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THE TEMPERLEY-LIEB ALGEBRA AT ROOTS OF UNITY

FREDERICK M. GOODMAN AND HANS WENZL

We present general techniques to determine the structure of Hecke
algebras and similar algebras in the non-semisimple case. We apply
these to give a complete description of the structure of the Temperley-
Lieb algebras at a root of unity. Our description implies in particular
that the representation of these algebras on tensor space (C2)®" is
faithful.

Introduction. We shall consider ascending sequences of finite di-
mensional algebras A\ c Aι c , given by generators and relations,
where the relations depend on one or several parameters. Moreover,we
also assume that the discriminants of these algebras are non-zero poly-
nomials or rational functions in the parameters. This means the alge-
bras are semisimple except for special values of the parameters. For
applications (to the construction of topological invariants, the con-
struction of subfactors, or in statistical mechanical models) these al-
gebras are often needed at the critical values of the parameters; in
such cases, interesting semisimple quotients have been constructed in
[Jl], [W2,4].

In this paper, we initiate a systematic study of the structure of such
algebras at the critical values of the parameters, where they are not
semisimple.

For the examples we have in mind such as Hecke algebras, Brauer
algebras, etc., the structure is known in the semisimple case and can be
described by the Bratteli diagram, which encodes how an irreducible
representation of An, restricted to An_\, decomposes into irreducible
representations of An_\. If all the multiplicities in the decomposi-
tions are 0 or 1, one can use this to define special path idempotents
and matrix units (see e.g. [SV], [Wl,2], [RW]), labelled by paths on
the Bratteli diagram. These matrix units are only well defined for
generic values of the parameters, for which the algebras are semisim-
ple. Nevertheless, their (usually inductive) defining formulas carry a
lot of information about the structure of the algebras which can also
be exploited at the critical parameter values. In more detail, our main
techniques are as follows:
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1. Evaluation principle: We use representations of the algebras to
obtain algebraic identities with the parameters viewed as indetermi-
nates. Although these representations are not necessarily well defined
at a critical value of the parameters, nevertheless the identities remain
valid as long as the quantities appearing in them are well-defined at
the critical value.

2. Spectral analysis for path idempotents: Let us assume for sim-
plicity that the algebra An can be obtained from An_\ by adding one
more generator, say gn_\. (We assume all the An 's to be subalgebras
of their inductive limit.) Moreover, assume the path idempotents
for An_\ are known. Then it is possible in interesting examples to
obtain the path idempotents for An by determining the "spectral pro-
jections" of Psgn-\Ps, where ps is a path idempotent of An_\ (see
e.g. [Wl,2], [RW]). In these examples at generic parameter values, the
characteristic polynomials of such elements have simple roots only;
for the critical values, however, some of the characteristic values may
coincide. This basically means that one can no longer "diagonalize"
these elements; instead, one has to deal with Jordan forms, which
yield nilpotent elements in the radical.

3. Regular idempotents: In our examples, although many path
idempotents cease to be well defined at the critical parameter val-
ues, one still can find "good" path idempotents (or sometimes sums
of path idempotents) for each component of the maximal semisimple
quotient.

These principles have been stated quite generally. We expect that
they can be applied to Iwahori-Hecke algebras at roots of unity, to
Brauer algebras [Br, W3] and their ^-deformations, the so-called
Birman-Wenzl algebras [BW, W4] and presumably also to the group
algebras of the symmetric group in positive characteristic.

As a first example, these techniques will be applied here to the
Temperley-Lieb algebras, which are quotients of the Iwahori-Hecke
algebras defined by generators βi, i = 1, 2, . . . , n - 1, and relations
^i±\^i = tf/(l + Q)2€i and βiβj = βjβi if I/ - j \ > 2. These algebras
first appeared in work of H. Temperley and E. Lieb analyzing certain
statistical mechanical models [TL, B]. They were rediscovered by Y.
Jones in connection with his study of von Neumann subfactors and
used by him to define the Jones link invariant [J192].

It is well known that for q not a root of unity the Temperley-Lieb
algebra An(q) is isomorphic to the quotient of the group algebra of
the symmetric group whose irreducible representations are labelled by
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partitions, or Young diagrams, with at most two parts. In particular,
the simple component labelled by the diagram λ is isomorphic to the
fλ-by- fx matrix ring, where fx is the number of standard tableaux of
shape λ.

We can give a similar description of An(q) for q a primitive /th
root of unity, / > 3. We associate to a diagram λ = [λ\, λι\ its
weight w(λ) = λ\ - λι + 1. A diagram is called critical if its weight
is divisible by /. Let the affine reflection group A^ act on Z via
reflections about the numbers ml, m e Z this also defines a partial
action on diagrams with a fixed size, via their weights. The results are
then:

1. The dimension of An(q) is the Catalan number ^ - ( 2 ^ ) , as for
generic values of q.

2. The blocks of An{q) are labelled by the critical diagrams of size
n and by the orbits of the action of A^ on the non-critical diagrams
of size n.

