SOLUTIONS OF THE STATIONARY
 AND NONSTATIONARY NAVIER-STOKES EQUATIONS IN EXTERIOR DOMAINS

Zhi-Min Chen

It is shown that a nonstationary exterior Navier-Stokes flow tends to a small stationary flow in L^{2} like $t^{-3 / 4}$ as $t \rightarrow \infty$.

0. Introduction. In this paper we are concerned with the stationary Navier-Stokes equations

$$
\begin{align*}
& (w \cdot D) w-\Delta w+D \bar{p}=f, \quad D \cdot w=0 \quad \text { in } G, \tag{0.1}\\
& w=0 \quad \text { on } \partial G \quad(D=\operatorname{grad}),
\end{align*}
$$

and the nonstationary Navier-Stokes equations

$$
\begin{gathered}
v_{t}+(v \cdot D) v-\Delta v+D \overline{\bar{p}}=f \text { in } G \times(0, \infty), \\
D \cdot v=0 \quad \text { in } G \times(0, \infty), \\
v=0 \quad \text { on } \partial G \times(0, \infty), \\
\left.v\right|_{t=0}=a+w \quad \text { in } G \quad\left(v_{t}=\partial v / \partial t\right) .
\end{gathered}
$$

Here and in what follows G denotes a smooth exterior domain of $R^{3}, f=f(x)$ is a prescribed vector field, and \bar{p} (resp. $\overline{\bar{p}}$) represents unknown stationary (resp. nonstationary) scalar pressure which can be determined by the stationary solution w via (0.1) (resp. nonstationary solution v via (0.2)).

As is well known, it was shown by Finn [8, 9] that (0.1) admits a small solution

$$
\begin{gather*}
w \in L^{\infty}\left(G ; R^{3}\right), \quad D w \in L^{3}\left(G ; R^{9}\right), \tag{0.3}\\
C_{0}=\sup _{x \in G}|x||w(x)|<\infty .
\end{gather*}
$$

If $C_{0}<1 / 2$ the Finn's solution w may be formed as a limit of a nonstationary solution v as $t \rightarrow \infty$ in local or global L^{2}-norms (cf. Heywood [15, 14], Galdi and Rionero [11], Miyakawa and Sohr [23]) and in other norms (cf. Heywood [16], Masuda [20]). Moreover it has recently proved (cf. Borchers and Miyakawa [4]) that every weak solution of (0.2) tends the Finn's solution in $L^{2}\left(G ; R^{3}\right)$
like $t^{-(3 / p-3 / 2) / 2}$ with $6 / 5<p<2$, provided $C_{0}<1 / 2$ and $a \in$ $L^{2}\left(G ; R^{3}\right) \cap L^{p}\left(G ; R^{3}\right)$.

In this paper we are only interested in the case $w \in L^{3}\left(G ; R^{3}\right)$, $D w \in L^{3 / 2}\left(G ; R^{9}\right)$, or $D w \in L^{r}\left(G ; R^{9}\right) \cap L^{p}\left(G ; R^{9}\right)$ with $1<r<$ $3 / 2<p<2$. Under certain smallness assumptions on w we show now that every weak solution of (0.2) tends to the stationary solution w in $L^{2}\left(G ; R^{3}\right)$ like the sharp decay rate $t^{-3 / 4}$.

1. Notation and main result. In this paper we use the following spaces.
$L^{p}=$ the Lebesgue spaces $L^{p}\left(G ; R^{3}\right)$, with $\|\cdot\|_{p}$ the associated norm,
$C_{\sigma}^{\infty}=$ the set of compactly supported solenoidal in $C^{\infty}\left(G ; R^{3}\right)$, $W^{k, p}=$ the Sobolev space $W^{k, p}\left(G ; R^{3}\right)$,
$J^{p}=$ the completion of C_{σ}^{∞} in L^{p},
$W_{\sigma}^{1, p}=$ the completion of C_{σ}^{∞} in $W^{1, p}$,
$\widehat{W}_{\sigma}^{1, p}=$ the completion of C_{σ}^{∞} under the norm $\|D \cdot\|_{p}$,
$\widehat{W}_{\sigma}^{2, p}=$ the space $\left\{u \in \widehat{W}_{\sigma}^{1,3 p /(3-p)} ; D^{2} u \in L^{p}\left(G ; R^{27}\right)\right\}$

$$
\text { for } 1<p<3
$$

$W^{-1,2}=$ the dual of $W_{\sigma}^{1,2}$,
$\widehat{W}^{-1, p}=$ the dual of $\widehat{W}_{\sigma}^{1, p /(p-1)}$, with $\|\cdot\|_{-1, p}$ the associated norm.
Moreover for $1<r<\infty$ and $n \geq 1$, we denote by r^{\prime} the real $r /(r-1)$, by (\cdot, \cdot) the inner product in $L^{2}\left(G ; R^{n}\right)$, by P the bounded projection from L^{r} onto J^{r} (cf. [22]), by A the Stokes operators $-P \Delta$ with the domain $W_{\sigma}^{1, r} \cap W^{2, r}$, by \bar{A} the Laplacian $-\Delta$ with the domain $W^{2, r}\left(R^{3} ; R^{3}\right)$, and by C a positive constant which may vary from line to line, but is always independent of the quantities t, T, u, v, w, f, u_{k}, and a.

Now we make preparations for stating our main result. The existence of the stationary solutions w is guaranteed by the following.

