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SOLUTIONS OF THE STATIONARY
AND NONSTATIONARY

NAVIER-STOKES EQUATIONS IN EXTERIOR DOMAINS

ZHI-MIN CHEN

It is shown that a nonstationary exterior Navier-Stokes flow tends
to a small stationary flow in L2 like Γ3/4 as t —> oo .

0. Introduction. In this paper we are concerned with the stationary
Navier-Stokes equations

(0.1) (w -D)w -Aw +Dp = / , D w = 0 i n G ,

w=0 ondG (D = grad),

and the nonstationary Navier-Stokes equations

vt + (υ D)v -Aυ+Dp = f in G x (0, oo),

D υ = 0 in Gx (0, oo),

v =0 ondGx (0, oo),

v\t=Q = a + w inG (vt — dv/dt).

Here and in what follows G denotes a smooth exterior domain of
i?3 , / = f(x) is a prescribed vector field, and p (resp. /?) represents
unknown stationary (resp. nonstationary) scalar pressure which can
be determined by the stationary solution w via (0.1) (resp. nonsta-
tionary solution υ via (0.2)).

As is well known, it was shown by Finn [8, 9] that (0.1) admits a
small solution

(0.3) weL°°(G; R3), DweL3(G; R9),

CQ = sup \x\ \w(x)\ < oo.
xeG

If CQ < 1/2 the Finn's solution w may be formed as a limit of
a nonstationary solution v as t —• oo in local or global L2-norms
(cf. Heywood [15, 14], Galdi and Rionero [11], Miyakawa and Sohr
[23]) and in other norms (cf. Heywood [16], Masuda [20]). More-
over it has recently proved (cf. Borchers and Miyakawa [4]) that ev-
ery weak solution of (0.2) tends the Finn's solution in L 2(G; R3)
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like r(3/p-3/2)/2 w i t h 6/5 < p < 2, provided Co < 1/2 and a e

L2(G;R3)nIJ>(G;R3).
In this paper we are only interested in the case w e L3{G\ R3),

Dw e L3'2(G\ R9), or Dw e U(G\ R9) n Z/(G; i?9) with 1 < r <
3/2 < /? < 2. Under certain smallness assumptions on w we show
now that every weak solution of (0.2) tends to the stationary solution
w in L2(G; R3) like the sharp decay rate t~3/4 .

1. Notation and main result. In this paper we use the following
spaces.

LP = the Lebesgue spaces LP(G\ R3), with || \\p the associated

norm,

C%° = the set of compactly supported solenoidal in C°°(G R3),

Wk>p = the Sobolev space Wk>p{G\ R3),

Jp = the completion of Q ° in Lp ,

FT,1 '^ = the completion of C™ in ίF 1 ̂  ,

W* >p = the completion of C °̂ under the norm ||D | |p ,

W^p = the space {w e w^3p/(3'p) Z)2w G LP(G; R27)}

for 1 < p < 3,

H^" 1 ' 2 = the dual of H^ 1 ' 2 ,

ί Γ " 1 ^ = the dual of W^p/{p~l\ with || | |_1>;7 the associated norm.

Moreover for 1 < r < oo and n > 1, we denote by r; the real
r/(r-1) , by ( , •) the inner product in L2(G Rn), by P the bounded
projection from U onto / r (cf. [22]), by A the Stokes operators
—PA with the domain w£'r n W2>r\ by 4̂ the Laplacian - Δ with
the domain W2>r{R3 R3), and by C a positive constant which may
vary from line to line, but is always independent of the quantities t,
Γ, M, v , w, / , I**, and α.

Now we make preparations for stating our main result. The exis-
tence of the stationary solutions w is guaranteed by the following.

LEMMA 1.1. Let 1 < r < 3/2 < p < 2, and f e Q ° . Then there
is a small h > 0 such that (0.1) admits a unique solution within the
class ^

{weWσ

ι>rnWσ

ι>p;\\Dw\\V2<h},

provided that | | / | | _ l j 3 / 2 < h2. Moreover
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From (0.1) and (0.2) we see that u = v -w and p — p -p solve
the problem

(1.1) ut + (u - D)u -Au + (u D)w + (w D)u

D u = 0 in G x (0, oo),

u = 0 on<9(?x(0,oo),

u\t=0 = a in G.

