general, very
difficult to compute. In this section, we approximate NOG(fπ) and
NG(/H) by NWH(/H) which can be computed under certain condi-
tions.

From Definition 2.6, for every (H) e S^ we have

NWH(/H) > NOG(fH)

and

NwH(fH)>NG(fH)/\WH\.

Therefore,

NOG(fH) < Σ Nwκ{fκ)
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and

NG(fH)< Σ \WK\ Nwκ{fκ).
(H)<(K)ef

Together with 3.2 and 3.3, we obtain

PROPOSITION 4.1. Let G and X be as in 3.1. For any G-map

f:X->X,
MOG{fH) < £ Nwκ{fκ)

(H)<{K)e^

and

MG(fH)<\WH\ NWH(fH).

For the minimal number of fixed points, we obtain from 3.7 the
following

PROPOSITION 4.2. Let G and X be as in 3.7. For any G-map
f:X->X and (H) e Iso(X),

mG(/W)> Σ [G:K] Nwκ(fκ).
(H)<(K)elso(X)

Let W be a finite group and Y be a connected compact W -̂ENR
with universal cover Ϋ. Let h: Y —> Y be a ^-map. Fix a lift
h: Y -+Y of h. Recall fromJ2, there is a subgroup W c Homeo(7)
covering P^. For every y G W, there exists a unique element φw(ϊ) Ξ
PΓ such that φw(γ)h = hγ. Thus we obtain a homomorphism ^ :
W -> W. Note that any lift of Λ is of the form ah for some α e

PROPOSITION 4.3^rvvo ///^ ah and βh are conjugate if, and only
if, there exists γ eW such that β — yaφw(y)~x.

Proof. The lifts ah and βh are conjugate iff βh — γahγ~ι for
some γ e W

^ βhγ=yah

& βφw(γ)h = yah

*> βφw(y) = fa

& β = γaφw{y)-χ. D
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DEFINITION 4.4. The group W acts on π via a ι-> yaφw{y)~x. De-
note by R{ψw 9 π) the set of orbits of this action, called the set of W-
Reidemeister classes of ψw on π. When restricted to π, φw\π: π —>
π and hence the Reidemeister action reduces to the ordinary one stud-
ied in [FH].

REMARK 4.5. It follows from 2.2 that W(ηFixαh) = W(ηFixβh)

iff β = γαφw(γ)~ι for some γ e W. Hence there is a one-to-one

correspondence between the set of W-fpcs determined by [h] and

R(φw, n).

DEFINITION 4.6. Let

JW(Y) = {α e π\ there exists a fF-cyclic homotopy

\Y ~w \Y which can be lifted to 1~ ~ α} .

It is straightforward to verify the following

PROPOSITION 4.7. Jw(Y) is α subgroup of J(Y), the Jiang subgroup
ofY. We call JW(Y) the W-Jiang subgroup of Y.

DEFINITION 4.8. Let G be a compact Lie group and X be a com-
pact G-ENR. For every (H) e & 9 we assume that XH is con-
nected. We say that X is a G-Jiang space if for every (H) e &,

In particular, if X satisfies the G-Jiang condition then XH is a
Jiang space for all (H) e &.

PROPOSITION 4.9. Let G be a finite group acting freely on a compact
connected G-ENR X. If X/G is a Jiang space then X is a G- Jiang
space.

Proof. Note that the Jiang subgroup of X/G is given by

J(X/G) = {αG π\(X/G)\3 cyclic homotopyl x / G ~ \X/G

which can be lifted to 1 -.„ ~ a}.
X/G J

Since X Λ X/G is a finite cover, X = XJG. Suppose that X/G is a
Jiang space. Given a e n\(X) = Cov(τ/: X —• X), we identify α with
α = /?j{(α) G π\(X/G) = Cov(^ o A/) . There exists a cyclic homotopy
{ht} lχ/G ~ l^/G which lifts to {ht}: lγ ~a (= α) . Project {ΛJ
on X to obtain a cyclic homotopy {ht}: \χ — 1^. It follows from
the Covering Homotopy Theorem that {ht} is a G-homotopy. D
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Since the lens space L^n~ι is a Jiang space and is the orbit space of
S2n~ι under the free Zg action, any odd dimensional sphere S2n~ι is
a Zq -Jiang space. More generally, for any positive relatively prime in-
tegers p , q, Zp acts freely on L2n~x with orbit space Lj^~ι. Hence
by 4.9, L^n~ι is a Z^-Jiang space.