Lemma 1.1. Let $1<r \leq 3 / 2<p<2$, and $f \in C_{\sigma}^{\infty}$. Then there is a small $h>0$ such that (0.1) admits a unique solution within the class

$$
\left\{w \in \widehat{W}_{\sigma}^{1, r} \cap \widehat{W}_{\sigma}^{1, p} ;\|D w\|_{3 / 2} \leq h\right\}
$$

provided that $\|f\|_{-1,3 / 2} \leq h^{2}$. Moreover

$$
\|D w\|_{r}+\|D w\|_{p} \leq C\left(\|f\|_{-1, r}+\|f\|_{-1, p}\right)
$$

From (0.1) and (0.2) we see that $u=v-w$ and $\hat{p}=\bar{p}-\overline{\bar{p}}$ solve the problem

$$
\begin{align*}
& u_{t}+(u \cdot D) u-\Delta u+(u \cdot D) w+(w \cdot D) u+D \hat{p}=0, \tag{1.1}\\
& D \cdot u=0 \text { in } G \times(0, \infty), \\
& u=0 \text { on } \partial G \times(0, \infty), \\
& \left.u\right|_{t=0}=a \text { in } G .
\end{align*}
$$

Weak solutions are given in the following sense.
Definition 1.1. Let $a \in J^{2}$, and $w \in \widehat{W}_{\sigma}^{1,3 / 2}$ solve (0.1). A weakly continuous function $u:[0, \infty) \rightarrow J^{2}$ is said to be a weak solution of (1.1) if $u(0)=a, u \in L^{\infty}\left(0, \infty ; J^{2}\right) \cap L^{2}\left(0, \infty ; \widehat{W}_{\sigma}^{1,2}\right)$,

$$
\begin{equation*}
\|u(t)\|_{2}^{2}+\int_{s}^{t}\|D u(z)\|_{2}^{2} d z \leq\|u(s)\|_{2}^{2} \tag{1.2}
\end{equation*}
$$

$$
\begin{align*}
(u(t), g(t)) & +\int_{s}^{t}((D u, D g)+((u \cdot D) w, g) \tag{1.3}\\
& \left.+((w \cdot D) u, g)-\left(u, g_{z}\right)\right) d z \\
= & (u(s), g(s))-\int_{s}^{t}((u \cdot D) u, g) d z
\end{align*}
$$

for all $t>s \geq 0$ and all $g \in C\left([0, \infty) ; W_{\sigma}^{1,2}\right) \cap C^{1}\left([0, \infty) ; J^{2}\right)$, where $g_{z}=\partial g / \partial z$.

The existence of weak solutions to (1.1) is guaranteed by the following.

Lemma 1.2. Let $a \in J^{2}$, and $w \in \widehat{W}_{\sigma}^{1,3 / 2}$ such that $\|D w\|_{3 / 2}<$ $1 / 8$. Then (1.1) admits a weak solution.

We are now in a position to state our main result.
Theorem 1.1. Let $1<r<3 / 2<p<2, a \in J^{2} \cap L^{1}$, and let $w \in W_{\sigma}^{1, r} \cap W_{\sigma}^{1, p}$ such that w solves (0.1) and $\|D w\|_{r}+\|D w\|_{p}$ is sufficiently small. Then every weak solution of (1.1) possesses the sharp decay property

$$
\|u(t)\|_{2}=O\left(t^{-3 / 4}\right)
$$

Section 2 is concerned with the proof of Lemmas 1.1 and 1.2. In [23], it has been obtained an existence result on weak solutions of (1.1) with w the Finn's solution such that $C_{0}<1 / 2$. However,
the argument of [23] heavily depends on the property (0.3). In $\S 3$, with the use of the approach developed from [7], we shall show sharp decay estimates of solutions to the linearized equations of (1.1). If w only satisfies (0.3) and $C_{0}<1 / 2$, such estimates seem unavailable. Theorem 1.1 will be proved in $\S 4$ by making use of the estimates carried out in $\S 3$ and studying the time average $t^{-1} \int_{0}^{t}\|u(s)\|_{2} d s$. A similar technique has been used in [23, 4]. However, we have not used the spectral decomposition of the Stokes operator A in L^{2} as usually used in earlier work concerning the L^{2} decay problem. Moreover our proof seems much simpler.

It should be noted that the L^{2} decay problem of (1.1) with $w=0$ stems from Leray [19], and has affirmatively been solved (cf. [24, 3, 2] and the references therein). If $1<p<2$ and u is a weak solution of (1.1) with $w=0$, it has been proved that $\|u(t)\|_{2}=O\left(t^{-(3 / p-3 / 2) / 2}\right)$ provided $u(0) \in J^{2} \cap L^{p}$ (cf. [2]), and $\|u(t)\|_{2}=O\left(t^{-3 / 4}\right)$ provided $u(0) \in J^{2} \cap L^{1}$ and $\left\|e^{-t A} a\right\|_{2} \leq C t^{-3 / 4}\|a\|_{1}$ (cf. [3]).
2. Proof of Lemmas 1.1, 1.2. To begin with we give the estimate (cf. [2, Theorem 3.6] or [12, 18] for a similar consideration)

$$
\begin{align*}
\|D u\|_{p} \leq C \sup \{|(D u, D v)| & \left.; v \in C_{\sigma}^{\infty},\|D v\|_{p^{\prime}}=1\right\} \tag{2.1}\\
& \text { for } 1<p<n, u \in \widehat{W}_{\sigma}^{1, p},
\end{align*}
$$

and the Sobolev inequality (cf. [13])

$$
\begin{align*}
& \|u\|_{3 p /(3-p)} \leq 2 p(3-p)^{-1} 3^{-1 / 2}\|D u\|_{p} \tag{2.2}\\
& \quad \text { for } 1<p<n, u \in \widehat{W}_{\sigma}^{1, p} .
\end{align*}
$$

