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BOURGAIN ALGEBRAS ON THE UNIT DISK

JOSEPH A. CIMA, KAREL STROETHOFF AND KEITH YALE

The Bourgain algebra of H°°(Ώ) relative to L°°(B) is shown to
be H°°(B) + C ( l ) + V, where V is an ideal of functions in L°°(ID))
which vanish in an appropriate sense near the boundary of ID).

1. Introduction. Let 8? be a commutative Banach algebra with
an identity and let J / be a linear subspace of 2?. J. Cima and R.
Timoney [6] introduced the notion of the Bourgain algebra based on
ideas of J. Bourgain [3]: the Bourgain algebra stfb consists of those /
in %? such that

(1) if fn -> 0 weakly in sf , then dist(/π/, sf) -> 0 .

The distance dist(/w/, sf) between fnf and sf is the quotient norm
of the coset fnf + sf in the space %?/sf . The proof in [6] shows
that sfb is a closed subalgebra of Sf and if sf is an algebra then
si C sfb. It is important to note that sfb depends upon the space Sf
even though this is not reflected in the notation. For a brief survey of
Bourgain algebras see K. Yale [16].

Let H°°(B) be the algebra of bounded analytic functions on the
open unit disk D. There are at least three different natural spaces Sf
containing /f°°(lD)). First we can let T = <9D = {z e C : \z\ = 1}
be the unit circle and consider the algebra H°°(Ί) of boundary val-
ues of H°°(Ό) functions as a subalgebra of %? = L°°(T). In this
context, J. Cima, S. Janson and K. Yale [5] showed that H°°(Ί)b =
H°°(Ύ) + C(T). Another setting is to use the Gelfand map and re-
gard H°°(B) as a subalgebra of Sf = C(J?), where J? denotes the
maximal ideal space of H°°{β). In this context H°°{p)b has been
determined by P. Ghatage, S. Sun and D. Zheng [10]. Yet another
natural setting is to regard /f°°(B) as a subalgebra of 3? = L°°(D),
where L°°(D) is the usual space of equivalence classes of essentially
bounded measurable functions on B> with respect to area measure.
The purpose of this paper is to determine H°°(IS))b in the latter con-
text. There is no Chang-Marshall theory for L°°(D) in contrast to the
well-known description of subalgebras between H°°(Ύ) and L°°(T)
which was used in [5] to determine H°°(Ύ)b. For a survey of the
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Douglas algebra problem for L°°(B), i.e., the problem of the deter-
mination of the algebras between H°°(Ό) and L°°(B), see P. Gorkin
[11]. Ideas arising from the study of Bourgain algebras may shed some
light on the Douglas algebra problem. K. Izuchi [13] has recently de-
veloped an abstract approach to the problem of determining Bourgain
algebras in a variety of settings, which do not encompass our methods
and results.

A substantial study of Bourgain algebras of Douglas subalgebras
of L°°(T) is contained in [12], while a variety of interesting results
concerning Bourgain algebras of some special subalgebras of C{Jί)
are found in [17].

We show in §4 that H°°(B)b = H°°(Ό) + C ( ! ) + V, where V is
an ideal of functions in L°°(B) which vanish in an appropriate sense
near the boundary of B. Section 2 contains preliminaries as well as
several examples. Functions in H°°(Ό)b have "boundary values" and
this is proved in §3. The boundary value result enables one to reduce
the determination of H°°(Ό)b to the known result for H°°{Ύ)b . In §5
we investigate the connection between H°°(Ό)b and the algebra AQ
of bounded symbols of compact Hankel operators on the Bergman
space. Let A(B) denote the disk algebra, the algebra of continuous
functions on B which are analytic on B. In §6 we study the boundary
behavior of analytic functions in the Bourgain algebras A(B)b relative
to L°°(B). We end the paper with further remarks and questions in
§7.

We wish to thank K. Izuchi and R. Mortini for their many helpful
discussions concerning this work. We are especially grateful to the
referee for pointing out a major error in an earlier version of this
paper and for suggesting a better viewpoint.