3. The blocks labelled by critical diagrams are simple with the same
dimension as for generic values of q.

4. For a block labelled by a non-critical orbit, the simple com-
ponents in the maximal semisimple quotient are again labelled by
the individual diagrams in the orbit. If μ is a diagram with weight
ml < w(μ) < (m + 1)/, then the dimension of the corresponding sim-
ple component is {fμ)2, where ffc is the number of standard tableaux
of shape μ which (when regarded as increasing sequences of Young
diagrams) have their last critical diagram of weight ml.

If the orbit [λ] is 0°\ λ™, . . . , λ ^ } , where λ^ has weight
ml < w(λ^) < (m + 1)1, then one has the formula

fL \ A / 1 \j—m f
Jχ{m) ~~ Z ^ - " 1 ' hu)-

j>m

5. The block corresponding to a non-critical orbit [λ] contains an
isomorphic lifting of the maximal semisimple quotient of the block,
with minimal central idempotents z^ for μ e [λ]. If the weight of
μ is less than /, then z^An(q)z^ = My*, where M^ denotes the

k-by-k matrix ring. Otherwise z^An(q)z^ = My* Θ C[X]/(JC2) .

The radical of the block is nilpotent of exponent 3, and is spanned

by the spaces z^An(q)z^ for diagrams μ, v £ [λ] which are in ad-

jacent fundamental intervals for the ^4^ action, and by the alge-

bra τ&d(z%An(q)zJ;). If μ and v are not adjacent, then zj^An(q)z{;
= (0).
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A complete description of the multiplication rules for the radical
will be given at the end of §2.

6. An important corollary of this structure theorem is that the rep-
resentation of the Temperley-Lieb algebra An{q) in End^C2)®") is
faithful, and the image has dimension Cn = ^ y (2

rt

Λ), also when q is
a root of unity.

After this work was completed, we learned that P. Martin had ob-
tained the same results independently [M]; however, our emphasis is
somewhat different, and we believe that there are some advantages to
our exposition. We would like to thank Martin for discussing his work
with us.

0. Preliminaries.

0.1. Finite dimensional semisimple algebras. We first need some
notation for the combinatorial description of increasing sequences of
finite dimensional complex semisimple algebras. Let Mn denote the
ring of all complex n x n matrices. If A and B are semisimple
complex algebras, we can write them as A = @Aχ and B = ®Bμ

with Aλ = Maλ and Bμ = Mb for appropriate natural numbers aχ

and bμ. The vector b whose components are the numbers bμ is
called the dimension vector of B.

If A is a subalgebra of B, any simple 5^-module is an ^4-module.
Let gχμ be the number of simple ^-modules in its decomposition
into simple ^-modules. The matrix G = (gχμ) is called the inclusion
matrix for A c B. The inclusion of A in B is conveniently described
by an inclusion diagram, or Bratteli diagram, which is a bipartite graph
in which one set of vertices label the simple direct summands Aλ of
A, and the other set labels the simple summands Bμ of B. Then the
vertex corresponding to Ax is joined with the vertex corresponding to
Bμ by Sλμ edges. If A and B have the same identity, the dimension
vectors of A and B are related by b = Gla.

The inclusion matrix can also be interpreted in the following way:
Let px be a minimal idempotent of Aλ and let zμ be a minimal cen-
tral idempotent in B, the identity of Bμ. Then gλμ is the number of
idempotents in any decomposition of pχzμ into minimal idempotents
in Bμ.

0.2. The Temperley-Lieb algebra. The (abstract) Temperley-Lieb
algebra An is the C(x)-algebra given by generators e\, 2̂ > > ^n-\
and the following relations.

(Bl)' eiei±ιei = x/(l+x)2ei for all /.
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(B2) βiβj = βjβi for \i — j \ > 2.

(H) ef = et for all /.
The Temperley-Lieb algebra is a quotient of the Iwahori-Hecke al-

gebra Hn of type A for the Hecke algebra, (Bl)' is replaced by the
more general relation

(Bl) eiβi+iβi - x/(l + x)2βi = eMβieM -x/(l+ x)2eM for i =

For # G C\{0, - 1 } , the complex Temperley-Lieb algebra An{q)
is the C-algebra given by generators e\, 2̂ > > £«-i a n d relations
obtained by substituting # for x in the relations (Bl)', (B2), and
(H).

The complex algebra An(g) is an "evaluation" of the C(x)-algebra
An in the following sense. Let C[x\x-q) denote the localization of
the polynomial ring C[x] at (x - q), i.e. C[x\x_q) consists of all
those rational functions whose denominators do not have a zero at
q. Let (An)q be the C-subalgebra of An consisting of all C[x](X-gy
linear combinations of products of the generators. We show that there
is an evaluation homomorphism from (An)g onto An(q) mapping
generators to generators. Consequently we refer to the elements of
{An)q as evaluable at q.