Proof of Lemma 1.1. Let r and p be given in Lemma 1.1. We rewrite (0.1) in the abstract form $A w+P(w \cdot D) w=f, w \in \widehat{W}_{\sigma}^{1, r} \cap$ $\widehat{W}_{\sigma}^{1, p}$. Since the proof of $[5,(3.1)]$ implies that A can be extended as a bounded and invertible operator from $\widehat{W}_{\sigma}^{2, q}$ onto J^{q} with $1<$ $q<3 / 2$, we can set
$H: \widehat{W}_{\sigma}^{1, r} \cap \widehat{W}_{\sigma}^{1, p} \rightarrow \widehat{W}_{\sigma}^{2,3 p /(6-p)}$ such that $H w=A^{-1}(f-P(w \cdot D) w)$.
Let $w \in \widehat{W}_{\sigma}^{1, r} \cap \widehat{W}_{\sigma}^{1, p}, r<s<p$, and $v \in C_{\sigma}^{\infty}$ with $\|D v\|_{s^{\prime}}=1$. Integrating by parts and using the divergence condition $D \cdot w=0$, we have

$$
\begin{aligned}
(D H w, D v) & =(f, v)-((w \cdot D) w, v) \\
& =(f, v)+((w \cdot D) v, w) \\
& \leq(f, v)+\|w\|_{3}\|w\|_{3 s /(3-s)}\|D v\|_{s^{\prime}}
\end{aligned}
$$

that is, by (2.1)-(2.2),

$$
\|D H w\|_{s} \leq C\left(\|f\|_{-1, s}+\|D w\|_{s}\|D w\|_{3 / 2}\right)
$$

Similarly, for $w, w^{*} \in W_{\sigma}^{1, r} \cap W_{\sigma}^{1, p}$ we have

$$
\left\|D H w-D H w^{*}\right\|_{s} \leq C\left(\|D w\|_{3 / 2}+\left\|D w^{*}\right\|_{3 / 2}\right)\left\|D w-D w^{*}\right\|_{s}
$$

Consequently, the desired assertion follows immediately from the contraction mapping principle. The proof is complete.

In [23], Miyakawa and Sohr proved that (1.1) admits a weak solution in case w is the Finn's solution and $C_{0}<1 / 2$. However, as for our case, the argument of [23] does not work somewhere. Now we give our proof in a slightly different way. Similar to [23], we also study approximate solutions of (1.1) by applying a technique developed from [6].

Proof of Lemma 1.2. Let $k>1$. We set $J_{k}=k(k+A)^{-1}$ and $I_{k}=k(k+\bar{A})^{-1} E$, where E denotes the extension operator such that $E u=u$ in G and $E u=0$ outside G. With the use of the notation above, we have

$$
\begin{align*}
\left\|J_{k} u\right\|_{p} \leq C(k)\|u\|_{r}, \quad\left\|I_{k} u\right\|_{p} \leq & C(k)\|u\|_{r} \tag{2.3}\\
& \text { for } 1<r<p \leq \infty, u \in J^{r}
\end{align*}
$$

(2.4) $\left\|I_{k} u\right\|_{r} \leq\|u\|_{r}, \quad\left\|J_{k} u\right\|_{r} \leq C\|u\|_{r} \quad$ for $1<r<\infty, u \in J^{r}$, where C is independent of $k .(2.3)$ is a consequence of the Sobolev embedding theorem and L^{r}-estimates. The first inequality in (2.4) follows from the proof of [1, Lemma 10.1], and the second one from [2, Theorem 1.2].

Now we proceed to the evolution equation

$$
\begin{equation*}
(d / d t) u_{k}+A u_{k}=F_{k}\left(u_{k}\right), \quad u_{k}(0)=J_{k} a \quad \text { in } J^{2} \tag{2.5}
\end{equation*}
$$

where $F_{k}(u)=F_{k}(u, u)$ with

$$
F_{k}(u, v)=-P\left(J_{k} u \cdot D\right) v-P\left(J_{k} w \cdot D\right) u-P\left(I_{k} u \cdot D\right) I_{k} w
$$

For $u, v \in W_{\sigma}^{1,2}$, we have

$$
\begin{align*}
& \left\|F_{k}(u, v)\right\|_{2}+\left\|P\left(J_{k} v \cdot D\right) u\right\|_{2} \tag{2.6}\\
& \quad \leq\left\|J_{k} u\right\|_{\infty}\|D v\|_{2}+\left\|J_{k} w\right\|_{\infty}\|D u\|_{2} \\
& \quad+\left\|I_{k} u\right\|_{6}\left\|D I_{k} w\right\|_{3}+\left\|J_{k} v\right\|_{\infty}\|D u\|_{2} \\
& \leq \\
& \quad C(k)\left(\|u\|_{6}\|D v\|_{2}+\|w\|_{3}\|D u\|_{2}\right. \\
& \left.\quad \quad+\|u\|_{6}\left\|I_{k} D E w\right\|_{3}+\|v\|_{6}\|D u\|_{2}\right), \quad \text { by }(2.3), \\
& \quad \leq \\
& \quad C(k)\|D u\|_{2}\left(\|D v\|_{2}+\|D w\|_{3 / 2}\right), \quad \text { by }(2.2)
\end{align*}
$$

On the other hand, given k and $T>0$, we suppose that u_{k} solve (2.5) over $[0, T)$, and $u_{k} \in L^{2}\left(0, T ; W_{\sigma}^{1,2} \cap W^{2,2}\right) \cap W^{1,2}\left(0, T ; J^{2}\right)$. Then multiplying (2.5) by $2 u_{k}$ and $2 A u_{k}$, respectively, we have

$$
\begin{aligned}
(d / d t)\left\|u_{k}\right\|_{2}^{2}+2\left\|D u_{k}\right\|_{2}^{2} & =2\left(F_{k}\left(u_{k}\right), u_{k}\right) \\
(d / d t)\left\|D u_{k}\right\|_{2}^{2}+2\left\|A u_{k}\right\|_{2}^{2} & =2\left(F_{k}\left(u_{k}\right), A u_{k}\right)
\end{aligned}
$$

The estimation of the right-hand side terms of the preceding identities can be achieved as follows.

