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THE PLANCHEREL FORMULA FOR
HOMOGENEOUS SPACES

WITH POLYNOMIAL SPECTRUM

RONALD L. LIPSMAN

The distribution-theoretic version of the Plancherel formula—
known as the Penney-Fujiwara Plancherel Formula—for the decom-
position of the quasi-regular representation of a Lie group G on
L2(G/H) is considered. Attention is focused on the case that the
spectrum consists of irreducible representations induced from a finite-
dimensional representation. This happens with great regularity for
Strichartz homogeneous spaces wherein G and H are semidirect
products of normal abelian subgroups by a reductive Lie group. The
results take an especially simple form if G/H is symmetric. Criteria
for finite multiplicity and for multiplicity-free spectrum are developed.
In the case that G is a motion group—the original situation stressed
by Strichartz—the results are particularly striking.

0. Introduction. This paper is a sequel to and generalization of
[7]. In that paper we derived the Penney-Fujiwara version of the
Plancherel formula for the quasi-regular representation of a homo-
geneous space with monomial spectrum. That is, for G a (connected)
Lie group, H c G a closed subgroup, and τ = Ind# 1 with the prop-
erty that a.a. of the irreducibles that appear in the spectrum of τ are
induced from a character, we derived a distribution-theoretic version
of the Plancherel formula for τ . We remark that (as observed in [7]
or [6]) such a formula gives us the explicit intertwining operator for
the direct integral decomposition of τ , as well as a determination of
the Plancherel measure. A specific situation to which the results of [7]
apply is that of abelian symmetric spaces (defined originally in [5]).

The nature of the generalization of [7] in this paper is two-fold.
First we will replace the hypothesis of monomial spectrum by that of
polynomial spectrum—meaning that a.a. the representations in the
spectrum of τ are induced from finite-dimensional representations.
Second we shall expand the abelian symmetric space application to a
much broader family of symmetric spaces introduced and studied by
Strichartz. Regarding the first extension, it is quite a natural step to
take. Approaching either the minimal principal series of a semisimple
Lie group or the generic representations of a type I amenable group,
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one encounters representations that are polynomial, not monomial. As
for the second extension, we obtain a much more encompassing col-
lection of symmetric spaces—including semisimple symmetric spaces
as well as the generalized Grassmannian bundles of Strichartz [11].
These spaces, various aspects of whose harmonic analysis we derive
in this paper, are of the form WH\VG, where V G is a semidirect
product of a normal vector subgroup V by a reductive Lie group G
and W H is of the same species. (These are the Strichartz homoge-
neous spaces.)

The paper is divided into four parts. In part I we review the Penney-
Fujiwara formulation of the Plancherel formula (§1), and describe the
distributions and matrix coefficients associated to polynomial repre-
sentations (§2). Part II contains an abstract decomposition (§3) of
the quasi-regular representation Ind^ί# 1. In §4 we describe a con-
jugacy problem that acts as an obstruction to computing the multi-
plicity function in the preceding direct integral decomposition. In §5
we specialize to symmetric spaces, show that the conjugacy problem
disappears in that context, and obtain some results on the multiplic-
ity. In part III we present our proof (§6) of the distribution-theoretic
Plancherel formula for Strichartz homogeneous spaces with polyno-
mial spectrum. The results draw upon parts I and II and generalize
those of [7]. §7 contains a short list of examples and questions that
complement the paper's main results. Finally in part IV we supply
an Appendix (§8) which treats the special case of compact G. The
main results of the paper are as follows: Theorem 2.2 which gives the
matrix coefficients of an arbitrary polynomial representation; Theo-
rem 3.1 which gives a direct integral decomposition into irreducibles
of any Strichartz homogeneous space W H\V G\ Proposition 5.1
which characterizes the involutions on a semidirect product V G
Theorem 5.3 which specifies the multiplicity function for Strichartz
symmetric spaces; Theorem 5.5 which details some special situations
that manifest finite multiplicity or even multiplicity one; Theorem
6.2 which is the Penney- Fujiwara Plancherel formula for Strichartz
homogeneous spaces with polynomial spectrum; Corollary 6.3 which
specializes Theorem 6.2 to Strichartz symmetric spaces; and Theorem
8.1 which gives a reciprocity result in the special case of compact G-

I. THE PLANCHEREL FORMULA AND POLYNOMIAL REPRESENTATIONS

In this part we recall—and generalize—the results of [7, §§2 and 3].
G is a Lie group and i / c G a closed subgroup. We fix choices of
right Haar measure dg, dh on G, H, and we assume that the quasi-
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regular representation τ = lnd% 1 is type I. Then there is a uniquely
determined direct integral decomposition

rθ

(I.I) τ= / nτ(π)πdμτ(π),
JG(H)

where μτ is a smooth Borel measure on G, nτ(π) is the multiplicity
function, and G(H) c G is the set of irreducibles weakly contained
in τ . ( G(H) is a minimal closed μτ-co-null subset.) As discussed in
I7L [6], [8] only the class of μτ is uniquely determined and the in-
tertwining operator that effects the decomposition (I.I) is not evident.
Both of these deficiencies are addressed by the distribution-theoretic
Penney-Fujiwara refinement of this decomposition presented in the
first section.

1. The Penney-Fujiwara Plancherel formula. If π e G is real-
ized in a Hubert space β^π, we write (β^π~°°)H>q for the space of
anti-distributions—conjugate linear functionals on the space of C°°
vectors—which transform under H by q~ιl2, q = qn,G = AHQ =

9 the quotient of modular functions. One knows [9] that

(1.1) nτ(π)<

The question of equality in (1.1) is an interesting one that we shall
address in §§7 and 8. The Penney-Fujiwara Plancherel formula (PFPF
for short) is obtained by locating nτ(π) elements a\, . . . , ofc e
(β?π-°°)H>q and a unique (up to scalar) choice (in the class) of μτ

which satisfy

(1.2) (τ(ω)α τ,α τ>

)ajt9 aJ

π)dμτ(π), ωe
JG(H)

where 3f(G) = C^°(G) is the space of test functions and aτ is
the canonical cyclic distribution associated to τ (see formulas (2.2)-
(2.4))). Then the map

(1.3) τ(ω)aτ ^ {π(ω)aJ

π}

is an isometry that extends uniquely to an intertwining operator ef-
fecting the direct integral decomposition (I.I).