2. Preliminaries. Several observations concerning weakly null
sequences in H°°(β) will be helpful in the determination of the
Bourgain algebra H°°(Ό)b. The mapping /»->/*, where /*(£) =
l i m ^ j - f{rζ), for almost every ζ E T, provides an isometric isomor-
phism from Jf°°(B) onto H°°(T). Thus fn -> 0 weakly in /P°(B) if
and only if ft -> 0 weakly in H°°(Ί). If fn -• 0 weakly in H°°{B)
then {fn} is uniformly bounded (||/π||oo < M < oo for all n >~\)
and fn—>0 uniformly on compact subsets of D.

Any sequence in H°°(D) which is uniformly bounded and converges
to 0 uniformly on compact subsets of B will be called normal null.
Any weakly null sequence is certainly normal null, but not conversely.
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For example, fn(z) = zn is normal null but does not converge to 0
weakly.

For a subalgebra si C L°°(D) we define the normal null algebra
s/χ to be the set of those functions / in L°°(D) such that

(2) if {/„} is normal null in sf , then dist(/π/, si) -> 0 .

A minor modification of the argument in [6] shows that stfN is a closed
subalgebra of L°°(D) with J / C J ^ , Clearly H°°(Ό)N c H°°(Ό)b

since every weakly null sequence in H°°(Ό) is normal null. For a
closed subalgebra si c L°°(D) and / e L°°(D) define the Hankel
type operator Sf: sf -+ L°°(Ό)/sf by Sfh = fh + sf, h e £f.
Note that the Bourgain algebra sfb consists of those / in L°°(D)
for which the operator Sf is completely continuous. The set sfwc

of functions / in L°°(D) for which Sf is weakly compact is also
a closed subalgebra of L°°(D) with si c sfwc as is shown by the
duality argument of B. Cole and T. Gamelin [7], Lemma 4.2. Note
that / G s/wc in case the operator Sf:sf-+ L ° ° ( D ) / J / defined by
Sfh = fh+sf , h G J/ , is weakly compact while / e ^ in case the
operator Sf is completely continuous. Now weakly compact operators
are completely continuous in any space which has the Dunford-Pettis
property and so H°°(B)WC c H°°(B)b follows immediately from the
remarkable theorem of J. Bourgain [2] that H°°(B) has the Dunford-
Pettis property. If / G H°°(O)^ then a normal families argument
shows that Sf is compact and hence weakly compact. In particular,
we have the inclusion H°°(Ti))N c H°°(Ό)WC.

The space H°°{B) is well supplied with weakly null sequences which
do not converge to zero in norm. Such sequences arise from peak
point and from interpolation type constructions; the following lemma
is useful in this respect.

LEMMA 1. Suppose that {fn} is a sequence of functions in H°°{Ώ>)
and M is a constant such that

(3)

Then fn-*0 weakly in H "OO

Proof. See [5]. D

If {zn} is an interpolating sequence in the unit disk, by the P.
Beurling Interpolation Theorem (see [9]) there exist functions /„ in
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H°°(Ό) such that fn(zm) = δnm and for which (3) holds. Conse-
quently, fn -• 0 weakly in H°°(B).

Let {ζn} be a sequence of distinct points on the circle T which
converges to a point ζ which is not equal to any of the ζn. Since
each point of T is a peak point for the disk algebra A(D), there exist
functions gn e A(Ό) such that gn(ζn) = 1 and \gn(z)\ < 1 if z G D,
but z Φ ζn. Construct a disjoint collection {@n : n > 1} of open
subsets of T such that ζn e &n and sup{|#,(C)|: ζ e T\t?n} < 1, and
for each n choose a positive integer kn so large that fn(z) = gn{z)k"
is small on Ί\0n: \fn(ζ)\ < 1/2* for ζ e Ί\@n . Hence (3) holds with
M = 2 and we conclude that fn-+Q weakly in H°°{Ύ) and hence in
H°°{p). Since the sequence {fn} is in A(D) it is also weakly null in
A(B). Clearly fn(ζn) = 1 for all « > 1. A concrete example is given
by

A few simple examples and a proposition will serve to fix the ideas
and to motivate the main theorems.