THEOREM 4.10. Let G be a compact Lie group and X be a compact
G-ENR. For each (H) e SF, we assume that XH is connected. Suppose
that X satisfies the G-Jiang condition. For any G-map f: X —• X
and (H)e9*, either

(1) L(fH) = 0=>NWH(fH) = 0,or
(2) L(fH) φ 0 =* NWH{fH) = #R(φWH, π{(XH)) < oo,

where L(fH) is the Lefschetz number of fH: XH -* XH.

Proof. Let (H) e 9* and fH be a lift of fH. Suppose that
Nλ = WH(pHFixfH) and N2 = WH(pHFixafH) are two distinct
WH-fixed point classes. Since X is a G-Jiang space, there exists a
PFi/-cyclic homotopy {ht}: \χn ~ lχ// which lifts to {ht}: \~H — a.

Hence there exists a homotopy fH ~ α/ 7 7 covering a ^//-cyclic
homotopy fH~fH. It follows from [J, 1.3.10] that I(fH, Λ̂ O -
I(fH

 9 N2). Since α is arbitrary, we conclude that all W T̂Z-fpcs
have the same index. By the normalization property of the Lef-
schetz number, L(fH) = Σ I(fH > N) where TV varies over the set
of WH-fpcs. Thus, if L(fH) = 0 then every WH-fpc is inessen-
tial. If L{fH) Φ 0 then every HK/Z-fpc is essential and hence by 4.5,
NwH(fH) = #R{ΨWH, πx(XH)). D

REMARK 4.11. Note that if NWH(fH) = 0 then the ordinary Nielsen
number N(fH) = 0. Furthermore, a compact (j-manifold X such
that XH is 1-connected for (H) E ^ is a G-Jiang space. Thus we
can deduce the main results in [Wi] and [V] from 4.10(1) together
with [FW].

In [K], Komiya showed that the fixed point index of fiHϊ: X ( / / ) -+
χ{H) i s given by

(*) ι(f{H))= Σ X(G/K)-a{K)(f)

for some integers
In the case where G is a finite abelian group and X is compact (*)



EQUIVARIANT NIELSEN NUMBERS 167

reduces to

(**) L(fH)= Σ [G:K]a{κ)(f).
(H)<(K)elso(X)

Together with 4.10, we obtain

COROLLARY 4.12. Let G be a finite abelian group and X be a
compact G-ENR such that for each (H) e Iso(X), XH is connected.
If X satisfies the G-Jiang condition, then for any G-map f: X —• X
and (H) e Iso(X), there exist integers /(#)(/) such that

NWH(fH)' I(H)(f) = Σ t G : *1
(H)<(K)elso(X)

and

a{K){f) = 7 ^ | Σ MW, (H))NWH(fH)
L ' J (K)<(H)elso(X)

where μ( , ) is the Mδbius function on Iso(X).

Proof. Since X is a G-Jiang space, by 4.10, all WH-fpcs are either
inessential or essential of the same index. We then have L(fH) =
NwH(fH)Ί(H)(f) for some integer I{H)(f) which is 0 if L(fH) = 0.
The first equality is then established from (**). The second equality
follows from the Mδbius Inversion formula (see [A]). •

We conclude this section by relating some of the equivariant Nielsen
invariants to the ordinary Nielsen numbers {N(fH)}.

Recall in 4.4 the Reidemeister action of W on π via a H->
yoLψw{y)~ι - Let 7V(α) = {γ e W\γaψw{y)~x = α} be the subgroup
of elements that act trivially on π.

LEMMA 4.13. Let a e π . Suppose that 7V(α) c π . If β =
y α ^ ^ ( y ) " 1 , ^ w (α) 7^ (j8) unless y e n where (δ) denotes the
ordinary Reidemeister class of δ eπ.

Proof. If β = σα^^lπXσ)" 1 for some cr e π then

yα^^(y)-1 = σaφw{σ)~ι

^a = (σ~ιγ)aφw(σ-ιγ)~ι

=> σ~ιγ e Tw(a) c π
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THEOREM 4.14. Let G be a finite abelian group and X be a com-
pact G-ENR such that XH is connected for every (H) e Iso(X).
Let f:X—>X be a G-map. Suppose that for each (H) e Iso(X),
J(XH) = πx(XH), TWH{σ) c nx(XH), Vσ G nx(XH), L(fH) φ 0
and i{H)<{K) is injective for all (H) < (K) G Iso(X). Then for each
(H)elso(X),