REMARK 1.1. Although the formulation makes sense without re-
striction on the multiplicity function, experience has shown that the
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PFPF is really only useful in the case of finite multiplicity (see [7,
Prop. 3.2]). When nτ is infinite on a set of positive measure, one
must employ the Bonnet form of the Plancherel formula [2] to over-
come the difficulties indicated in the opening paragraph of part I.

We need to recall another result from [7, §3] which will be used
in the following. Typically one has, for μτ-a.a. π e G(H), a distin-
guished dense locally convex space {^°)c c ^°° , which has a finer
topology than the relative topology. If we denote the anti-dual by

then we have natural continuous inclusions

c <™π C ^Γπ C ^ C

One knows that πiβ)^-00 c ^ ° ° , but usually
{%ΊI)T - However for the polynomial representations π and distribu-
tions β e {^c)c°° we shall encounter, we will prove that π{β+){β) e
^~°°, &+ = positive linear combinations of functions of the form
ω = ω\ * a>ι, coi e 2f(G). The results of [7, §3], in particular Propo-
sition 3.3, say that this is sufficient to prove (1.2). Indeed, the conclu-
sion is that a.a. of the β must have a unique extension to an element
of ^-°° , (1.2) holds for ω e 3{G), and furthermore

aτ= I

in the sense of [9]. Finally formula (1.3) supplies the intertwining
operator.

2. Polynomial representations, relatively invariant distributions and
matrix coefficients. We are primarily interested here in quasi-regular
representations whose spectrum is polynomial—i.e. the irreducibles
that occur are induced from finite-dimensional representations. We
now describe the relatively invariant distributions and matrix coeffi-
cients of polynomial representations that appear in the PFPF.

Let B c G be a closed subgroup with a choice db of right Haar
measure. If σ is a finite-dimensional unitary representation of B,
whose Hubert space realization is denoted %?σ , the induced represen-
tation Ind^ σ acts in the space

C™(G,B,σ) = {f:G^J%yf is

g eGy 11/11 compactly supported mod B}

by the formula

(2.1) πσ(g)f(x) =
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[Here q is a smooth function on G satisfying q(\) = 1, qφg) —
ΔB,G(b)q(g) It uniquely specifies a quasi-invariant measure dg on
B\G which obeys

f f(g)Q(g)dg= f I fφg)dbdg.
JG JB\G JB

The reader is referred to [7, §2] or [4] for more details on this relation-
ship.] The extension of (2.1) to a unitary action of G on L2(B\G, dg)
= L2(G, B,σ) is as in [7]. Clearly (by [10] e.g.) we have

C™(G,B, σ) c L2(G, B, σ)°° c C°°(G, B, σ).

The space CC°°(G, B, σ) will play the role of {^π)f in the notation
of §1 and [7].

If B = H and σ = 1, then we obtain the quasi-regular representa-
tion τ. Proposition 2.2 of [7] remains valid. The distribution

(2.2) ατ:/-/(l)

defines the canonical cyclic distribution on 3% = L2(G, H, 1) =
L2(G,H), and

(2.3) τ{ω)aτ(g) = ωH(g),

(2.4) (τ(ω)aτ, aτ) = ωH(l),

where

(2.5) ωH(g)=ΔG(g)-iq-ι/£(g) ί
J H

Now suppose we have a quasi-regular representation τ with poly-
nomial spectrum, i.e. μτ-a.a π e G(H) are induced from finite-
dimensional representations. We focus attention on one of these rep-
resentations π = Ind^ σ temporarily. In fact in order to get started in
[7], we needed three additional assumptions. Here are their analogs
in the current setting:

(a) CF\HΠB contains a fixed vector,
(b) BH is closed in G,

(c) qHnB,H<lHnB,B = l on HnB.

Because of (b) any / e CC(G) satisfies f\BH Ξ CC(BH). Hence
/ -• /\H projects C?°(G,B9 σ) to Cϊ°(H, HnB, σ\HnB). Fix a
right Haar measure on H n B and let dh denote a quasi-invariant
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measure on HΓ)B\H. Finally let ζ e ̂  be a σ(7/n5)-fixed vector.
Then the antidistributions which play a central role in our theory are

(2.6) β = βζ : / - / {ξ, f^WJWnBW/e dh >
JHnB\H

feC?(G9B9σ).

Here is the analog of [7, Thm. 2.1]

THEOREM 2.1.

(i) /? is well-defined;
(ii) /? w relatively invariant under the action of H with modulus

(iii) π(
(iv) In fact for ω e 2(G), the vector-valued function is given by the

formula

(2.7) π(ω)β(g)

lΛB B(b)db
JHI!HΠB\B ' '

where ω# is defined in (2.5);
(v) For ω e i ^ + ( G ) , the matrix coefficient of β is

(2.S)(π(ω)β,β)= I f ωH(bh)(ξ,σ(b)ξ)q-ι/

G

2(b)
JHC\B\H JHΠB\B

The matrix coefficient is a non-negative number, possibly equal to +oc.

In fact there is really nothing further to prove, (i) still follows
from (c). Furthermore the proof of Theorem 2.1 in [7] continues to
hold virtually word-for-word and equation-by-equation. However it is
important to make the

REMARK 2.2. As in [7] we observe that the values of the function
π(ω)β and the matrix coefficient (π(ω)β,β) are independent of the
choice of the quasi-invariant measures db, dh, but they do depend
on the original choices of Haar measure on G, H, B and HnB. -

II. STRICHARTZ HOMOGENEOUS SPACES

In [11], Strichartz studied homogeneous spaces H\G of the fol-
lowing form: G is a semidirect product G = V G of a closed nor-
mal vector subgroup V by a (connected) reductive Lie group G and
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H — W H is a closed subgroup of the same species, where W c
V and H c G. He calls such spaces [11] generalized Grassmann-
ian bundles, taking his cue from the case where G = SO(n), V =
Rn , H = S(O{k) x O(n - k)) and W = Rk . Geometrically one can
think of H\G as a bundle as follows. First fix the vector bundle
ψ" = G xH V with base X = //\G and fiber V. Then consider the
bundle W of affine (G, W7) spaces in 2^*—i.e. the bundle with base
X and fiber at x = Hg the collection of affine subspaces of the form
W g + v , v G F . ! F " i s a transitive space for the natural action of
V G and the stability group at (XQ , W), XQ = H, is clearly W H.