EXAMPLE 2. Let g be an arbitrary function in L°°(D), K c D
compact and put f = XKg where / # is the characteristic function of
# . Then /Gi/°°(D)Λr because dist(/Λ/, //°°(D)) < | | / Λ ^ ^ - 0 | | o o <

-> 0 for any normal null sequence {fn} in /f°°(D). D

PROPOSITION 3. H°°(B) + C(D) c H°°(B)N.

Proof. By the Stone-Weierstrass Theorem it suffices to show that the
function ~z belongs to H°°(D)N. Let {fn} be a normal null sequence
in H°°(B), and for each positive integer n let hn e H°°(B) be defined
by

hn(z) = fn(z)~fn(0), forzGD\{0}.

It is easily seen that the sequence {hn} is normal null in H°°(B). Let
M be a finite positive number such that ||ΛΛ||oo ^ M for each n > 1.
Using z/π(z) = \z\2hn(z) + z/π(0) we see that

dist(z/Λ, f

for each 0 < r < 1. Taking the limit superior as n -> oo, and
subsequently letting r -• 1", it follows that dist(z/π, //^(D)) -> 0
as n —• ex), proving that the function z belongs to H°°(J$)N . D
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It follows from Example 2 and Proposition 3 that H°°(B)N,
and thus /f°°(D)^, contains all functions on the unit disk which are
"i/°°(D) + C(D) near the boundary," that is, coincide with a function
from the algebra i/°°(D) + C(D) on the complement of a compact
subset of D. We will actually prove that //°°(B)£ is the sum of
H°°(O) + C(D) and (equivalence classes of) functions that "vanish
near the boundary." This statement will be made precise in Theorem
12 of §4.

EXAMPLE 4. Let U = {z eB: Imz > 0} be the upper open half
disk and let / = χv. Then / φ H°°(Ό)b. For if we suppose that
/ e H°°(Ό)b, then for every weakly null sequence {/„} in H°°(B)
there exists a sequence {gn} in /f°°(B), such that \\fnf-gn\\oo -* 0 as
n —> oo. Then fn- gn —• 0 uniformly on the closure of U relative to
D while gn —• 0 uniformly on the closure of D\ U relative to D since
fnf-gn = - & o n D \ ί / . Hence fn = (fn -gn) + gn->0 uniformly
on the line segment ( - l , l ) = C/nlD)\i7nD. This is a contradiction
because there are many weakly null sequences which do not converge
uniformly to zero on the line segment ( - 1 , 1) in particular, if {zn}
is an interpolating sequence in ( - 1 , 1) the P. Beurling sequence {fn}
does not converge uniformly to zero on ( - 1 , 1) since fn(zn) = 1 for
each n > 1. D

EXAMPLE 5. Let {rn} be a sequence of positive numbers increasing
to 1 and let Sn = {z e C: rln-\ < \z\ < r2n}. The values of the
function / = χs, where S = (J£Li Sn, oscillate as \z\ -> 1", since
S is the union of concentric annuli. Thus the radial limit, /*(£), of
/ does not exist for any ζ e Ύ. The argument given in the previous
example can be used to show / $. H°°(Ώ))ι,. (The arbitrary weakly
null sequence {fn} is forced to converge uniformly to 0 on the union
of the circles U^Li{z e C: \z\ = rn} = ~S n B\S so that by the
maximum modulus principle || fn\\oo -* 0.) α

These examples are typical. Thus / will belong to ir°°(D)^ if it
vanishes near the boundary but the existence of boundary values in
the absence of interior regularity is not sufficient to make / belong to
iy°°(D)£ . Bad boundary behavior of the function / will always force
/ ^ H°°{B)b as in Example 5. These statements are given precise
form by the main theorems of §§3 and 4. The proofs of the main
theorems require more delicate properties of weakly null sequences
than were used in the examples.

Since L°°(D) consists of equivalence classes of essentially bounded
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measurable functions, simple pointwise definitions of boundary values
do not make sense because one can always modify a function on a set
of area measure zero so that its limit does not exist as \z\ —• 1~.
However, technically useful definitions can be made for essential non-
tangential limits and oscillations and these notions have an important
role in the proofs of our principal theorems.