$$
\begin{aligned}
& 2\left(F_{k}\left(u_{k}\right), u_{k}\right)=2\left(\left(I_{k} u_{k} \cdot D\right) u_{k}, I_{k} w\right), \\
& \quad \text { since } D \cdot J_{k} u_{k}=D \cdot J_{k} w=D \cdot I_{k} u=0 \\
& \leq 2\left\|I_{k} u_{k}\right\|_{6}\left\|D u_{k}\right\|_{2}\left\|I_{k} w\right\|_{3} \\
& \leq \\
& \leq\left(12 / 3^{-1 / 2}\right)\|w\|_{3}\left\|D u_{k}\right\|_{2}^{2}, \quad \text { by }(2.4) \text { and }(2.2), \\
& \leq 8\|D w\|_{3 / 2}\left\|D u_{k}\right\|_{2}^{2}, \quad \text { by }(2.2), \\
& \leq\left\|D u_{k}\right\|_{2}^{2}, \quad \text { by setting }\|D w\|_{3 / 2}<1 / 8, \\
& 2\left(F_{k}\left(u_{k}\right), A u_{k}\right) \quad \\
& \leq 2\left\|A u_{k}\right\|_{2}\left(\left\|J_{k} u_{k}\right\|_{\infty}\left\|D u_{k}\right\|_{2}+\left\|J_{k} w\right\|_{\infty}\left\|D u_{k}\right\|_{2}\right. \\
& \left.\quad+\left\|I_{k} u\right\|_{\infty}\left\|I_{k} D E w\right\|_{2}\right) \\
& \leq C(k)\left\|A u_{k}\right\|_{2}\left\|D u_{k}\right\|_{2}\left(\left\|u_{k}\right\|_{2}+\|D w\|_{3 / 2}+\|D E w\|_{3 / 2}\right) \\
& \quad \text { by }(2.3) \text { and }(2.2), \\
& \leq C(k)\left\|A u_{k}\right\|_{2}\left\|D u_{k}\right\|_{2}\left(\left\|u_{k}\right\|_{2}+\|D w\|_{3 / 2}\right) \\
& \leq 2\left\|A u_{k}\right\|_{2}^{2}+C(k)\left\|D u_{k}\right\|_{2}^{2}\left(\left\|u_{k}\right\|_{2}^{2}+\|D w\|_{3 / 2}^{2}\right) .
\end{aligned}
$$

Consequently, we have
(2.7) $\left\|u_{k}(t)\right\|_{2}^{2}+\int_{s}^{t}\left\|D u_{k}(z)\right\|_{2}^{2} d z \leq\left\|u_{k}(s)\right\|_{2}^{2}, \quad 0 \leq s<t<T$,
(2.8) $\left\|D u_{k}(t)\right\|_{2}^{2}$

$$
\begin{aligned}
& \leq\left\|D J_{k} a\right\|_{2}^{2}+C(k) \int_{0}^{t}\left\|D u_{k}(s)\right\|_{2}^{2}\left(\left\|u_{k}(s)\right\|_{2}^{2}+\|D w\|_{3 / 2}^{2}\right) d s \\
& \leq\left\|D J_{k} a\right\|_{2}^{2}+C(k)\left\|J_{k} a\right\|_{2}^{2}\left(\left\|J_{k} a\right\|_{2}^{2}+\|D w\|_{3 / 2}^{2}\right), \quad \text { by }(2.7)
\end{aligned}
$$

Thus, following the same way as in the proof of [23, Proposition 3.4] by making use of (2.6)-(2.8), we conclude that (2.5) admits a unique global solution u_{k} satisfying (2.6), and $u_{k} \in L^{2}\left(0, T ; W_{\sigma}^{1,2} \cap W^{2,2}\right) \cap$ $W^{1,2}\left(0, T ; J^{2}\right)$ for all $T>0$.

To obtain a weak solution of (1.1), we need to study compactness of the sequence u_{k}. Let $v \in W_{\sigma}^{1,2}$. Applying (2.2) and (2.4) repeatedly, we have, from (2.5),

$$
\begin{aligned}
& \left((d / d t) u_{k}, v\right) \\
& \quad \leq\left\|D u_{k}\right\|_{2}\|D v\|_{2}+\left\|J_{k} u_{k}\right\|_{3}\left\|D u_{k}\right\|_{2}\|v\|_{6}+\left\|J_{k} w\right\|_{3}\left\|D u_{k}\right\|_{2}\|v\|_{6} \\
& \quad+\left\|I_{k} u_{k}\right\|_{6}\left\|D I_{k} w\right\|_{3 / 2}\|v\|_{6} \\
& \leq\left\|D u_{k}\right\|_{2}\|D v\|_{2}+C\|v\|_{6}\left(\left\|u_{k}\right\|_{3}\left\|D u_{k}\right\|_{2}+\|w\|_{3}\left\|D u_{k}\right\|_{2}\right. \\
& \left.+\left\|u_{k}\right\|_{6}\|D E w\|_{3 / 2}\right) \\
& \leq C\|D v\|_{2}\left(\left\|D u_{k}\right\|_{2}+\left\|u_{k}\right\|_{2}^{1 / 2}\left\|D u_{k}\right\|_{2}^{3 / 2}+\left\|D u_{k}\right\|_{2}\|D w\|_{3 / 2}\right) \\
& \leq C\|D v\|_{2}\left(1+\|a\|_{2}^{1 / 2}+\|D w\|_{3 / 2}\right)\left(\left\|D u_{k}\right\|_{2}+\left\|D u_{k}\right\|_{2}^{3 / 2}\right) \\
& \text { by }(2.7) \text { and }(2.4),
\end{aligned}
$$

with C independent of k. This together with (2.7) implies that the sequence u_{k} is bounded in

$$
L^{\infty}\left(0, \infty ; J^{2}\right) \cap L^{2}\left(0, \infty ; \widehat{W}_{\sigma}^{1,2}\right) \cap W^{1,4 / 3}\left(0, T ; W^{-1,2}\right)
$$

for all $0<T<\infty$. From [26, Theorem 2.1 in Chapter III] it follows readily that there are a function u and a subsequence of u_{k}, denoted again u_{k}, satisfying

$$
\begin{aligned}
& u_{k} \xrightarrow{\mathrm{w}^{*}} u \text { in } L^{\infty}\left(0, \infty ; J^{2}\right), \\
& u_{k} \xrightarrow{\mathrm{w}} u \text { in } L^{2}\left(0, \infty ; \widehat{W}_{\sigma}^{1,2}\right), \\
& u_{k} \rightarrow u \text { strongly in } L_{\text {loc }}^{2}(G \times(0, \infty)) .
\end{aligned}
$$