Weak solutions are given in the following sense.

D E F I N I T I O N 1.1. Let a e J2, and w e H? σ

1 ? 3 / 2 solve (0.1). A
weakly continuous function u: [0, oo) —• J2 is said to be a weak
solution of (1.1) if κ(0) = α, w e L ° ° ( 0 , oo; / 2 ) n L 2 ( 0 , oo; W*>2)9

(1.2)

(1.3) («(0.^(0)+ ί\(Du,Dg) + ((u-D)w,g)
Js

+ {{w D)u,g)-{u,gz))dz

= (u(s),g(s))- ί\(u-D)u,g)dz
Js

for a U ί > ί > 0 and all g e C([0, oo); H^1'2) n ̂ ( [ 0 , oo); J2),
where ^ z = dg/dz.

The existence of weak solutions to (1.1) is guaranteed by the fol-
lowing.

LEMMA 1.2. L ^ a e J2, and w e W^i3/2 such that ||Dw||3/2 <
1/8. Then (1.1) admits a weak solution.

We are now in a position to state our main result.

THEOREM 1.1. Let 1 < r < 3/2 < p < 2, <z e J2 Π L 1 , and let

w e Wσ'r Π Wa'p such that w solves (0.1) and \\Dw\\r + ||/>w||/,
is sufficiently small Then every weak solution of (1.1) possesses the
sharp decay property

\\u{t)\\2 = O ( r 3 / 4 ) .

Section 2 is concerned with the proof of Lemmas 1.1 and 1.2. In
[23], it has been obtained an existence result on weak solutions of
(1.1) with w the Finn's solution such that Q < 1/2. However,
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the argument of [23] heavily depends on the property (0.3). In §3,
with the use of the approach developed from [7], we shall show sharp
decay estimates of solutions to the linearized equations of (1.1). If w
only satisfies (0.3) and Q < 1/2, such estimates seem unavailable.
Theorem 1.1 will be proved in §4 by making use of the estimates
carried out in §3 and studying the time average t~ι /J Hu^lh ds. A
similar technique has been used in [23, 4]. However, we have not used
the spectral decomposition of the Stokes operator A in L2 as usually
used in earlier work concerning the L2 decay problem. Moreover our
proof seems much simpler.

It should be noted that the L2 decay problem of (1.1) with w — 0
stems from Leray [19], and has affirmatively been solved (cf. [24, 3, 2]
and the references therein). If 1 < p < 2 and u is a weak solution of
(1.1) with w = 0, it has been proved that ||κ(0ll2 = O(r^p-^2^2)
provided u(0) eJ2Γ)D> (cf. [2]), and ||κ(ί)||2 = 0 ( r 3 / 4 ) provided
u(0)eJ2nLl and \\e'tAa\\2 < C r 3 / 4 | | α | | i (cf. [3]).

2. Proof of Lemmas 1.1, 1.2. To begin with we give the estimate
(cf. [2, Theorem 3.6] or [12, 18] for a similar consideration)

(2.1) \\Du\\p < Csup{|(Z)u, Dv)\\ v e C~, \\Dυ\\p, = 1}

for 1 <p<n,ueWσ

ι>p,

and the Sobolev inequality (cf. [13])

(2.2) |M|3p/(3-p) < 2p{3-p)-ι3-ι'2\\Du\\p

for 1 <p < n, ue W^p.

Proof of Lemma 1.1. Let r and p be given in Lemma 1.1. We
rewrite (0.1) in the abstract form Aw + P(w D)w = / , w e W^ ' r n
WffjP . Since the proof of [5, (3.1)] implies that A can be extended
as a bounded and invertible operator from W%'q onto Jq with 1 <
q < 3/2, we can set

H: W^rr\W^p -+ JVe'3p/{6~p) such that Hw = A~x{f-P(W'D)w).