For ζ e T and 0 < R < 1 the open non-tangential cone ΓR(ζ) at ζ
is the interior of the convex hull of ζ and the disk {z € C: \z\ < R} .
We say that / has essential non-tangential limit L at ζ if

e s s s u p { | / ( z ) - L | : z € Γ Λ ( C ) , | z | > l - < y } - > 0 as δ -> 0+

for all 0 < R < 1, in which case we will write /*(£) for L. We define
BV to be the set of / in L°°(D) such that an essential non-tangential
limit /*(£) exists for almost every ζ e T. In order to give another
description of BV we will introduce more notation. For / e L°°(D)
and a nonempty set E c B define the essential oscillation of f over
Eto be

ω(/, E) = esssup{|/(z) - f(w)\: z, w e E}.

For each z e D and 0 < δ < 1 we will write £(z, δ) = {w e
D: \w - z\ < δ}. For / e L°°(D) define the essential oscillation of
f at z e l to be

ω(/, z) = lim ω(/, £(z

If we define the essential non-tangential oscillation of f at ζeT by

ωR(f, ζ) = lim ω(f,E(ζ, δ)nΓR(Q),

then we have the following description of BV.

PROPOSITION 6.

for allO < R< 1 αnd almost every ζ e T}.

Proof. If for ζ e T the essential non-tangential limit /*(C) ex-
ists, then a simple application of the triangle inequality shows that
coR(f, C) = 0. Conversely, if ωR(f9 ζ) = 0, for all 0 < R < 1, then
it is possible to choose a suitable sequence {zn(R)} in D, converging
to C, for which {/(zn(i?))} is Cauchy with limit, /*(£), indepen-
dent of i?. A suitable sequence can be constructed by taking zn(R) e
E(ζ, l/n)Γ)TR(ζ) = S for which esssup{|/(z)-/(zπ(Λ)) | : z e S} <
ω ( / , S). The details are left to the reader. D
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Note that if / , g e L°°(B), and / has essential limit /*(£) as z
approaches ζ € T in the cone Γ&(ζ), then

Also note that if ω Λ ( g , ζ) = 0, then ω Λ ( / , C) = ω Λ ( / - g 9 ζ ) .
Since functions in 7/°°(D) have non-tangential limits almost every-

where on the circle we have H°°(D) c BV. From the main theorem
in §3 it will follow that BV is closed and (BV)b = BV.

3. Boundary Value Theorem. As we emphasized in §2 the algebra
H°°(B)i, is a subset of the Banach algebra L°°(Ό) and as such its
members are equivalence classes of functions. The following lemma
on metric density is an important tool in the proof of the theorem of
this section. Although it is valid in more general situations, we state
it for the case of subsets of the real numbers E 1 . If E is a Lebesgue
measurable subset of E 1 the quantity

if it exists, is the metric density of E at the point x. It is well
known that D{E, x) = 1 for almost all x in E. Let D(E) =
{x e E: D(E, x) = 1}, so that \D(E)\ = \E\, and denote Jn(x) =
(x — j;,x + ^). We identify y e Jn(x) with eiy when working on the
circle T.

LEMMA 7. Let E and Z be measurable subsets of the circle Ί with
\E\ > 0 and | Z | = 0. Then each ζ e D(E) is the limit of a sequence
{ζn} of distinct points in D(E) \ Z.

Proof. Left to the reader. D

THEOREM 8. H°°(Ό)b c BV.

Proof. Assume not and choose an / in H°°(B)ι, whose non-tangen-
tial limits fail to exist on a set B CT with \B\ > 0. For each ζ e B
there is an R(ζ) in (0, 1) such that ωRiζ)(f, ζ) > δ(ζ) > 0. Setting
Bjk = {ζeB:δ(ζ)>) and R(ζ) < 1 - £} for j , fceZ+,wehave
B = [j{Bjk: j9keZ+}. Since \B\ > 0 there are j and k in 1Λ for
which \Bjk\ > 0. We replace B with the set BjΊc and henceforth we
have

ωR(f,ζ)>δ>0

for all ζ e B, where 0 < i? < 1.
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For ζ fixed in D(B) we apply the preceding lemma to obtain a
sequence {ζn} in D(B) which converges to ζ. Let {fn} in A(B)
be a weakly null sequence of peak point functions associated with
the sequence {ζn}. Since / e H°°(B)ι, there is a sequence {/*„} in
/P°(D) such that \\ffn - λπ||oo = εn -> 0 as n-+oo. Then for almost
every { G T ,

IΛ(ί)|<5 < | / Λ ( « | ω Λ ( / , 0 = ω Λ ( / / Λ , {) = ωR(ffn -hn,ξ)< 2εn .