In part II we shall show how to decompose the quasi-regular repre-
sentation τ = Ind^ 1 into irreducibles. We shall discover that a very
tricky conjugacy problem prevents us from precisely calculating the
multiplicity in the most general situation. But then we shall see that
when we specialize to symmetric spaces, the difficulty can be over-
come.

3. A direct integral decomposition. The notation being as above, we

wish to compute a direct integral decomposition of τ = Ind~ 1 into

irreducible representations. We recall the Mackey theory for semidi-

rect products. Let λ e V be a unitary character, Gλ the stability

group in G. Then for any σ e Gχ the induced representation

(3.1) πλiG =lnά^.Gλλxσ

is irreducible. Two such representations πλ σ , 7tλ'>σ'9 are equiv-
alent iff 3g e G 3 g λ = λr and g σ = σ'. Moreover if the
quotient space V/G is countably separated, all irreducible unitary
representation classes of G = V G are accounted for in this way.
In fact we shall really only need the (usually) weaker assumption
that WLIH is countably separated in order to decompose τ . (Here
WL = {λ e V : λ{W) = 1}). We shall also utilize [5]—namely in the
special case that W = {1}, H = G we know:

(3.2) Ind£'G 1 = / πλxdλ
JV/G

where π ^ \ = Ind^G λx I, and dλ is the push-forward of Lebesgue

measure dλ from V to V/G. If we assume that for a.a. λ e WL,

the "little homogeneous spaces" are type I, i.e.

τλ = Ind J 1
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is type I? then we can decompose

(3.3) τλ= I nλ(σ)σdμλ(σ).

Putting these facts together with the theorems of induction in stages,
and commutation of inducing and direct integrals, we can now com-
pute

τ = ^

£ £ ^ 1 (stages)

vr fΘ
 VH

= IndyH I indyYj λx\dλ (3.2)
Jw±/H λ

rΦ
= / Indί/£ Indĵ ' ̂  λ x 1 dλ (commutativity)

JW±/H λ

= / Ind^ ' ^ j λxldλ (stages)

= / I n d ^ I n d F ' J λxλdλ (stages)
JW±/H λ ' λ

= / Ind^G / λxnχ(σ)σ dμχ(σ)dλ (3.3)
JW±/H λ Jdλ(Hλ)

= I I ϊndy.Q (λ x nχ(o)o) dμχ(o) dλ
JW±/H JGλ(Hλ)

 λ

(commutativity)
rΦ rΦ

= / L nλ(σ)πλ^σdμλ(σ)d'λ (3.1).
JW±/H JGAHΛ

We have proven the following theorem of Strichartz.

THEOREM 3.1. Let G — V - G be a semidirect product of a closed
normal vector group V by a (connected) (reductive) Lie group G. Let
H — W - H c G be a closed subgroup of the same species, W c
V, H c G. Suppose WL/H is countably separated, and suppose that
generically on WL, Indj 1 is type I. Then

(3.4) Ind | l= Γ Γ nλ(σ)πλiσdμλ(σ)dλ,
n JW±/H JGλ(Hλ)

where for a.a. λ e WL, we have (by the type I assumption) the de-
scription

G ίΘ

lndH

λ 1 - / nλ(σ)σdμλ(σ).
λ Jo(H)



PLANCHEREL FORMULA AND POLYNOMIAL SPECTRUM 359

REMARKS 3.2. (1) Our proof of Theorem 3.1 is conceptually the
same as Strichartz', but the details are much more straightforward.

(2) Strichartz is primarily interested in the case that G is compact.
Then all the separation and type hypotheses are automatically satisfied.
Moreover the direct integral (3.3) is then a direct sum. This special
case is also discussed in §8.

(3) In Theorem 3.1 it is sufficient to assume V is locally compact
abelian and G is a Lie group. No further structure is required for the
proof. However the interesting cases arise when V is a vector group
and G is (connected) reductive. In the following we always assume
V is a vector group and G is reductive in the Harish Chandra class.
In particular, it is really no loss of generality to assume that G —V G
is algebraic.

(4) A critical point—which is overlooked by Strichartz—is that the
decomposition (3.4) may not specify the multiplicity. This is because
two points in WL, which lie in distinct //-orbits, may nonetheless be
in the same G-orbit. We address this issue in the next section.

4. The conjugacy problem. Suppose λ G WL and G-λΐλW1- ^ H -λ.
Choose g e G so that λ Φ λ\ = g λ e W1, but λ and λ\ lie in
distinct //-orbits. Then of course we have Gχ = Gg.χ = gGχg~x but
it does not follow that Hλ = gHλg~ι. It is not clear that Hλ and Hλ

are conjugate. (However under the condition that G is compact or H
is reductive, one can invoke a principal orbit type theorem to conclude
that genetically on W1-, the stability groups in H are conjugate. But
even if hHλh~ι = Hλ , it cannot be that h λ = λ\ since λ and λ\ are
not in the same //-orbit. Such principal orbit type theorems are of
no real value in dealing with this particular conjugacy problem.) Thus
it is extremely difficult to use (3.4) to derive the precise multiplicity
for the representation πλ>σ, λe WL, σ e Gχ(Hλ). Just to illustrate
the difficulty, suppose G is compact and #[(G λ Π W^/H] < oc
generically on WL . Then we can refine (3.4) to

(4.1) I n d | l = Γ

where dλ is the push-forward to G W^/G of Lebesgue measure on
WL , and if λ — λ\, λι, . . . , λr are representatives of the //-orbits on
G-λΠ WL , and a = θ\, 02, . . . , or are given by Oj = gj λ, then

(4.2) n(λ,σ) = Σn(σ\Hλ ,1).
7=1
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Here n{y, 1) is the dimension of the space of fixed vectors for the
finite-dimensional representation v . Formula (4.2) is not terribly use-
ful if the multiplicities—which will likely be computed by complicated
combinatorics—are varying with j . On the other hand, we have

PROPOSITION 4.1. Suppose gj conjugates Hλ to Hλ , 1 < j < r.