Let w e Wa'r n Wa*p, r < s < p, and v e C%° with \\Dυ\\s' = 1,
Integrating by parts and using the divergence condition D w = 0, we
have

(DHw , Dv) = (/, υ) - ((w D)w , v)

= (f,v) + ((W'D)v, w)
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that is, by (2.1)-(2.2),

\\DHw\\s < Cdl/H-!,, + \\Dw\\s\\Dw\\3/2).

Similarly, for w , w* eW^r ΠW^P we have

\\DHw-DHw*\\s < C(\\Dw\\V2 + \\Dw*h,2)\\Dw - Dw*\\s.

Consequently, the desired assertion follows immediately from the con-
traction mapping principle. The proof is complete.

In [23], Miyakawa and Sohr proved that (1.1) admits a weak solu-
tion in case w is the Finn's solution and Co < 1/2. However, as for
our case, the argument of [23] does not work somewhere. Now we give
our proof in a slightly different way. Similar to [23], we also study ap-
proximate solutions of (1.1) by applying a technique developed from
[6].

Proof of Lemma 1.2. Let k > 1. We set Jk = k(k + A)~ι and
lk — k(k + A)~ιE, where E denotes the extension operator such that
Eu = u in G and Eu = 0 outside G. With the use of the notation
above, we have

(2.3) \\Jku\\p < C{k)\\u\\r , \\IkU\\p < C{k)\\u\\r

for 1 < r < p < oo, u e Jr,

(2.4) \\Iku\\r < \\u\\r , \\Jku\\r < C\\u\\r for 1 < Γ < OO , U € Γ ,

where C is independent of k. (2.3) is a consequence of the Sobolev
embedding theorem and 1/-estimates. The first inequality in (2.4)
follows from the proof of [1, Lemma 10.1], and the second one from
[2, Theorem 1.2].

Now we proceed to the evolution equation

(2.5) (d/dt)uk + Auk = Fk(uk), uk(0) = Jka i n / 2 ,

where Fk(u) = Fk(u, u) with

Fk{u, v) = -P(Jku • D)υ - P(Jkw • D)u - P{Iku • D)Ikw.

For u, υ G Wff '2, we have

(2.6) \\Fk(u,v)\\2 + \\P(Jkv-D)u\\2

\\Iku\\6\\DIkw\\3 + \\Jkυ\U\Du\

+ | |V| |6 | |X>M||2) , by (2.3),

< C(fe)||Z)«||2(||Z)ί;||2 + ||Z>u>||3/2), by (2.2).
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On the other hand, given k and T > 0, we suppose that uk solve
(2.5) over [0, Γ),and ukeL2(0, T; WJ'2nW2'2)nWι 2(0, T J2).
Then multiplying (2.5) by 2uk and 2Auk , respectively, we have

{dldt)\\uk\\l + 2\\Duk\\2

2 = 2(Fk(uk), uk),

(d/dt)\\Duk\\2

2 + 2\\Auk\\2

2 = 2(Fk(uk), Auk).

The estimation of the right-hand side terms of the preceding identities
can be achieved as follows.

2(Fk(uk), uk) = 2((Ikuk • D)uk, Ikw),

since D • Jkuk = D • Jkw = D • Iku = 0,

<2\\Ikuk\\6\\Duk\\2\\Ikwh

< {12/3-V2)\\w\\3\\Duk\\2

2, by (2.4) and (2.2),

<8||2>«;||3/ 2 | |Dκ*|β, by (2.2),

< \\Duk\\l, by setting \\Dwhp < 1/8,

2{Fk{uk), Auk)

fc||2(||Λ«itllooll^«ifcll2 + WhwWooWDukh

+ \\Iku\\O0\\IkDEw\\2)

< C(k)\\Auk\\2\\Duk\\2(\\uk\\2 + \\Dw\\3/2 -

by (2.3) and (2.2),

<C(k)\\Auk\\2\\Duk\\2(\\uk\\2 + \\Dw\\V2)

< 2\\Auk\\2 + C(k)\\Duk\\2(\\uk\\2 + \\Dw\\2

/2).