As in [21], we can check that the limit u is a weak solution of (1.1). The proof is complete.
3. Decay estimates. In this section, we let $t>0,1<r<3 / 2<$ $p<2$, and w be a solution of (0.1) such that $w \in \widehat{W}_{\sigma}^{1, r} \cap \widehat{W}_{\sigma}^{1, p}$, and set

$$
\begin{aligned}
L u & =A u+P(u \cdot D) w+P(w \cdot D) u \\
B^{*} u & =-p(w \cdot D) u+P \sum_{i=1}^{n} u^{i} D w^{i} \\
L^{*} u & =A u+B^{*} u
\end{aligned}
$$

Thus, we see that

$$
(L u, v)=\left(u, L^{*} v\right) \quad \text { for } u, v \in W_{\sigma}^{1,2} \cap W^{2,2}
$$

and the linearized equation of (1.1) can be stated in the form

$$
(d / d t) v+L v=0, \quad v(0)=u
$$

Denote by $e^{-t L} u$ the solution of the preceding equation. It is the purpose of this section to prove the following.

Proposition 3.1. Suppose that $\|D w\|_{r}+\|D w\|_{p}$ is sufficiently small. Then there holds

$$
\begin{equation*}
\left\|e^{-t L} P u\right\|_{2} \leq C t^{-3 / 4}\|u\|_{1} \tag{3.1}
\end{equation*}
$$

for $u \in L^{1} \cap L^{6 / 5}$.
The preceding proposition is based on the following decay estimates.
(3.2) $\left\|e^{-t A} u\right\|_{\infty} \leq C t^{-1 / 4}\|u\|_{6}$ for $u \in J^{6}$,
(3.3) $\left\|e^{-t A} u\right\|_{s} \leq C t^{-(3 / q-3 / s) / 2}\|u\|_{q}$ for $1<q \leq s<\infty, u \in J^{q}$,
(3.4) $\left\|D e^{-t A} u\right\|_{s} \leq C t^{-(1+3 / q-3 / s) / 2}\|u\|_{q} \quad$ for $1<q \leq s \leq 3, u \in J^{q}$.

The estimates (3.3) and (3.4) were recently obtained by Iwashita (cf. [17, Theorems 1.2, 1.3]). (3.2) will be proved in the Appendix by using the argument of [17].

With the use of (3.2)-(3.4), we can now prove the following.
Lemma 3.1. Let $u \in C_{\sigma}^{\infty}$. Then there hold

$$
\begin{equation*}
\left\|e^{-t A} u\right\|_{\infty} \leq C t^{-3 / 4}\|u\|_{2}, \tag{3.5}
\end{equation*}
$$

(3.6) $\left\|e^{-t A} B^{*} u\right\|_{\infty}+\left\|D e^{-t A} B^{*} u\right\|_{3}$

$$
\leq C t^{-3 / 2 p}(t+1)^{-(3 / r-3 / p) / 2}\left(\|u\|_{\infty}+\|D u\|_{3}\right)\left(\|D w\|_{r}+\|D w\|_{p}\right) .
$$

Proof. From (3.2), (3.3), (2.2) and the semigroup property of $e^{-t A}$ we get (3.5) and

$$
\begin{aligned}
\left\|e^{-t A} B^{*} u\right\|_{\infty} & \leq C t^{-3 / 2 b}\left\|B^{*} u\right\|_{b} \\
& \leq C t^{-3 / 2 b}\|D w\|_{b}\left(\|u\|_{\infty}+\|D u\|_{3}\right)
\end{aligned}
$$

for $b=r, p$. Moreover (3.4) and (2.2) yield

$$
\left\|D e^{-t A} B^{*} u\right\|_{3} \leq C t^{-3 / 2 b}\|D w\|_{b}\left(\|u\|_{\infty}+\|D u\|_{3}\right) \quad \text { for } b=r, p .
$$

Collecting terms, we get readily (3.6) and complete the proof.
Proof of Proposition 3.1. Setting $v(t)=e^{-t L^{*}} u$ with $u \in C_{\sigma}^{\infty}$, we have obviously that $v \in C\left([0, \infty) ; L^{\infty} \cap W_{\sigma}^{1,3}\right)$ and

$$
v(t)=e^{-t A} u+\int_{0}^{t} e^{-(t-s) A} B^{*} v(s) d s .
$$

This gives, by (3.4)-(3.6),

$$
\begin{aligned}
& \|v(t)\|_{\infty}+\|D v(t)\|_{3} \\
& \leq \\
& \quad C t^{-3 / 4}\|u\|_{2}+C \int_{0}^{t}(t-s)^{-3 / 2 p}(t-s+1)^{-(3 / r-3 / p) / 2} \\
& \quad \times\left(\|v\|_{\infty}+\|D v\|_{3}\right) d s\left(\|D w\|_{r}+\|D w\|_{p}\right) .
\end{aligned}
$$

Setting $\mid\|v\| \|_{t}=\sup _{0<s<t} s^{3 / 4}\left(\|v(s)\|_{\infty}+\|D v(s)\|_{3}\right)$, we have

$$
\begin{aligned}
\|v(t)\|_{\infty} & +\|D v(t)\|_{3} \\
\leq & C t^{-3 / 4}\|u\|_{2}+C\left(\|D w\|_{r}+\|D w\|_{p}\right)\|v\|_{t} \\
& \times \int_{0}^{t}(t-s)^{-3 / 2 p}(t-s+1)^{-(3 / r-3 / p) / 2} s^{-3 / 4} d s \\
\leq & C t^{-3 / 4}\|u\|_{2}+C t^{-3 / 4}\left(\|D w\|_{r}+\|D w\|_{p}\right)\|v\|_{t} \\
& \times \int_{0}^{t} s^{-3 / 2 p}(s+1)^{-(3 / r-3 / p) / 2} d s \\
& +C t^{1 / 4-3 / 2 p}(t+1)^{-(3 / r-3 / p) / 2}\left(\|D w\|_{r}+\|D w\|_{p}\right)\|v\|_{t} \\
\leq & C t^{-3 / 4}\left(\|u\|_{2}+\left(\|D w\|_{r}+\|D w\|_{p}\right)\|v\|_{t}\right),
\end{aligned}
$$

where we have used the condition $r<3 / 2<p$. Hence, if we presuppose that

$$
\begin{equation*}
C\left(\|D w\|_{r}+\|D w\|_{p}\right)<1 / 2 \tag{3.7}
\end{equation*}
$$

with the constant C given in the last term above, we obtain

$$
\begin{equation*}
\left\|e^{-t L^{*}} u\right\|_{\infty} \leq C t^{-3 / 4}\|u\|_{2} . \tag{3.8}
\end{equation*}
$$