Then all the summands in (4.1) are equal and we obtain

n(λ, σ) = rn(σ\Hί, 1) = #[(G λ n ^ / / / ^ ( σ ) .

Proof. This is obvious.

REMARK 4.2. There is really nothing special about the compact case
vis-a-vis the conjugacy problem. If in the generality of Theorem 3.1
we know that, generically on W1-, the condition

(4.3) λ, λf e W1 in the same G orbit

=> Hλ and ify are G conjugate,

holds, then we can rewrite (4.1) as
~ rΘ PΘ

I n d | l = / nλ I nλ(σ)πλ,σdμλ(σ)dλ,
n JGW±/G JGλ(Hλ)

In the next section we prove that for symmetric spaces, the conju-
gacy problem disappears since (4.3) always holds.

5. Symmetric spaces. We now specialize to Strichartz homogeneous
spaces which are symmetric. Suppose G —V - G, H—W - H. Then
H\G is a symmetric space if there exist involutions Y\\ , η2 of V, G
respectively which satisfy W = Vηi, H = Gη2 and

(5.1) η\{gvg~l) = V2(g)Vi(v)ri2(g~1)-

The map

(5.2) η(vg) = m(v)η2(g)

then defines an involution of G with Gη = H. But in fact it is
possible to show that any involution of G is essentially of this form.

PROPOSITION 5.1. Suppose η is an involution of G — V G. Then
V is preserved by η and there exists a conjugate G2 of G which is.
preserved by η.

Note. If we replace G by G2 and write r\\ — η\y, η2 — η\G2> then
η is of the form (5.2).
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Proof of Proposition 5.1. The subgroup V of G is characteristic
and so is preserved by η. If η also preserves G, there is nothing to
prove. If not, write G' = η(G). Now all the reductive co-factors of
V in G are conjugate by V. Choose v G V so that G1 = vGv~x.

LEMMA 5.2. Suppose η(v) = ^, ί/zαί w ι/(G) = vGv~ι with η(v) =
v. Then η(G) = G.

Proof We have G = η2(G) = η(η(G)) = η{vGv~x) = vη(G)y-1 =
v2Gv~2. That is u = v2 normalizes G. But V is also normal and
so G 3 ugu~ι = ugu~xg~xg => ugu~ιg~ι = 1, VgeG That is w
centralizes G. The action of G on F is linear, and the set of vectors
fixed by G is a subspace. Hence v also must be fixed by G. That is

Continuation of the proof of Proposition 5.1. We have G' = η(G) =
vGv~ι and we can write i; = w^2 uniquely where /̂(wi) = U\, ηfa)
= u^ι. Consider wGw~ι where w2 — ui. Then

η(wGw~ι) = w~~xU\U2Gu^xu\xw~x — u\wGw~xu\x.

Applying Lemma 5.2 to wGw~x we obtain that wGw~x is 77- invari-
ant.

So now wesee it is really no loss of generality to assume that our in-
volution on G= V'G arises from involutions on V and G separately
which are related by (5.1). Then one of our main results is

THEOREM 5.3. (i) For any λ e WL, the homogeneous space Hλ\Gλ

is symmetric

(ii) If λ\, λi G WL are in the same G-orbit, then Hλ and Hλ^ are
conjugate by an element of G

(iii) Generically on W1- we have nλ = #[(G λ n W1-)/!!] is finite.

Proof, (i) It is obviously enough to show that Gλ is stabilized by η .
Then G\ = G^nGλ = HnGλ = Hλ . If λ = 1, then Gλ = G, Hλ = H
and there is nothing to prove.

LEMMA 5.4. IfλeW1 and λ φ 1, then ηλ = λ~x.

Proof Of course η acts on V by duality, (ηλ)(υ) = λ(η(v))9 v G
V. We have already used that V —W' ®W uniquely where η\w —
1 ? η\w, = - l . Now take λ G WL. Then for w G W we have
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λ~ι(w) = λ(w) = 1 = 1 and ηλ(w) = λ(η{w) = 1, since η preserves
W. On the other hand, if w' eW, then

ηλ(w') = λ(ηw') = λ((w')-1) = HW) = λ-\w').

This proves the lemma.

Now continuing with the proof of (i), we must show that if g e Gλ ,
then ηg eGλ, i.e.

v) = λ(υ), VI E F ^ A(f/(#) v) = A(v), Vi; e V.

But in fact (using g eGλ) we have

l = λ(g ηυ) = λ(ηv) = λ(υ).

(ii) Suppose λ e W1 and g - λ e W1. Set λ1 = g - λ. Then by

part (i) we have Hx = G\ = Gη

g.λ = (gGλg~ιr = η(g)Gη

λη(g)-1 =

(iii) Since the groups we are dealing with are algebraic it is enough
to prove that the generic i/-orbits on the variety G λ Π W-1 are open.
For this it suffices to show

dimG-λnW± < dimH λ, generic λ e WL.

But the dimension of if Λ, is the same as dim f) A. And the generic
dimensions dim G A Π fΓ-1 are no bigger than dim g A n W7-1. Thus
to prove (iii) it will suffice to show

g.λnw± = i) λ, λew1.

We use the decomposition g = f) + q into ±1 eigenspaces for the
involution η considered (after differentiating) as an involution of g.
Let λeW1. Then if X e ϊj, Y e q and ( I + η Ae ^ , we have

That is

. Combining the results of §§4,5 we see that for a Strichartz
symmetric space H\G the quasi-regular representation τ has finite
multiplicity iff a.a. the little symmetric spaces do.
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In part III we shall specialize our study to Strichartz symmetric
spaces where the spectrum is generically polynomial. But before I do
that I wish to single out several types of Strichartz symmetric spaces
that merit special attention.

(1) Abelian symmetric spaces. That refers to the situation where
H = G and W = {e}, i.e. η\ = 1, η2 = -I. These have been
studied extensively in [5], [7].

(2) Motion symmetric spaces. That refers to the case of compact
G. These were the primary concern of Strichartz, although his re-
sults are somewhat more general. The corresponding quasi-regular
representation has polynomial spectrum, and thus will be one of the
examples covered by the results of part III.