Consequently, we have

(2.7) ||wjfc(0ll2-h / \\Dujc(z)\\2dz < ||w^(5)||2, 0 < s < t < T,

(2.8) \\Duk{t)\\\

< \\DJka\\l + C(k) f \\Duk(s)\\2

2(\\uk(s)\\2

2 + \\Dw\\2

/2) ds

< \\DJka\\2 + C(k)\\Jka\\2

2(\\Jka\\2 + \\Dw\\2

/2), by (2.7)

Thus, following the same way as in the proof of [23, Proposition 3.4]
by making use of (2.6)-(2.8), we conclude that (2.5) admits a unique
global solution uk satisfying (2.6), and uk e L 2 ( 0 , T; W<}'2nW2'2)Γ)
Wι>2(0, T J2) for all Γ > 0 .
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To obtain a weak solution of (1.1), we need to study compactness of
the sequence uk . Let v e W^2 . Applying (2.2) and (2.4) repeatedly,
we have, from (2.5),

((d/dt)uk,υ)

< ||Z)iy2||Z)t;||2 + \\Jkukh\\Duk\\2\\v\\6 + \\Jkwh\\Duk\\2\\v\\6

+ \\Ikuk\\6\\DIkw\\3/2\\v\\6

< HD^Ibll^lb + C|M| 6 (M 3 P^II 2 + \\wh\\Duk\\2

+ \\uk\\6\\DEwh/2)

< C\\Dv\\2(\\Duk\\2 + \\uk\\ι

2

/2\\Duk\\l/2 + \\Duk\\2\\Dw\\3/2)

< C\\Dv\\2(ί + \\a\\ι

2

/2 + | | ^ | | 3 / 2 ) ( | | ^ ^ | | 2 + \\Duk\\l/2),

by (2.7) and (2.4),

with C independent of k. This together with (2.7) implies that the
sequence u^ is bounded in

L o o ( 0 , o c ; / 2 ) n L 2 ( 0 , o o ; ί ? ; 1 ' 2 ) n ^ 1 ' 4 / 3 ( 0 ? T\ W~x>2)

for all 0 < T < oo. From [26, Theorem 2.1 in Chapter III] it follows
readily that there are a function u and a subsequence of uk , denoted
again uk, satisfying

Kfc£κinZ,°°(0, oo; / 2 ) ,

u * ^ u i n L 2 ( 0 , c x > ; ί? ; 1 ' 2 ) ,

uk —• w strongly in I ^ C ? x (0, oc)).

As in [21], we can check that the limit u is a weak solution of (1.1).
The proof is complete.

3. Decay estimates. In this section, we let ί > 0, 1 < r < 3/2 <
p < 2, and w be a solution of (0.1) such that w eW^r ΠW^P , and
set

Lu = Au + P(u D)w + P(w £>)w,

B*u = -p(w D)U +

ι=l

Thus, we see that

(Lu, v) = (M, L*υ) for M, υ e W^2 n
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and the linearized equation of (1.1) can be stated in the form

(d/dt)v + Lυ = 0, υ(0) = u.

Denote by e~tLu the solution of the preceding equation. It is the
purpose of this section to prove the following.

PROPOSITION 3.1. Suppose that ||Z)ii;||Γ+||Z)ι/;||p is sufficiently small
Then there holds

(3.1) \\e-tLPu\\2<Ct-y4\\u\U

for ueLιnL6/5.

The preceding proposition is based on the following decay estimates.

(3.2) \\e-tAu\\oo < CΓι'4\\u\\6 for ueJ6,

(3.3) \\e-tAu\\s < CΓ^Iq-*ls)l2\\u\\q fθΐ\<q<s<oc,ueJq,

(3.4) \\De-tAu\\s < Ct^Mlq-^s^2\\u\\q for 1 < q < s < 3, u e Jq.

The estimates (3.3) and (3.4) were recently obtained by Iwashita (cf.
[17, Theorems 1.2, 1.3]). (3.2) will be proved in the Appendix by
using the argument of [17].

With the use of (3.2)-(3.4), we can now prove the following.

LEMMA 3.1. Let ueC™. Then there hold

(3.5) \\e-tAu\\oo <CΓ

(3.6) ||e-M**M||oo + \\De-iAB*u\\3

||oo + \\Duh)(\\Dw\\r + \\Dw\\p).