Now we take $u \in L^{1} \cap L^{6 / 5}$ and $v \in L^{2}$. By (3.8) we have

$$
\left(e^{-t L} P u, v\right)=\left(u, e^{-t L^{*}} P v\right) \leq\|u\|_{1}\left\|e^{-t L^{*}} P v\right\|_{\infty} \leq C t^{-3 / 4}\|u\|_{1}\|v\|_{2}
$$

and therefore the validity of (3.1). The proof is complete.
4. Proof of Theorem 1.1. In this section we always suppose that the stationary solution $w \in \widehat{W}_{\sigma}^{1, r} \cap \widehat{W}_{\sigma}^{1, p}$ with $1<r<3 / 2<p<2$ such that (3.7) holds. Let u be a weak solution of (1.1). Then (1.2) implies

$$
\begin{equation*}
\|u(t)\|_{2} \leq t^{-1} \int_{0}^{t}\|u(s)\|_{2} d s \tag{4.1}
\end{equation*}
$$

On the other hand, taking $v \in C_{\sigma}^{\infty}$ and applying (1.3) with $g(z)=$ $e^{-(t-z) L^{*}} v$, we have

$$
\begin{aligned}
(u(t) & , v)+\int_{0}^{t}\left(L u(s), e^{-(t-s) L^{*}} v\right) d s-\int_{0}^{t}\left(u(s), L^{*} e^{-(t-s) L^{*}} v\right) d s \\
& =\left(a, e^{-t L^{*}} v\right)-\int_{0}^{t}\left((u \cdot D) u, e^{-(t-s) L^{*}} v\right) d s
\end{aligned}
$$

that is,

$$
\begin{aligned}
(u(t), v) & =\left(e^{-t L} a, v\right)-\int_{0}^{t}\left(e^{-(t-s) L} P(u \cdot D) u(s), v\right) d s \\
& \leq\left\|e^{-t L} a\right\|_{2}\|v\|_{2}+\int_{0}^{t}\left\|e^{-(t-s) L} P(u \cdot D) u(s)\right\|_{2} d s\|v\|_{2} \\
& \leq C\|v\|_{2}\left(t^{-3 / 4}\|a\|_{1}+\int_{0}^{t}(t-s)^{-3 / 4}\|u(s)\|_{2}\|D u(s)\|_{2} d s\right)
\end{aligned}
$$

where we have used (3.1). We then get

$$
\|u(s)\|_{2} \leq C s^{-3 / 4}\|a\|_{1}+C \int_{0}^{s}(s-z)^{-3 / 4}\|u(z)\|_{2}\|D u(z)\|_{2} d z
$$

Integrating the above inequality from 0 to t, we have

$$
\begin{aligned}
\int_{0}^{t}\|u(s)\|_{2} d s & \leq C t^{1 / 4}\|a\|_{1}+C \int_{0}^{t} d z \int_{z}^{t}(s-z)^{-3 / 4}\|u(z)\|_{2}\|D u(z)\|_{2} d s \\
& \leq C t^{1 / 4}\|a\|_{1}+C t^{1 / 4} \int_{0}^{t}\|u(s)\|_{2}\|D u(s)\|_{2} d s \\
& \leq C t^{1 / 4}\|a\|_{1}+C t^{1 / 4}\|a\|_{2}\left(\int_{0}^{t}\|u(s)\|_{2}^{2} d s\right)^{1 / 2}, \quad \text { by }(1.2)
\end{aligned}
$$

Combining this with (4.1), we have

$$
\|u(t)\|_{2} \leq C t^{-3 / 4}\|a\|_{1}+C t^{-3 / 4}\|a\|_{2}\left(\int_{0}^{t}\|u(s)\|_{2}^{2} d s\right)^{1 / 2},
$$

that is,

$$
\begin{equation*}
\|u(t)\|_{2} \leq C_{1} t^{-3 / 4}\left(1+\left(\int_{0}^{t}\|u(s)\|_{2}^{2} d s\right)^{1 / 2}\right) \tag{4.2}
\end{equation*}
$$

where and in what follows $C_{1}=C_{1}\left(\|a\|_{1},\|a\|_{2}\right)$ may vary from line to line.

Now we apply (4.2) and (1.2) to complete our proof via a boot strap iteration argument.

Note that

$$
\begin{equation*}
\|u(t)\|_{2} \leq C_{1}, \quad \text { by }(1.2) \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\|u(t)\|_{2} \leq C_{1} t^{-3 / 4}\left(1+t^{1 / 2}\right), \quad \text { by }(4.2) \text { and }(4.3) \tag{4.4}
\end{equation*}
$$

Combining (4.4) with (4.3), we have

$$
\begin{equation*}
\|u(t)\|_{2} \leq C_{1} t^{-1 / 4} \tag{4.5}
\end{equation*}
$$

Moreover, taking (4.2) and (4.5) into account, we have

$$
\|u(t)\|_{2} \leq C_{1} t^{-3 / 4}\left(1+t^{1 / 4}\right)
$$

This together with (4.3) implies

$$
\begin{equation*}
\|u(t)\|_{2} \leq C_{1}(t+1)^{-1 / 2} \tag{4.6}
\end{equation*}
$$

Similarly, (4.2) and (4.6) yield

$$
\|u(t)\|_{2} \leq C_{1} t^{-3 / 4}(1+\ln (t+1))
$$

and so, by (4.3),

$$
\begin{equation*}
\|u(t)\|_{2} \leq C_{1}(t+1)^{-2 / 3} \tag{4.7}
\end{equation*}
$$

Finally, by (4.2) and (4.7), we arrive at the desired estimate

$$
\|u(t)\|_{2} \leq C_{1} t^{-3 / 4}
$$

and complete the proof.
REMARK 4.1. It should be noted that the validity of the assumption of Lemma 1.2 follows from the inequality $\|D w\|_{3 / 2} \leq\|D w\|_{r}+\|D w\|_{p}$ and (2.7).