Since we here may choose ξ e B so close to ζn that \fn{ζ)\ > 1/2,
the above inequality yields δ < 4εn , a contradiction. D

REMARK 9. In the above proof only two properties of H°°(B) were
used. First, functions in H°°(B) have non-tangential limits almost
everywhere on the unit circle, i.e., H°°(B) C BV. Secondly, H°°(B)
contains the particular weakly null sequence of peak point functions
{/„} simply because fn e A(B) c H°°(B). Thus the proof just given
actually shows more:

If sf is a linear subspace of L°°(D) which satisfies A(B) c / c
BV, then stfbQBV.

As an immediate consequence we have BVb = BV.
The following theorem generalizes Example 4 of the previous sec-

tion.

THEOREM 10. IffeH°°(B)b, then ω{f, z) -• 0 as \z\ -> 1".

Proof Let / e H°°(B)b and assume that {zn} in D with \zn\ -^
1~. By going to a subsequence, which we will not relabel, we can
furthermore assume that the sequence {zn} is interpolating. Choose
a weakly null sequence {fn} of interpolating functions in H°°(B)
with fn{zm) = δnm . Since / e H°°(I]))b , there is a sequence {#„} in
i/°°(D) such that | |// n - gn\\oo-*0 as n -> oo. Then

ω ( / , zΛ) = \fn(zn)\co(f, zn) = ω ( / / n , zΛ)

= «(//„ - ^ , Zn) < 2\\ffn - ^lloo ,

and so co(f, zn) —• 0 as AZ —• 0. D

REMARK 11. A careful analysis of the above proof shows that more
generally we have the following result:

Let ssί be a linear subspace of L°°(Ό) such that H°°(Ό) c ί c
C ( D ) , and suppose that fesή,. Then ω(f, z) -• 0 as \z\ -• 1" .

4. The Structure Theorem. In this section we will give our descrip-
tion of the Bourgain algebra H°
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THEOREM 12. H

where V = {g e L°°(D): | |^ D \ r D | |oo -* 0 α$ r

Proof. In Proposition 3 we have already shown that H°°(Ώ) + C(D)
c H°°(Ό)N. Noting that V is the closure in L°°(D) of the set of all
functions with compact support in D, it follows from Example 2 and
the fact that H°°(B)N is closed, that also V c H°°(B)N. Thus we
have H°°(Ό) + C(D) + F C H°°(Jί)N c //°°(D)^ .

Now let / G i/°°(D)^. By the Boundary Value Theorem / has
non-tangential limits almost everywhere on T. Let /* denote the
limit function on T. We will first argue that /* e H°°(Ύ)b . Let {φn}
be weakly null in //°°(T), and for each positive integer n choose
fn G J/°°(D) such that φn = /„*. Because / G ff°°(D)Λ and {/„}
is weakly null in ϋΓ°°(O), there exist gn e H°°(D) such that εn =
Wfnf — gn\\oo —• 0 as /7 —• oo. Since the mapping F ι-> i7* is a
contractive homomorphism of 5 F onto L°°(T) we conclude that
II/*Λ* - £ΪIIL~(T) < βπ This proves our claim that /* e H°°(Ύ)b .

Denoting the Poisson integral of a function φ e L°°(Ύ) by £P[φ],
we now put g = / - ^ [ / * ] . By [5], H°°(Ύ)b = H°°(T) + C(T), so
/*_G ^°°(T) + C(T). As ^ j n a p s H°°(Ί) + C(T) into //°°(D) +
C(D), ^ [ / * ] G /Γ°°(D) + C(D) c ^°°(D)^, and we conclude that
g G H°°(Ό)b . We claim that actually g e V.