[G:H] NOG(fH) = NG(fH) = ] Γ μ((H), (K))N(fκ).
(H)<(K)elso(X)

P r o o f . S i n c e G i s a b e l i a n , X ^ = X H a n d X H = ( ) ( )
for (H) G Iso(X). Since every WK-fpc is a disjoint union of or-
dinary fixed point classes, J(XK) = π\(Xκ) and L{fκ) Φ 0 imply
that all WK-fpcs are essential. From the Definition 2.6, NOo(fκ) =
NG(fκ)/\WK\ = NG(fκ)/[G:K]. Therefore, FizfH = UiH)<iκ)Fixfκ

and Fix^fc is the union of exactly NOG(fχ) many W^-fpcs. By
4.13, each J^Γ-fpc is a disjoint union of \WK\ = [G: K] ordi-
nary fixed point classes. Furthermore, since T(κ)<(H) injects for all
(K) < (H) G Iso(X), we conclude that any two ordinary fixed point
classes of fH from two distinct Wi/-fpcs must be contained in two
distinct ordinary fixed point classes of fκ . Thus,

N(fκ)= Σ NOG(fH)[G:H]= ^ NG(fH).

Applying the Mόbius inversion formula to the equality above com-
pletes the proof. D

REMARK 4.15. Since each XH is a Jiang space,

where f^\ π\(XH) —• π\(XH) is the induced homomorphism. Thus,
the formula in 4.14 can be written as

[G:H]NOG(fH) = NG(fH)= ]Γ μ((H), (K)) #Coker(l - ff).

EXAMPLE 4.16. Consider the G-space in Example 3.9 as T5 x S2

Here let X = T5 be the first component with the same G = Z^ action
as before. Let / : X —• X be given by

f(eiθι, . . . , eiθή = (ei2θ2, e

i2e*, e~iB>, e'iθ^, e~iθ*)
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with
F i x / = { ( ω , ω 2 , ± ( l , 1, I ) ) | ω 3 = l } .

Note that N(f) = 6, #(/<">) = 2, N(fM) = 6 and N(fG) = 2.
One can easily check that for each (H) e Iso(ΛΓ), X ^ is a Jiang space,
L(/#) ^ 0 and τ{H)<{κ) is injective for all (H) < (K) e Iso(X).
Furthermore, TWHcπ{(XH) for Helso(X). By 4.14,

NG(fH)= Σ μ{{H)ΛK))N{fκ).
(H)<(K)elso(X)

For a finite cyclic group G and (H) < (K) e Iso(X), μ((H), (K)) =
μ(\K/H\) where μ(n) is the number theoretic Mobius function of a
positive integer n. Hence,

NG(f(a)) = ^ ( / ( α > ) + μ^)N{fG) = 2 - 2 = 0;

= 6 - 2 = 4;

) + μ(3)N(fW) + μ(6)N(fG)

= 6 - 2 - 6 + 2 = 0.

See [HPY, 3.8] and §5 for applications to periodic points.

5. Periodic points. We now relate the equivariant Nielsen theory
developed thus far to the Nielsen theory of periodic points developed
in [HPY], [HY] and [J]. We also outline a proof of a result announced
in [Ha] (also [J, III A14]) concerning the minimality of certain Nielsen
type numbers for periodic points.

Let X be a compact connected ENR and / : X —• X be a self map.
For any positive integer n, let

Yn = X x x X (n-fold product).

The cyclic group Zn = (ζ) acts on Yn via

ζ (Xι , . . . , Xn) = (Xn , *l , . . . , Xn-\) , X( E X.

We associate to / a Zw-maρ gf\ Yn -+ Yn defined by

gf{Xχ ,...,Xn) = (f(xn) , f(Xχ), .. . , f(Xn-l))

For any positive integer m with m\n,

7 / ^ I x x I (n/m-fold product)

and
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It is easy to see that there is a 1-1 correspondence between Fixgy
and Fix fn . In particular, an f-orbit of a periodic point x of period
n (i.e., {x, f{x), . . . , fn~\x)} , x € Fix/*) corresponds to the Zn-
fixed orbit of the fixed point (x, f(x), . . . , fn~ι(x)) of gf. Recall
from [J, IIL§4], a periodic point class of period n is a fixed point
class of / " . A set of periodic point classes (of diverse periods) is
said to be f-invariant if it is a union of /-orbits. In fact, there is a
1-1 correspondence between the set of nonempty /-orbits of periodic
point classes and the set of nonempty Z^-fpcs of gf (here WH — Zn ,
H = (1)). To see this, let / : X -> X be a lift of / where p: X -> X
is the universal cover. Let fn = / o o / (n-copies) be the lift of fn