Appendix: Proof of (3.2). Let Q be a domain of R^{3}. By $\|\cdot\|_{k, p, Q}$ and $\|\cdot\|_{p, Q}$ we denote respectively the norms of the Sobolev space $W^{k, p}\left(Q ; R^{3}\right)$ and the Lebesgue space $L^{p}\left(Q ; R^{3}\right)$. Of course, $\|\cdot\|_{k, p}$ $=\|\cdot\|_{k, p, G}$ and $\|\cdot\|_{p}=\|\cdot\|_{p, G} \cdot \bar{P}$ is the bounded projection from $L^{p}\left(R^{3} ; R^{3}\right)$ onto $J^{p}\left(R^{3} ; R^{3}\right)$, where $J^{p}\left(R^{3} ; R^{3}\right)$ denotes the completion of the set of compactly supported solenoidal in $C^{\infty}\left(R^{3} ; R^{3}\right)$. Let h be a constant such that $|x|<h-1$ for $x \in \partial G$, and let $g \in C^{\infty}\left(R^{3} ; R\right)$ be a fixed function such that $g=1$ for $|x|>h$ and $g=0$ for $|x|<h-1$. Moreover we set $G_{h}=\{x \in G ;|x|<h\}$.

In arriving at (3.2), we need the following lemmas.
Lemma A.1. Let $1<p \leq q<\infty, t>0, v \in L^{p}\left(R^{3} ; R^{3}\right) \cap$ $L^{q}\left(R^{3} ; R^{3}\right), n>1$, and $u \in J^{6}$. Then we have
(A.1) $\left\|e^{-t \bar{A}} v\right\|_{\infty, R^{3}} \leq C t^{-3 / 2 q}(t+1)^{-(3 / p-3 / q) / 2}\left(\|v\|_{p, R^{3}}+\|v\|_{q, R^{3}}\right)$,

$$
\begin{equation*}
\left\|e^{-t A} u\right\|_{2 n, 6} \leq C\left(t^{-n}+1\right)\|u\|_{6} \tag{A.3}
\end{equation*}
$$

(A.1) is deduced immediately by an elementary calculation. (A.2) is a consequence of L^{p}-estimates (cf. [25]) and the Sobolev embedding theorem. One can also refer to [17] for details.

Lemma A. 2 ([17, Lemmas 5.3, 5.4] and (A.2)). Let $t>0, v \in J^{6}$, and P^{*} be a certain pressure such that $p^{*}=A e^{-(t+1) A} v+\Delta e^{-(t+1) A} v$. Then

$$
\left\|e^{-(t+1) A} v\right\|_{2,6, G_{h}}+\left\|A e^{-(t+1) A} v\right\|_{2,6, G_{h}}+\left\|p^{*}(t)\right\|_{3,6, G_{h}} \leq C t^{-1 / 4}\|v\|_{6} .
$$

Lemma A. 3 ([17, (5.18)] and (A.2)). Let $v \in J^{6}$, and $t>0$. Then there is a function v^{*} such that

$$
\begin{gathered}
D \cdot v^{*}=D \cdot\left(g e^{-(t+1) A} v\right) \\
\operatorname{supp} v^{*}(t) \subset\left\{x \in R^{3} ; h-1<|x|<h\right\} \\
\left\|v^{*}(t)\right\|_{2,6}+\left\|(\partial / \partial t) v^{*}(t)\right\|_{6} \leq C(t+1)^{-1 / 4}\|v\|_{6}
\end{gathered}
$$

Lemma A.4. Let $t>0, v$ and v^{*} be given in Lemma A.3. Then we have

$$
\left\|g e^{-(t+1) A} v-v^{*}(t)\right\|_{\infty} \leq C(t+1)^{-1 / 4}\|v\|_{6} .
$$

Proof. Set $u(t)=g e^{-(t+1) A} v-v^{*}(t), u_{0}=u(0)$, and

$$
\begin{aligned}
F(t)= & p^{*}(t) D g-2(D g \cdot D) e^{-(t+1) A} v-(\Delta g) e^{-(t+1) A} v \\
& +\Delta v^{*}(t)-(\partial / \partial t) v^{*}(t)
\end{aligned}
$$

where p^{*} is given in Lemma A.2. By Lemmas A.2, A. 3 we have that the support of $F(t)$ is contained in $\left\{x \in R^{3} ; h-1<|x|<h\right\}$, and

$$
\begin{gather*}
(t+1)^{1 / 4}\|F(t)\|_{6}+\left\|u_{0}\right\|_{1,6} \leq C\|v\|_{6} \tag{A.3}\\
u_{t}-\Delta u+D\left(g p^{*}\right)=F, \quad D \cdot u=0 \text { in } R^{3} \times(0, \infty) .
\end{gather*}
$$

We thus rewrite u in the integral form

$$
\begin{equation*}
u(t)=e^{-t \bar{A}} u_{0}+\int_{0}^{t} e^{-(t-s) \bar{A} \bar{P} \bar{P}(s) d s} \tag{A.4}
\end{equation*}
$$