Assuming that g £ V, there exists a sequence {rn} in the interval
(0, 1) tending to 1 and a positive number δ such that \[gχ®\r o>||oo >
5 ? for all n eΊΛ. Put An = {z e D: I ^ D ^ D C ^ ) ! > ^ / 2 > " τ h e n

P4Π| > 0. Let zw be a point of density of the set An. Noting that
An C D\r r t D we see that \zn\ —• 1 as n —• oo. By passing to a
subsequence we may assume that {zn} is an interpolating sequence.
Let {fn} be a sequence in H°°(B) such that fn{zn) = 1 and fn —•
0 weakly. For each AZ e Z + , by the continuity of fn at zn, we
can pick a positive <5W < 1 - \zn\ such that |/«(z)| > 1/2 whenever
\z — zn\ < δn. Because zn is a point of density of the set An, the
sets Bn = AnΠ {z e C: \z — zn\ < δn} have positive measure and
the property that \fn{z)\ > 1/2 for all z e Bn. Using that g e
H°°(Ό)b and fn -+ 0 weakly in //°°(D), there exist hn G //°°(D) for
which | |Λ^ " ΛΛ||oo —*• 0 as n —• oo. As in the second paragraph
of the proof this implies that \\g*fn - ^ | |L°°(T) —> 0 a s n —¥ o c *
Since ^* = 0 almost everywhere on T, we get H/^HL0 0^) —• 0 as
n —• oo, and conclude that ||Λπ||oo —¥ 0 as n —• oo. But then it
follows that HΛsiloo -• 0 as n -* oo. However, for z e Bn we



36 JOSEPH A. CIMA, KAREL STROETHOFF AND KEITH YALE

have \fn(z)g(z)\ > (l/2)(<J/2) = δ/4, so that | | / ^ | U > δ/4 for all
n G Z + . This contradiction establishes our claim that g e V, and
hence / = &>[f*] + g e H°°(Ό) + C(D) + F .

So far we have shown that H°°(D)b = H°°(Ό)N = /f°°(D) + C(D) +
F . Recalling the inclusions H°°(B)N C / / ^ ( D ) ^ and i/°°(D)^c c
/Γ°°(D)^ (the last inclusion because H°°(Ό) has the Dunford-Pettis
property) the theorem follows. •

REMARK 13. Theorem 12 can be used to give an alternative proof
of Theorem 10: Clearly ω(f, z) = 0 if / e H°°(Ό) + C(D). It is
easily seen that ω(f, z) < 2||//o\rDllc» for r < \z\ < 1, implying that
if / € F , then ω(f, z) -+ 0 as \z\ -> 1"

5. Operator theoretic aspects. In this section we relate the Bourgain
algebra of J¥°°(D) to the algebra of bounded symbols for which the
associated Hankel operators are compact operators on the Bergman
space of the unit disk.

Let I?a denote the Bergman space, that is, the space of square in-
tegrable analytic functions on B>. Let dA denote Lebesgue area mea-
sure on D, normalized so that B> has measure 1. Since L2

a is a
closed subspace of L 2(D, dA) there is an orthogonal projection P
of L 2 (B, dA) onto L 2 . For / e L°°(D) the Hankel operator with
symbol / , denoted by Hf, is the operator from L\ into L 2 (B, dA)
defined by

Hfg = (I-P)(fg), gel*.

Clearly Hf is a bounded operator with norm \\Hf\\ < \\f\\oo Let

AQ = {fe L°°(D) : Hf is compact}.

It is known that AQ is a closed subalgebra of L°°(D) (see page 475
of [1]).

In the context of the unit circle, Hankel operators on the Hardy
space H2 are defined similarly. In [5] the Bourgain algebra H°°(Ί)b

is shown to coincide with the algebra of bounded measurable functions
for which the associated Hankel operator on the Hardy space H2 is
compact. In the context of the unit disk this is no longer true as is
shown in the following theorem.

THEOREM 14. H°°(Ό)b c AQ.