Proof. From (3.2), (3.3), (2.2) and the semigroup property of e~tA

we get (3.5) and

\\e-tΛB*uU < Cr3/2b\\B*u\\b

for b = r, p . Moreover (3.4) and (2.2) yield

\\De-tAB*u\\3 < CrWWDwWbiWuWco + \\Du\\3) for b = r, p.

Collecting terms, we get readily (3.6) and complete the proof.

Proof of Proposition 3.1. Setting v(t) = e~tL* u with u e C%°, we

have obviously that v e C([0, oc) L°° n W^ ' 3 ) and

= e'tAu+ ί e-{t~s)AB*v{s)ds.
Jo
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This gives, by (3.4)-(3.6),

< CΓ3/4\\u\\2 + C ί\t -
Jo

x(\\v\\oo + \\Dv\\3)ds(\\

Setting IIMH, = supo^f J3/4(||υ(j)||oo + \\Dv(s)\\3), we have

\ ) ( - s
o

\\Dv\\3)ds(\\Dw\

x f\t _
Jo

CΓ^Wuh + CΓ*l\\\Dw\\r + \\Dw\\p)\\M\t

x f'-
Jo

where we have used the condition r < 3/2 < p . Hence, if we presup-
pose that

(3.7) C(||Z)ίi;||Γ + ||Z)ii;| |p)<l/2

with the constant C given in the last term above, we obtain

(3.8) lk~'rM||oo < CΓ3'4\\u\\2.

Now we take u e Lι n L6!5 and υ G L2 . By (3.8) we have

(e~tLPu, v) = (u, e~tVPv) < WulUWe'^Pv]^ < CΓ3'Λ\\u\\ι\\v\\2

and therefore the validity of (3.1). The proof is complete.

4. Proof of Theorem 1JL In this section we always suppose that the
stationary solution w eW^r Γ\W^P with 1 <r <3/2 <p <2 such
that (3.7) holds. Let u be a weak solution of (1.1). Then (1.2) implies

(4.1) \\u(ή\\2<Γι f\\u{s)\\2ds.
Jo

On the other hand, taking v £ C£° and applying (1.3) with g(z) =
e-(t-Z)L y ^ w e J i a y e

(Lu{s), ̂ ~ ( ^ ) r υ) ds - [ (u(s), LTe-^-^v) ds
J

[ [
o Jo

= (α, ̂ ί r v) - f ((w D)u, ^-( ί " s ) r v) ds,
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that is,

(u(t), v) = (e~tLa, υ) - ί (e-^-s)LP(u - D)u(s), υ) ds
Jo

< \\e-tLa\\2\\v\\2+ [' We-ί'-^Piu D)u(s)\\2ds\\υ\\2
Jo

< C\\v\\2 (rWWah + f\t-s)-W\\u(s)\\2\\Du(s)\\2c
\ Jo

where we have used (3.1). We then get

| | φ ) | | 2 < Cs-WWah + C [\s - z)-y4\\u(z)\\2\\Du(z)\\2 dz.
Jo

Integrating the above inequality from 0 to t, we have

ϊ% i/4 {* ft -3/4
Jo ~~ JO Jz

<Ctιf4\\a\U+Ct1'4 f \\u(s)\\2\\Du(s)\\2ds
Jo

a t N 1/2

\\u(s)\\2

2dsj , by (1.2).
Combining this with (4.1), we have

that is,

(4.2) ||iι(0||2 < Q r 3 / 4 (ι

where and in what follows C\ = Ci( | |α| | i , ||α||2) may vary from line
to line.

Now we apply (4.2) and (1.2) to complete our proof via a boot strap
iteration argument.

Note that

(4.3) | | M ( / ) | | 2 < C 1 S by (1.2),

and

(4.4) | |M(ί) | | 2 < Q r 3 / 4 ( 1 + tχl2), by (4.2) and (4.3).