(3) Partially Riemannian symmetric spaces. Here we mean that
H should be compact. Then in that case H\G is a (perhaps non-
compact) Riemannian symmetric space.

(4) Takiff symmetric spaces. This name is reserved for the situa-
tion when V = g and Y\\ = dη2. The name is based upon the work
of Torasso [12].

There are two general results we can prove pertaining to items #3
and #4.

THEOREM 5.5. (i) Any Takiff symmetric space has finite multiplicity.
(ii) Any partially Riemannian symmetric space with G non-compact

is multiplicity-free.

Proof, (i) G is reductive of Harish Chandra class with an involu-
tion η. G acts on g by the adjoint action with η differentiating to
0. Wehave H = G«, I) = Q* , G = g G, H = \)H. By Theorem 5.3
(iii) it is enough to show that for generic λ e i)1, the little symmetric
space Hλ\Gχ has finite multiplicity. The ±1 eigenspace decomposi-
tion g = f) + q is 77-equivariant, so we can identify \)L to q. The
semisimple elements in q are generic, and for any such element its sta-
bilizer in G is reductive. Thus the little symmetric spaces are again
reductive (pseudo-Riemannian symmetric spaces), and therefore by
van den Ban's theorem [1] have finite multiplicity.

(ii) Now suppose G = V G, G non-compact semisimple and sup-
pose θ = r\2 is a Cartan involution. Then H = W K, K a maximal
compact subgroup of G. We show L2(H\G) is multiplicity-free. We
must show that for generic λ G WL we have
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and
L2(Kλ\Gχ) is multiplicity-free.

In fact we shall deduce both facts from the following lemma. Write
0 = t + p, the Cartan decomposition determined by θ.

LEMMA 5.6. The following implication is true for generic A e W^ :

Ifp = expX, X Ep, satisfies p2 A = A, then p A = A.

Proof. Choose a maximal split abelian subspace α c p containing
X. Then diagonalize the action of A — exp α on V*:

where β: A —• R^ is a homomorphism, V» = {μ e V*: a - μ =
β{a)μ], and only finitely many eigenspaces are non-trivial. Any λ e
WL c F* can be written

β

and the condition λβ Φ 0, V weight β, determines a generic set.
Now suppose p2 λ = A. Then

= Σ
implies /?(/?) = 1, Vβ . In particular

Completion of the proof of Theorem 5.5(ii). Suppose A is in the
generic set determined by Lemma 5.6. Assume also g A e W-1.
Write g = Λ;expX,Λ;eΛ:,Xep. Then

-kexpX λ = -g'λ = η(g λ) = θ(g) /̂(A) = kexp -X (-A).

Hence exp2X > λ = λ. By Lemma 5.6 we conclude expX λ = λ =>
g λ = kλ. That is G-λnW1 = Kλ. As for the fact that L2{Kλ\Gλ)
is multiplicity-free, it is enough (e.g. by [3, IV.3.1 & V.3.5]) to show
Gλ = Kλ exp p^ . But again if g = k exp X e Gλ, then /c exp X A = A.
Applying the involution we get

-k expX A = //(A: expZ A) = θ(k expX) f/(A) = k exp - X (-A).

That is exp2X λ = λ. As before we conclude expX A = A => k e
Kλ, Xepλ.
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REMARK 5.7. Theorem 5.5 (ii) may not be true if G is compact
also—see Proposition 7.3.

III. STRICHARTZ SPACES WITH POLYNOMIAL SPECTRUM

In this part we bring together the material from parts I and II.
We deal with Strichartz homogeneous spaces H\G = W H\V G
satisfying the condition

(III.l) for generic λ e W1, the space L2(Hλ\Gλ)

has polynomial spectrum.

That is for a.a. λ e WL , it is the case that a.e. a e Gλ(Hλ) is finite-
dimensional. Then the generic irreducible representations π ^ σ =

I n d ^ λσ are polynomial, that is induced from a finite-dimensional
representation. Of course we must always assume W1 /H is count-
ably separated. Under these conditions we derive the explicit PFPF

for τ = Ind~ 1 in §6. In §7 we gather a series of illustrative examples
and open questions.

6. The PFPF for polynomial spectrum. We begin with some normal-
izations and elementary consequences of various choices of Haar and
(quasi-)invariant measures. We fix once and for all choices dv , dg,
dw , dh of right Haar measures on V, G, W9 H respectively. A
Haar measure dv on W\V is uniquely determined by

[ f(υ)dv= ί f f(wυ)dwdv, feCc(V).
Jv Jw\v Jw

The dual Haar measure on WL is denoted dλ. We fix a choice of
a smooth function q — qπ,G o n G satisfying q{\) = 1, q(hg) =
Aff(h)AG(h)~lq(g). Then a quasi-invariant measure dg is uniquely
determined on H\G by

/ Ag)q(g) dg= ί ί f(hg) dhdg, fe CC{G).
JG JH\G JH

(See §2.) Similarly we choose a smooth function q = q~ ~. Let us

note that
Aw.H(wh) =δH,w(h)AH{h)

where δπ w is the modulus for the action of H on W determined
by

δHMh) I f(hwh~ι)dw= ί f(w)dw, feCc(W)
Jw Jw



366 RONALD L. LIPSMAN

(see [4]). Similar formulae apply to V G. Then

by duality. We shall abuse notation slightly and write δH w±(g) for
the quotient q(g)/q(g). It is a smooth extension of δH w± from H

to G satisfying δH w±(hg) = -f^-Wδjj w±(g). In general it will not

be a character unless G leaves W invariant.
Now disintegrate dλ under the action of H on WL . Fix a pseudo-

image dλ on WL/H. Then there are uniquely determined relatively
invariant measures dv λ of modulus δH w± on Hλ\H so that

f(λ)dλ= ί ί f(λ-h)dvxdλ.
1- J\V±/HJλHΊH

It follows that the quotient -£*• has a unique extension from Hλ to
-1H, and in fact it is δff w± ,

We also have a uniquely determined right Haar measure dhχ on Hλ

so that

f f(h)dh= f ί f(hλh)dhλdh,

where we have abused the notation slightly by writing dh = dvλ.
At this point we choose a right Haar measure dgχ on Gχ. Then a
quotient measure on Hχ\Gχ is uniquely specified, and thus since τχ —
Ind^ 1 is type I with finite multiplicity, so is a Plancherel measure

class μχ on Gχ{Hλ). We shall choose a specific measure in that class
momentarily. (Note we are using the fact that if dim a < oc a. e.
in (3.3), then Πχ{σ) < oo a.e. This follows from (6.3) below for
example.)