Proof. We will first show that H°°(B)b c AQ. The inclusion
jy°°(D) C AQ is trivial, for if / e H°°(B), then Hf is the zero
operator. Using Theorem 12 it is enough to show the inclusions
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C(D) C AQ and V C. AQ. We will use a criterion for compact-
ness of Hankel operators obtained in K. Stroethoff [15]. For l e D
let ψx be the Mδbius function defined by ψχ{z) = j==- , z e D . The-
orem 6 in [15], then, states that for / e L°°(B) : f e AQ if and only

x\\f°9x-P(f°n)h-+Q as μ | - i - .
Now, if / e C(B), then \foφλ(z) - /(Λ)| -+_0 for each z e D a s

μ|-> I " (because \φλ(z)-λ\ = (1 - μ | ) | z | / | l -λz\ -* 0 as μ|-> 1"),
and by the dominated convergence theorem, | | / o ̂  - /(λ)||2 —>• 0 as
μ| —»• 1~ . Consequently,

= \\(I-P)(foφλ-f(λ))\\2^0

as μ| -» 1" , and it follows that feAQ. Thus C(D) c AQ.
For 0 < r < 1 and λ e D write Z)(A, r) = ̂ ( r D ) ) T n e n i-0^* r)l =

r 2 ( l - |λ | 2) 2/(l - r2\λ\2)2 (see, for example, [9]). If / € L°°(D), then
for 0 < r < 1 we have

\foφλ\
2dA= f \foφλ\

2dA+ f \foφλ\
2dA

< \\f\\l\D(λ, r)\ + ί \f(w)\2\φ'λ(w)\2dA(w)
Jυ>\Φ

< \\f\\l\D(λ, r)\ + II/XDVDIIL / \φ'λ(w)\2dA(w)/

Hence
limsup \\foφλ\\2 <
μ|-»r

So if / G V, then it follows that | | / o φλ\\2 -» 0 as μ| -» 1" , so that
\\foφλ - P(foφλ)\\2 -> 0 as \λ\ -+ 1~ , and therefore feAQ.

It remains to exhibit a function / in ΛQ which is not in if00(11%.
Let / be as in Example 5. Then / ^ if°°(]I%, and we will show
that for appropriately chosen rn , f e AQ. We recall the following
formula for Hf (see [15]):

for g eL%, z G D .

The operator Hf will be Hilbert-Schmidt, and thus compact, if we
make sure that
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We choose r2n-\ = 1 — £ and r2n = 1 - \-n for n > 1. Using that

/ = Xs, we have

\l-zw\4 v ;

— λ -=- I dA(z) dA(w)

P

/

Js
71 Γ^T

s(l-\w\2)2

0 0 1 1/ 1 1 \

= 4 Σ (-A- - T—-—] < 4Σ2"" = 4

Thus feAQ. D

6. On the Bourgain algebra of the disk algebra. Let A(B)b be the
Bourgain algebra of the disk algebra A(D) relative to L°°(D). We
know that A(B)b C BV (by Remark 9) and that A{D) contains many
non-analytic functions since both C(D) and V are subsets of A(B)b .
We will show that to some extent the boundary values of analytic
functions in A(B)b are restricted. For this purpose we set

AH = A(Ώ)bΠH00(B)

and note that AH is a Banach algebra between A(B) and H°°(

PROPOSITION 15. Iffe i/°°(B) is continuous on D\ {ζ\, ..
where ζΪ9 ... ,ζkeΊ, then f eAH.

Proof. There is no loss of generality in assuming k = 1, ζ\ = 1
and ll/lloo < 1 Let {fn} be a weakly null sequence in A(B). Note
that an = \fn(l)\ + n~ι —• 0 as n —• oo. For each n G Z + , we can
choose <Jn > 0 so that \fn(z)\ <2an if z G D and |z - 1| < 2<?π . Fix
an « G Z+, and choose rπ G (1 - ίΛ, 1) so that

whenever z e D and |z - 1| > δn. Note that then |rΛz - 1| <
(1 - r Λ ) | z | + | z - 1| < 2δn whenever z G D and | z - 1| < δn . Choosing
gπ(z) = f(rnz)fn(rnz) in ^(D) we have \\ffn - gnW^ <4an. D

If / G L°°(D) and C G T the essential cluster set of f at ζ is

where i?/(C, δ) denotes the essential range of the function f\E(ζ, δ).
The diameter of a set K c C is written diam(A^).