Combining (4.4) with (4.3), we have

(4.5) \\u{t)\\2<CxΓ
γl\
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Moreover, taking (4.2) and (4.5) into account, we have

Il«(θll2<c,r3/4(i+

This together with (4.3) implies

(4.6) N O I b ^ Q ί ί + i )

Similarly, (4.2) and (4.6) yield

and so, by (4.3),

(4.7) \\u{t)\\2<Cγ{t+\r2l\

Finally, by (4.2) and (4.7), we arrive at the desired estimate

and complete the proof.

R E M A R K 4.1. It should be noted that the validity of the assumption
of Lemma 1.2 follows from the inequality ||Z>τ/7 H3/2 ̂  l |Όw| | r +| |Dιι; | |p
and (2.7).

Appendix: Proof of (3.2). Let Q be a domain of R3. By || \\k,P,Q
and II ||p,Q we denote respectively the norms of the Sobolev space
Wk>P(Q;R3) and the Lebesgue space Z / ( β ; i ? 3 ) . Of course, \\Ί\k,p

= II \\k,p,G a n d II Up = II \\p9G - P i s the bounded projection from
LP{R3\R3) onto JP(R3; R3)\ where JP(R3;R3) denotes the com-
pletion of the set of compactly supported solenoidal in C°°(R3 R3).
Let h be a constant such that \x\ < h - \ for x e dG, and let
g G C°°(R3 R) be a fixed function such that g — 1 for \x\ > h and
g = 0 for \x\ < h - I. Moreover we set Gh = {x e G \x\ < h}.

In arriving at (3.2), we need the following lemmas.

LEMMA A.I. Let 1 < p < q < 00, t > 0, υ e LP{R3\ R3) n
Lq{R3 \R3), n>\, and ueJ6. Then we have

(A.3) \\e-tAu\\2n,6

(A.I) is deduced immediately by an elementary calculation. (A.2)
is a consequence of Lp-estimates {cf [25]) and the Sobolev embedding
theorem. One can also refer to [17] for details.
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L E M M A A . 2 ( [17, L e m m a s 5 .3, 5.4] and ( A . 2 ) ) . Let t>0, v <= J6,
and P* be a certain pressure such that p* = Ae~^t+x">Λv + Ae
Then

LEMMA A.3 ([17, (5.18)] and (A.2)). Let υ e J6, and t > 0. Then
there is a function v* such that

D • v* = D • (ge-{t+ι)Av),

suppυ*(t) c {x € -R3 h - 1 < |x| < h},

,6 + \\(d/dt)v*(t)\\6 < C(t + i)

LEMMA A.4. Let t > 0, v and v* be given in Lemma A.3. Then
we have

< C(t+l)-^\\v\\6.

Proof. Set u(t) = ge~^t+^Av - v*(t), u0 = M(0) , and

F(t) = p*(t)Dg - 2(Dg • D)e~{t+1)Av -
+ Av*(t)-(d/dt)v*(t),

where p* is given in Lemma A.2. By Lemmas A.2, A.3 we have that
the support of F(t) is contained in {x e i?3 h - 1 < \x\ < h}, and

(A.3) (i
ut -ΔM + D(gp*) = F, D • u = 0 in R3 x (0, oo).

We thus rewrite u in the integral form

(A.4) u(t) = e-tAu0 + ! e-{t~s)APF(s) ds.
Jo

From (A.I), (A.3), and Sobolev's embedding theorem it follows that
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and

-s \\F(s)\\6/5,G,)ds

I l l - ι
<c [\t-

ft
<C (t -s)-^2(t -s + l)-^4\\F(s)\\6ds

Jo

< C\\v\\6 f (t-S)-ι'2{t-s + l)-3/\s + I)"1/4ds
Jo

<C(t+l)-V4\\v\\6.

Taking (A. 4) into account, we have the desired estimate and complete
the proof.

Proof of (3.2). Let v e J6. By Lemmas A.I, A.2, A.3, Sobolev
inequality, and Gagliardo-Nirenberg inequality (cf. [10]), we have

for 1 > t > 0. The proof is complete.

The author would like to thank T. Miyakawa for sending [2, 3, 4].
He would also like to thank the referee for his valuable suggestions.
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