so that every periodic point class of period n is of the form p Fix afn

for some a e π where π = Cov(p) = π\(X). Consider the lift gf of
gy given by

gf{X\ , . . . , Xn) = U W , / W j j ••• 9 J\Xn-\))> xi

We have the following commutative diagrams of liftings

X - ^ X

v
X > X

/"

and

=/7X Xp

ix-xi = y«

Let

&{fn) = {/-orbits of periodic point classes of period n

= { S | S = { p F i x α / * , fipFixaf"), ...,fn

If 5 is the /-orbit of p Fix α / " for some a e π , we associate it to
the Zfl-fpc Z ^ j / F i x α ^ y ) G FPCzn(g"/) where ^ = l x x l x α G
Cov(η) = π x x π , φ: π -+ π is the homomorphism corresponding
to / . Let φ(k\a) = φ o - Ό φ{a) (k copies).
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PROPOSITION 5.1. There is a function ψn: &(fn)^FJyCz (<?/) given

by

Ψn(d?(pFixafn)) = Zn(ηFixaφgf)

where 0{p Fixafn) = f-orbit of p Fix afn .
Furthermore, the restriction

is a bijection.

Proof Let S e @{fn) and pFixafn e S. It follows from [J,
III.3.3] that every element of S has the form p Fix βfn = fkp Fix afn

for some 1 < k < n. To show that ψn is well-defined, we need to
show that if pFixafn and pFixβfn e S then Zn(ηFixaφgf) =
Zn(ηFixβφgf), i.e., 3y G Zw such that βφ = γaφφZn(γ)~ι (cf. 4.5).

Note that Zw acts^ on fπ via (xi, . . . , xn) H+ (X« , X!, . . . , xw_i)
so that the group Zn (cf. §2) covering the Zrt-action on Yn is the
semi-direct product of jc x x π and Zn . Furthermore, the homo-
morphism φzn: Zn —• Zn corresponding to the lift gf is given by

φzn{{a\ X"'Xan)-ζk) = (φ{an) x φ{ax) x x φ(an-\)) C^

where ζ is the generator of Zn .
Suppose that fk(pFixafn) = pFixβfn for some 1 < k < n.

Then following [J, IΠ.3.3] we have

pFixβfn = fk{p Fix a fn) = p fk(Fix a fn) = p Fix fkafn~k

= p Fix φ(k\a)fkfn-k = p Fix φ{k)(a)fn .

Thus there exists y G π such that β = γφ^k\a)φ^n\y)~x. Hence,

βφ = 1 x x 1

Let j> = (y x x ^ ^ " ^ ( y ) ) * C"" 1 = (φ(γ) x x ^ ^ " ^ ( y ) x 7) - Then

y ( ^ w ( « ) ) ^ z (7)" 1 = y(l x ••• x 1 x

= (1 x ... x 1 x

It follows then that ( ^ w ( ^

and by applying φχn k times to aφ, ( l x x φ^k\a) x x l ) is
9>Zn-conjugate to aφ .

Let
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and
FPCi (gf) = {Ne FPCzΛ(gf)\N φ 0}.

We will make use of the geometric characterization of nonempty
fixed point classes in the classical sense ([Br] or [J]) and in 2.4. If
(x, f{x), ... , fn-\x)) and (y, f(y), ... , fn~l(y)) belong to the
same Zrt-fpc then either they belong to the same Zw-orbit in which
case, y = fι(x) for some / or y is Nielsen equivalent to P(x) for
some j . In both cases, x and y belong to the same /-orbit of a
periodic point class. This shows that ψ% is surjective.

Let Sγφ S2e <?c(fn) and xx, x2 be fixed points in S\ and S2

respectively. Since S\ and S2 are distinct, X\ and x2 cannot be
Nielsen equivalent. That they do not belong to the same /-orbits
implies that (JCI , . . . , fn~~ι(x\)) and (x2, . . . , fn~ι(x2)) must lie in
distinct Zw-orbits. Thus ψ% is injective. D

REMARK 5.2. A class N e FPC^ (gf) does not contain any Zm-fpc
for any m, m\n iff ψ~ι(N) G &c(fn) is the /-orbit of a nonempty
periodic point class of period n which does not contain any periodic
point class of period m. A periodic point class of period n is essential
iff the /-orbit containing it corresponds under ψn to an essential Zπ-
fpc. Thus, there is a 1-1 correspondence between the set of /-orbits
of irreducible (i.e., does not contain any periodic point class of period
m < ή) essential periodic point classes of period n and the set of
essential Zw-fρcs of gf.