BOURGAIN ALGEBRAS 39

PROPOSITION 16. If f e A(Ό)b, and Z c T is an infinite set, then

Proof. Assume there are distinct points ζn in T such that

, ζn) > δ > 0, for n e Z+.

Then it is clear that ω(f, ζn) > δ > 0, for n e Z + . By passing to a
subsequence we may assume that ζn —> ζ as n -> oo. Choose {fn}
in A(B) peaking at ζn and tending to zero weakly in A(B). Then
there is a sequence {gn} in A(B) such that εn = \\ffn - gn\\oo -* 0
as n —* oo. Then for each n G Z + we have

δ < G)(f, ζn) = ω(ffn,ζn) = ω(ffn-gn,ζn) < 2en ,

a contradiction. D

REMARK 17. The above proof actually shows:
// J/ is a subalgebra of L°°(D) with A(B) c j / c C(S), απ̂ f //

fesfb> then infζGZ d iam^(/ ? C) = 0,for any infinite set Z c T.

The following corollaries place restrictions on the boundary values
of analytic functions in

COROLLARY 18. If B is a Blaschke product whose zero set has in-
finitely many accumulation points, then B φ AH.

Proof. If ζ is an accumulation point of the zeros of B, then it is
easily verified that diam^(i?, ζ) > 1. D

The above corollary implies that A(B)b φ H°°(

COROLLARY 19. Let GeH°°(B) be nonconstant and suppose there
is a set {ζk : k e Z+} c T such that G*{ζk) = a for all kelΛ and

ke Z+} n T contains an arc. Then G $ AH.

Proof. For each ζ in {ζk:ke Z+} n T one has diamg p (G !

? ζ) >

|G*(C)-α|. D

7. Remarks and open questions. For Douglas algebras si and 3$ a
monotonicity theorem is known ([12], Theorem 4): If H°°(Ί) C j / C
<3S C L°°(T), then srfbQ&b. This result fails if the Douglas algebra
hypothesis is relaxed. For stf = C(T) and 33 = H°°(Ί)b we have
A(Ί) c s/ c 33 and $fb <£ 38b. To see that Ab <£ &b let E c Ύ
be a proper arc and consider the characteristic function XE . It is
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straightforward to verify that XE G $fb — C(Ύ)b . On the other hand
χE <£ &h = H°°(T)bb = H°°(T)b = & ([12], Corollary 9) because the
maximal ideal space of H°°(Ύ)b (= H°°(Ί) + C(T)) is connected and
so H°°(Ί)b can contain no non-trivial idempotent ([8], page 188; [9],
Chapter IX, Theorem 2.2). Alternatively, one can directly verify that
χE £ VMO. However, if χE e H°°(T)b, then χE e VMO by an
argument similar to Theorem 2.3 in Chapter IX of [9].

For Bourgain algebras relative to L°°(D) monotonicity does not
hold in general: V C H°°(B)b9 but Vb <£ H°°(Ό)bb. To see that
Vb <£ H°°(Ώ)bb note that V is an ideal in L°°(D) so that Vb = L°°(D),
but H°°(D)bb C BV. It would be interesting to know whether the
monotonicity result of [12] holds in the L°°(D) setting: if $/ and
33 are subalgebras of L°°(D) with H°°(Ό) c si c 33, is it true that

For the polydisk (X = Bn or X = TΛ) the Bourgain algebras
A(X)b = A(X) and H°°(X)b = H°°(X)9 have been determined by
J. Cima and W. Wogen and also by K. Izuchi [13]. On the ball B"
the result A(dW)b = C{dW) (relative to C(dW)) is implicit in J.
Bourgain [3]. Concerning H°°{dW)b, a theorem of W. Rudin [14]
says that H°°(dW) + C(dW) is a closed subalgebra of L°°(dW). K.
Izuchi [13] has recently shown that H°°(dW) + C(dMn) = H°°(dBn)b

(relative to L°°(dMn)).
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