Next we turn to a structural result on the homogeneous space H\G
= W H\V G and a consequence for the quasi-invariant measure
(class) that lives on it. First we observe that W Ή\V Gψ W\V x
H\G. Indeed neither of the maps (Wυ , Hg) -• WHvg, WHvg -•
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Wv is well-defined. In fact W H\V G is a fiber space

W\V —1—+ W H\V G

H\G

The projection is p : WHvg —• Hg, and the fiber maps are i
= WHvg injecting W\V to the fiber over Hg. (Of course the fiber
map depends on the base point.) We can express a quasi-invariant
measure d(υg) in terms of this fiber description as follows. Fix a
cross-section s : H\G -> G. Having done that, the map

W\V x H\G -• JF # \ F G

is a Borel bijection. Then we can carry out the following computation

/ / f(whvg)dwdhd(vg)
JW'H\VGJW'H

= / f(vg)q?} ~(vg)dvdg
JVG M ^

VG °G,V

f
H\G

= ί ί f{vhg)δ-^-{hg)dvdhdg
JH\GJVH °G,V

H\GJVH °G,V

= ί f f f(hwvg)δHMh)^K(g)dwdvdhdg
JH\GJW\V JWH °G,V

= f [ [ f(whvg)δ-f^{g)dwdhdvdg.
JH\GJW\VJWH °G,VIH\GJW\V

This proves

But we already know that on H,

a function which we have extended to G. Thus

(6.2) d(υg) = δH w,(g)dϋdg.
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Now we pass to the main situation. We have

G
= ίndλ 1 =G ί

τλ = ίndH

λ 1 = / nλ(σ)σ dμλ(σ)

and μχ- a.a. σ are finite-dimensional. We know that

(6.3) nx(a)

Thus there exist an orthonormal family ξ\, . . . , ζn(σ) °f vectors in

^σ

λ and a unique choice of the measure in the Plancherel class so that

(τλ(ω)aλ, aλ) = I £ (σ(ω)ξj, ξj) dμλ(σ), ω G &{Gλ).

Here of course aλ is the canonical distribution for τλ. If Hλ\Gχ is
a direct product of an abelian and a compact group, then nχ(σ) =
d i m ^ A . It seems quite likely that is always the case (see §8).

Now in the terminology of part II, we have H = W H playing the
role of H there; V Gλ playing the role of B W Hn V Gλ = W Hλ

playing the role of HnB. The representation

τ = Indf 1 = Γ Γ nλ(σ)πλ9σdμλ(σ)dλ

has polynomial spectrum. What about the three properties (a)-(c)?
(a) Clearly λσ\w-Hλ — <*\HX contains an nλ(σ)-dimensional space of

fixed vectors;
(b) The group (V-Gλ)(W H) = VGλH is closed <» GλH is closed;

(c)

On the subgroup W Hλ, the above becomes

ό d

The latter is 1 <& Hλ\Gχ has an invariant measure.
Thus we will reformulate our hypotheses as follows: for a.a. λ e WL

we have
(d) GχH is closed in G
(e) Hχ\Gχ has an invariant measure.



PLANCHEREL FORMULA AND POLYNOMIAL SPECTRUM 369

(Comments on the propriety of these hypotheses are found in the
next section.)

Now let ξι, . . . , ξn (σ) be the orthonormal family selected above.
The recipe for the distributions that enter the PFPF is found in (2.6).
We have

(6.4) βλ,σ,ξ=βλ9σJ:f-> f (ξj,f)dh, feC?(H,Hλ)9

JHλ\H

where the simplicity of the integrand comes about because of the q
evaluations already done, and the further computations:

λ' 0GyVAG AG AG

since Hχ\Gχ has an invariant measure; and

1/2 -1 -1/2 _ \ AHl

λAH

l

Λl/2 A-1 A-l/2°H,W
AG ^H AG

(Actually it is not so unexpected if one compares [7, §4].)
We need one more auxiliary result before we can proceed to the

PFPF. The following result will apply to the little homogeneous spaces.

LEMMA 6.1. Suppose one has a PFPF for τ = Ind^ 1 in the form

ωH{\) = / (π(ω)aπ , aπ) dμ(π), ω G 3{G)
Jx

and suppose H\G has an invariant measure. Then one also has the
equation

Ω ( l ) = / / n{g){π(g)-ιaπ,aπ)dgdμ(π)9
Jx JH\G

/
H\G

Proof. Since H\G has an invariant measure, we have AG\H —
and qH,G= 1. Therefore, by definition

ωH(g) = AG(gy
ι ί ω(g-ιh-ι)AG(hyιdh.

JH
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Also the distributions aπ are //-invariant. Then we can compute

ω#(l)= / (π(ω)<*π,<*π)dμπJx

= ω(g)(π(g)a a )dgdμ(π)
Jx JG

= ω(g~l)AG(g~l){π(g~l)aπ,aπ)dgdμ{π)
Jx JG

f f f - 1 - 1 - 1 - 1 - 1
= / / / co(g h )ΔG(g h )(τι(g )aπ, aπ) dhdg dμ(π)

Jx JH\G JH

= / / ωH(g){π{g~l)aπ,aπ)dgdμ{π).
Jx JH\G

Since ω <-• ωπ maps C^°(G) onto C^°(G? //), the lemma is proven.

Now we are ready for the main result of the section.

THEOREM 6.2. Let H\G be a Strichartz homogeneous space with
polynomial spectrum. Then the distributions βχ,σ,j have unique ex-
tensions to β^π°° = (Ind^;^ λσ)°° so that for ω e &{G) we have

λo λ

ω~(l) = (τ(ω)aτ, aτ)

ί r Hλ{σ)

= L y2(πλ,σ(oj)βλ^σJ, βλ,σj)dμλ(σ)dλ.
JW±/HJGλ(Hλ) p ΐ

REMARKS 6.3. (1) Implicit in the statement is the realization of
πλσ in L2(G, Gχ, σ). We know

CC°°(G, Gλ,σ)c L2{G, Gλ, σ)°° c C°°(G ? Gλ, σ)

and any / e C™(G, Gχ, σ), when restricted to GλH ? can be viewed
as an element of C£°(H, Hλ, σ) as explained in §2.