From (A.1), (A.3), and Sobolev's embedding theorem it follows that

$$
\left\|e^{-t \bar{A}} u_{0}\right\|_{\infty, R^{3}} \leq C(t+1)^{-1 / 4}\left(\left\|u_{0}\right\|_{\infty}+\left\|u_{0}\right\|_{6}\right) \leq C t^{-1 / 4}\|v\|_{6},
$$

and

$$
\begin{aligned}
& \left\|\int_{0}^{t} e^{-(t-s) \bar{A}} \bar{P} F(s) d s\right\|_{\infty, R^{3}} \\
& \quad \leq C \int_{0}^{t}(t-s)^{-1 / 2}(t-s+1)^{-3 / 4}\left(\|F(s)\|_{3, G_{h}}+\|F(s)\|_{6 / 5, G_{h}}\right) d s \\
& \quad \leq C \int_{0}^{t}(t-s)^{-1 / 2}(t-s+1)^{-3 / 4}\|F(s)\|_{6} d s \\
& \quad \leq C\|v\|_{6} \int_{0}^{t}(t-s)^{-1 / 2}(t-s+1)^{-3 / 4}(s+1)^{-1 / 4} d s \\
& \quad \leq C(t+1)^{-1 / 4}\|v\|_{6}
\end{aligned}
$$

Taking (A.4) into account, we have the desired estimate and complete the proof.

Proof of (3.2). Let $v \in J^{6}$. By Lemmas A.1, A.2, A.3, Sobolev inequality, and Gagliardo-Nirenberg inequality (cf. [10]), we have

$$
\begin{aligned}
\left\|e^{-(t+1) A} v\right\|_{\infty} \leq & \left\|g e^{-(t+1) A} v\right\|_{\infty}+\left\|e^{-(t+1) A} v\right\|_{\infty, G_{h}} \\
\leq & \left\|g e^{-(t+1) A} v-v^{*}(t)\right\|_{\infty}+C\left\|v^{*}(t)\right\|_{1,6} \\
& +C\left\|e^{-(t+1) A} v\right\|_{1,6, G_{h}} \\
\leq & C(t+1)^{-1 / 4}\|v\|_{6} \text { for } t>0 \\
\left\|e^{-t A} v\right\|_{\infty} \leq & C\left\|e^{-t A} v\right\|_{6}^{3 / 4}\left\|e^{-t A} v\right\|_{2,6}^{1 / 4} \\
\leq & C\left(t^{-1}+1\right)^{1 / 4}\|v\|_{6} \leq C t^{-1 / 4}\|v\|_{6}
\end{aligned}
$$

for $1>t>0$. The proof is complete.
The author would like to thank T. Miyakawa for sending [2, 3, 4]. He would also like to thank the referee for his valuable suggestions.

References

[1] H. Amann, Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math., 45 (1983), 225-254.
[2] W. Borchers and T. Miyakawa, Algebraic L^{2} decay for Navier-Stokes flows in exterior domains, Acta Math., 165 (1990), 189-227.
[3] __, Algebraic L^{2} decay for Navier-Stokes flows in exterior domains II, Hiroshima Math. J., to appear.
[4] ——, L^{2} decay for Navier-Stokes flows in unbounded domains, with application to exterior stationary flows, Arch. Rational Mech. Anal., 118 (1992), 273-295.
[5] W. Borchers and H. Sohr, On the semigroup of the Stokes operator for exterior domains in L^{q}-spaces, Math. Z., 196 (1987), 415-425.
[6] L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831.
[7] Z.-M. Chen, L^{n} solutions of the stationary and nonstationary Navier-Stokes equations in R^{n}, Pacific J. Math., to appear.
[8] R. Finn, On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems, Arch. Rational Mech. Anal., 19 (1965), 363-406.
[9] _, Mathematical questions relating to viscous fluid flow in an exterior domain, Rocky Mountain J. Math., 3 (1973), 107-140.
[10] A. Friedman, Partial Differential Equations, Academic Press, New York, 1969.
[11] G. P. Galdi and S. Rionero, Weighted Energy Methods in Fluid Dynamics and Elasticity, Lecture Notes in Math., 1134, Springer-Verlag, Berlin-HeidelbergNew York, 1985.
[12] G. Galdi and C. G. Simader, Existence, uniqueness and L^{q}-estimates for the Stokes problem in an exterior domain, Arch. Rational Mech. Anal., 112 (1990), 291-318.
[13] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-Heidelberg-New York, 1983.
[14] J. G. Heywood, On stationary solutions of the Navier-Stokes equations as limits of nonstationary solutions, Arch. Rational Mech. Anal., 37 (1970), 48-60.
[15] _, The exterior nonstationary problem for the Navier-Stokes equations, Acta Math., 129 (1972), 11-34.
[16] _- The Navier-Stokes equations: on the existence, regularity and decay of solutions, Indiana Univ. Math. J., 29 (1980), 639-681.
[17] H. Iwashita, $L_{q}-L_{r}$ estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problem in L_{q} spaces, Math. Ann., 285 (1989), 265-288.
[18] H. Kozono and H. Sohr, New a priori estimates for the Stokes equations in exterior domains, Indiana Univ. Math. J., 40 (1991), 1-27.
[19] J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.
[20] K. Masuda, On the stability of incompressible viscous fluid motions past objects, J. Math. Soc. Japan, 27 (1975), 294-327.
[21] _, Weak solutions of the Navier-Stokes equations in an exterior domain, Tohoku Math. J., 36 (1984), 623-646.
[22] T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an exterior domain, Hiroshima Math. J., 12 (1982), 115-140.
[23] T. Miyakawa and H. Sohr, On energy inequality, smoothness and large time behavior in L^{2} for weak solutions of the Navier-Stokes equations in exterior domains, Math. Z., 199 (1988), 455-478.
[24] M. E. Schonbek, L^{2} decay for weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 88 (1985), 209-222.
[25] V. A. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equations, J. Soviet Math., 8 (1977), 467-529.
[26] R. Teman, Navier-Stokes Equations, North-Holland, Amsterdam, 1984.
Received October 7, 1991 and in revised form March 13, 1992.

Tianjin University

Tianjin 300072
People's Republic of China