Recall from [J] that the height of an /-invariant set of periodic
point classes is the sum of the periods of the /-orbits in the set. The
Nielsen type number of period n is given by

NPn(f) = the height of the set of irreducible

essential periodic point classes of period n.

PROPOSITION 5.3.

where (1) is the trivial subgroup of TLn .

Proof. The set of irreducible essential periodic point classes contains
only periodic points of least period n = \Zn\ while the corresponding
set of essential Zn-fpcs lie in Yn i . The assertion follows from the
definitions of NPn(f) and Nz((gf)(η) and Remark 5.2 above. D
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The Nielsen type number for the nth iterate is given by

NFn{f) = min{height of Q\Q is /-invariant and every

essential periodic point class of period m

with m\n contains at least one class from Q}.

We also let

/>„(/) = F i x / * - (j Fix/™,
m<n

MPn[f] = mm{#Pn(g)\g~f} and

MFn[f] = min{#Fixgn\g ~ /} .

REMARK 5.4. First observe that

MPn[f]>MZn((gf){ι)) (cf. 2.8)

and
MFn[f]>mZn((gf)W) (cf. 3.6)

The minimality Theorem 3.3 together with 5.3 imply that

NPn(f) = Az.((*/)(!)) = MZn((gf){ι)) < MPn[f].

These inequalities may not be equalities since gf ~G ε does not guar-
antee that ε is of the form gh for some h ~ f.

THEOREM 5.5 [Ha], [J, IΠ.4.14]. Let X be a compact connected
smooth manifold of dimX > 5. For any self map f: X -+ X and for
any positive integer n,

(1) MPn[f] = NPn(f),
(2) MFn[f] = NFn(f).

Sketch of Proof. By the approximation theorem [J, III. §3 Appendix],
we may assume without loss of generality that # Fix fn < oo and thus
# Fix gf < oo. Let x, y G Fix fn such that x and y are in the
same periodic point class but not in the same /-orbit. In other words,
x = (x, / ( * ) , . . . , fn~\x)\ and y = (y9 f(y)9 ... , fn~\y)) belong
to the same Zw-fpc but not in the same Z^-orbit. If a: [0, 1] —> X is
a path such that α(0) = x, a(l) = y and a ~h fna (rel endpoints)
then

5 ~h, S"/5 (rel endpoints)

where a = (α, fa, ... , fn~ιa) is a path in FΛ from x to y and
h/ = (Λί, / α , ... , fn~ιa). The proof of 3.1 suggests that we alter /
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inside a small euclidean neighborhood of a by employing the classical
Wecken method as in [Br, VIII.C] so that we can unite fι{x) and
fι{y) simultaneously for all /. The crucial fact (e.g. [Br, VIII.C.6
p. 139]) is that {fn(ζka)(ζka)~1} be trivial in πx{Yn) = πx{X) x x
7t\{X). This is precisely the case when dimX > 5 because any two
loops are unlinked by general position. Hence the resulting Z^-map
in 3.1 can be taken in the form of g^ for some h ~ f relative to the
complement of a small neighborhood of a U U fn~ιa. Then (1)
follows from the same argument as in 3.3. For (2), we can find h ~ f
such that

by 3.7. Thus,

Let Q = Fix g^ . It is clear that Q is a union of /-orbits of periodic
point classes of diverse periods and that every essential periodic point
class of period m with m\n contains at least one class from Q.
Moreover, height(Q) = #Fixgh and thus (2) follows. D

6. Concluding remarks. In developing the equivariant Nielsen the-
ory in this paper, we restrict ourselves to compact G-ENRs X and
G-maps / : X -> X. We can extend easily to the case / : V -» X
where V is an open G-invariant subset of X and Fix/ is compact
in V by considering a restricted class of G-homotopies (e.g. [D4], [K]
and [W2]). We may also generalize in another direction to compact
G-ANRs (e.g. [HPY], [HY]). Furthermore, we may relax the assump-
tions on XH by considering connected components X^ such that

We showed in §5 how the Nielsen theory for periodic points is re-
lated to the equivariant theory. In particular, we established the equal-
ity NPn(f) = Nzn((gf)(\)) in 5.3. It is easy to see that, for example,
4.14 is the equivariant analog of [HPY, 3.7].
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