(2) The same comment as in [7, Remarks 4.2 & 5.2(2)] obtains.
Namely it seems likely that the distribution integrals (6.4) converge
for all / € ^ ° ° , but I do not have a proof.

Proof of Theorem 6.2. We utilize formula (2.8) for the matrix coef-
ficients derived in Theorem 2.1. In fact we have for ω e
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σ(ω)βλ,σ,j, βλ,σ,j)

= L „ L ω~(bh)(ζj, λσ(b)ζj)
JHΠB\H JHΠB\B

/ / / o)n(vgλh){ξj,λσ(vgλ)ξj)[gιJ2

G(gλ)]
HX\H JH^Jwχv λ'

xδw±(gλ)dvdgλdh

ωn(vgλh){ξj,λσ(gλ)ξj)
χVHλ\H

xλ(v)ph{gλ)qHλtH{h)~ι dvdgχdh,

using (6.2) applied to W • Hλ\V • Gλ instead of W • H\V • G, and
setting

Phigλ) = Q^(gλ)δ^(gλ)
ι/2qH9G^'l8λh)ι/2.

The only property of this measuurable function we shall need is the
obvious one that

We now invoke the Plancherel formula and Lemma 6.1, applied to
Hλ\Gλ, to conclude

nλ(σ)

Σ
ΊHJGλ(Hλ)yrχ

Jw±/H JGλ{Hλ) yr[

= / / / ω~{υh)W)dHλ,H{hyx dvdhdλ
JW±/H JHλH JW\V n

= [ ί ί ω-{v)λ{hvh-χ)dvdhdλ by (6.1))
JW±/H JHλ\H JW\V

= / ω~{v)l(v)dv dλ = ω~(\).
Jw1- Jw\v H

If we further asume that H\G is symmetric, then we can combine
Theorem 6.2 with Theorem 5.3 to obtain
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COROLLARY 6.4. Suppose H\G is a Strichartz symmetric space hav-
ing polynomial spectrum, and satisfying (d) and (e). Then for ω e
3ϊ{G), we have

r r "ί(σ)

ω5(l)= / nλ I Σ(πλ9σ(ω)βλ9σJ, βλfσj)dμλ(σ)dλ.

7. Examples and open questions. In this section we illustrate our
results with several examples and some outstanding questions.

EXAMPLES 7.1. (1) The prime example, and the one which moti-
vated Strichartz [11], is that of compact G. Then all additional con-
ditions are automatically satisfied—i.e. the spectrum is generically
polynomial, Hχ\Gχ has an invariant measure, GχH is closed in G,
and all q functions are identically one. In this case W±/H is count-
ably separated, the measure dλ on WLjH is the canonical image of
Lebesgue measure, and of course μλ is discrete. If H\G is symmet-
ric then Proposition 4.1 and Theorem 5.3 hold, that is the multiplicity
function is nλnλ(σ). Each little homogeneous space Hλ\Gλ is sym-
metric, but Gχ may not be connected. Nevertheless I do not know a
single example where the little homogeneous space is not multiplicity
free. This gives rise to our first question.

Questions 7.2. (i) Is it true that, for any Strichartz symmetric space
H\G = W - H\V - G with G compact connected, the little homo-
geneous spaces are multiplicity-free? Incidentally we note that for
partially Riemannian spaces with G non-compact, the answer to the
corresponding question is yes (see Thm. 5.3). The answer is yes also
in a special case we consider next (see Proposition 7.3 below).

(2) The Strichartz Symmetric Space associated to a Pseudo-Riemann-
ian Symmetric Space. Suppose H\G is a pseudo-Riemannian sym-
metric space, that is G is connected semisimple, and H — Gη is the
stabilizer of an involution. One knows that it is possible to choose a
Cartan involution θ of G which commutes with η. Let g = I + p
be the corresponding Cartan decomposition, and let g = \) + q be the
eigenspace decomposition corresponding to η. The motion group as-
sociated to θ is p'K. Then η preserves Kand p, since it commutes
with (9 . Hence it defines an involution of G — p K ^ The stabilizer is
H = G* = (p Π I)) (K Π H). The symmetric space H\G is called the
Strichartz symmetric space associated to H\G.
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PROPOSITION 7.3. The symmetric space H\G has uniform multiplic-
ity equal to that of the most continuous series ofthepseudo-Riemannian
symmetric space H\G.

Proof. By Proposition 4.1 and Theorem 5.3 the multiplicity function
for H\G is a product nλnλ(σ), where for λ G (p Π ί))1 = p Π q

(7.1) nλ = #[(K.λnpnq)/(KΠH)]9

(7.2) nA(σ) = mult, funct. for L2((Kλ n H)\Kλ).

In fact for generic / iGpΠq the symmetric spaces (iζa Π H)\Kχ are
multiplicity-free and A^ is the multiplicity of the most continuous
series of the semisimple symmetric space H\G. These facts are con-
tained in as yet unpublished results of van den Ban and SchlichtkruU.
I thank them for pointing this out to me. I shall content myself with
the remark that (7.1) represents an index of certain Weyl groups, and
(7.2) is identically 1 because Kλ = (Kλ n H) exp(έ/l n q), which is one
of their results.

(3) There are many examples where the generic stability group Gλ,
λ G WL, is compact, or perhaps finite or even trivial. This typically
happens when dim V » dim G. Any of these will guarantee polyno-
mial spectrum and the validity of all the additional conditions. The
multiplicity will be finite if the space is symmetric, but it need not be
one. This follows already from the observation that finite symmetric
spaces need not be multiplicity-free. For a simple example of that,
take G = SL(2, Z2) with involution η(g) = CgC~ι, C = (J _ J ) .
Then H = G« = Cent G, but Gj Cent G is not abelian.

(4) Takiff spaces. Suppose again H\G is a semisimple symmetric
space. Form the semidirect product G == gG. The involutuion η
(corresponding to H) acts naturally on G and H = ίj H.

PROPOSITION 7.4. The spectrum is polynomial and the multiplicity
of H\G is finite.

Proof. We identify ϊ) to q. It is enough to prove that for generic
λ G q, the little symmetric space Hλ\Gλ has a spectrum consisting of
finite-dimensional representations. The argument that follows is due
to van den Ban. Let λ be regular semisimple. Then its centralizer α
in q is a Cartan subspace. Moreover Gχ is the centralizer of α in G.
But then Hχ\Gχ has tangent space o c q w ίj\g at the origin. Let A be
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the analytic subgroup corresponding to α. A is abelian. Moreover A
has finitely many orbits on Hλ\Gχ and they are all open. This implies
that L2(Hλ\Gχ) decomposes into finite-dimensional representations.

As for the second statement, it is already proven in Theorem 5.5
(i). But it does lead to a second question.

Questions 7.2. (ii). Are the symmetric spaces L2(Hχ\Gχ) in the
above proposition multiplicity-free? If so, the multiplicity of the Tak-
iff symmetric space is precisely

nλ = #[(G-λnq)/H].

Note that questions (i) and (ii) are the same—but applied to different
situations.

REMARKS 7.5. (1) Conditions (d) and (e) hold for Takiff spaces.
But unlike partially Riemannian or Strichartz spaces associated to a
pseudo-Riemannian space, they may not have uniform multiplicity.
The simplest example is f) H\Q G where G = SL(2, K), and the
involution is conjugation by the matrix C above.

(2) Unlike Riemannian spaces, and more like pseudo-Riemannian
spaces, the spectrum of Strichartz spaces will usually not consist of
representations from the spectrum of the regular representation. To
illustrate, consider the example which is both Takiff and partially
Riemannian— I K\g G. The representations in the spectrum of
the regular representation are

where g = g via the Killing form, λ e g is regular integral semisim-
ple, Gχ is a Cartan subgroup and a is a character. (Under very
mild conditions the group g G has polynomial, or even monomial,
spectrum.) However the spectrum of the symmetric space is quite dif-
ferent: lL = p and for λ ep regular, Gλ will be a Cartan subgroup
only when G is quasi-split. (The spectrum is still monomial, but it is
degenerate.)

All of the previous results and remarks lead to a third question.

Questions 7.2. (iii) Let H\G be any symmetric space with G a con-
nected Lie group, H = Gη . Suppose the quasi-regular representation
τ is type I. Then is it true that τ has (bounded) finite multiplicity?
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Such a result was conjectured in [8]. The results of this paper provide
further evidence for a positive response.

Our final question was raised in the discussion in §6.

Questions 7.2. (iv) Suppose H\G has an invariant measure, and
the quasi-regular representation τ = Ind# 1 is type I and has finite-
dimensional spectrum. Thus

τ=l nτ(σ)σdμ(σ), nτ(σ)
JG(H)

oo a.e.
lG(H)

If we let β%H denote the space of invariant vectors, then is it true
that

nτ(σ) = dim*?,
for //-a.a σ ? for all σ ?

IV. APPENDIX

We have already noted that in the direct integral decomposition

(IV. 1) τ = I n d £ l = / nτ(π)πdμ{π),
JG(H)G(H)

the multiplicity satisfies

In general, the inequality is strict. But in this appendix we demonstrate
equality for Strichartz symmetric spaces H\G when G is compact.

8 A reciprocity result. Adopting the point of view of Penney [9],
we think of the equality

as a generalization of Frobenius reciprocity. Now take G = V G, G
compact. For a subgroup H = W H, we know

= / Σ
JW±/H -
/
W±/H

provided

Since Gχ is compact, we know by Frobenius reciprocity that

nλ(σ) = dim{(^ e ^ : σ(h)ξ = ξ,Vhe Hλ}.

Of course in this case ^~°° = β?σ°° = %?a by finite-dimensionality.
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THEOREM 8.1. Let π = πλ^σ e G. Then

(i) (^r°°)H = {0} unless λeGW1 and a e Gλ(Hλ)

(ii) Suppose for λ G WL , g λ G W1-, we have gHλg~ι = Hgλ for

example if H\G is symmetric. Then for any σ e Gχ(Hχ), we have

Proof. The representations %χ σ are as usual realized on
L2(G, Gχ, σ). The action is:

= λ(xυχ-ι)f(x), veV,xeG

, =f(xg), x,geG.

(i) Suppose λ £ G • Wx and β e β^-°° is W • //-invariant. Then
\fw e W, V / € CC°°(G,Gλ,σ) we have

But Vg, 3 ^ such that λ(g w) φ 1. In fact we can do that lo-
cally uniformly in g . Hence Vg, 3 a neighborhood on which β kills
every function with support in that neighborhood. Hence β = 0.
Thus λ G G - WL. Now suppose there is an //-invariant function in
L2(G, Gλ, σ). If there were such an / , then

Therefore if / ψ 0, then /(I) φ 0. But then for Λ G

that is a G Gχ{Hχ). We complete the proof of part (i) by showing that
the existence of a non-zero W • //-invariant distribution forces the
existence of a non-zero //-invariant function. Define the projection

P:Cx>(G,Gλ,σ)^Co°(G,Gλ9σ)

by

Pf(g)= [ f(gh)dh.
JH

Now if ^ is a non-zero //-invariant distribution, then for all / G
C°°(G,Gλ,σ)

(β,f) = (β,Pf).

Choose /o eC°°(G,Gλ, σ) such that {β,fo)φθ. Then

Pfo is a non-zero //-invariant function.
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(ii) Let β be a W H-invariant distribution in β^π~°° . Exactly as
in part (i) we conclude

(β,Mgwg-ι)-i)Ag)) = o, v/, vw.

Hence Suppβ c {g e G : g λn WL φ 0} . But G An WL is a finite
disjoint union of nλ open //-orbits and it is enough to consider one
//-orbit at a time. Thus we are looking at distributions supported on
GχH, the functions there satisfying f(gχh) = o{gλ)f{h). It is clear
from the //-invariance that the only possibilities are

/
Hλ\H
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