PROPOSITION 0.1. Fix q e C\{0, -1} .

(a) There is a homomorphism of (An)q onto An(q) mapping e; to
eι for all i.

(b) dimc An(q) = d i m c w An = ^ ( 2 ; ) .
For u G (An)q, let u(q) denote its image in An(q) under the evaluation
homomorphism.

(c) {Principle of constancy of dimension.) Let e and f be idempo-
tents in (An)q. Then

dimce(q)An(q)f(q) = dimC{x) eAnf

Proof. Consider the free C(x)-algebra P = C(x){y\, . . . , yn-\) and
let / denote the ideal of P generated by

- * / ( ! + *)2yi} u {ytyj - yjyt for |/ - j \ > 2} u {yj - y,}.

Thus ^ n = P/7. Likewise, let PL = C[x\x-q){yχ, . . . , yn-\), and let
/^ denote the ideal of PL generated by the same set of elements. Call
a word in y\, . . . , y^-i reduced if it is not congruent modulo / to
any shorter word. By the argument of [Jl], 4.1.4, there is a family
Fo of reduced words such that 1 G Fo, the cardinality of F o is the
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Catalan number Cn = ^ y (2

W

Λ), and such that any word is congruent
modulo II to some element of FQ . Hence the image F of FQ in
An is a spanning set, and dimc(X) An < Cn. On the other hand, by
producing sufficiently many inequivalent irreducible representations
of An ([Jl], §5, and [W2]), one obtains that An is semisimple with
dimC(X) An = Cn . Thus F is a basis of ^4n , and span^o) Π / = (0).
It follows that I ΠPL = II- NOW {An)q is the image of PL under
the quotient map, so (An)q ^ PL/(I Π PL) = PL/IL- On the other
hand, /L is contained in the kernel of the natural homomorphism of
PL onto An(q), so this homomorphism factors through (An)q . This
proves (a).

For (b), note first that the image of F in An(q) spans An(q). We
show that it is a basis. For each i (1 < i < n - 1) and for each
w e F there is a unique w' = tι/(/, w) e F and α ^ G Q X ] ^ . ^ )

such that βiW = afww'. One can define a representation of -4Λ(tf)
on the C-span of F in (An)q by βi(q)w = άfw(q)w'. For w e F,
one checks that w(#)l = ^ . Consequently the image of F is linearly
dependent.

To prove (c), take for each element of a basis of e(q)An(q)f(q) a
pre-imagein e(An)qf. If these elements were linearly dependent over
C(x), then the linear dependence could be re-written with relatively
prime coefficients in C[x], and evaluation at q would then give a
non-trivial linear dependence of the basis elements of e(q)An(q)f(q).
This gives the inequality dimee(q)An(q)f(q) < dimC(X) eAnf. Simi-
lar inequalities hold with e replaced by 1 - e and/or / replaced by
1 - / . If any of these inequalities were strict, then adding them would
give dime An(q) < dimc^An , contradicting (b).

Another proof of (b) consists in identifying An(q) with the subal-
gebra of Brauer's centralizer algebra spanned by all diagrams with no
intersecting edges (see [Br] and [L]). One can also give a proof of (a)
using this idea.

The following observation, although completely evident, is essential
to our method of obtaining algebraic identities for An(q) via matrix
representations of An which are not well defined for An(q).

Evaluation principle. Any algebraic identity between evaluable ele-
ments in An with coefficients in C[x]q yields by evaluation an identity
in An(q).

0.3. Representations and path idempotents. We shall now describe
irreducible representations for the Hecke algebra, following [W2], and
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identify those which factor through the Temperley-Lieb algebra. Re-
call that a Young (or Ferrers) diagram λ = [λ\, A2, . . . , λ^] is a left
justified array of boxes with λ/ boxes in the /th row and λj > λ/+i
for all /. For example,

[5,3,1] =

For n > 0 let An denote the set of Young diagrams with n boxes.
Young's lattice is the graph whose vertices are labelled by Young

diagrams, with two vertices connected by an edge if the correspond-
ing diagrams differ by only one box. It is well known that the simple
components of CSn are labelled by the elements of An and that the
restriction to Sn-\ of the representation labelled by λ e An decom-
poses into the direct sum of the representations of Sn-\ labelled by
all subdiagrams of λ with n - 1 boxes. Hence the Bratteli diagram
of the Sn 's is Young's lattice, with the elements of An arranged on
the nth level.

For l G Λ « , a standard tableau t of shape λ is a filling of the
diagram λ with the numbers 1,2, ... , n so that the entries increase
to the right in each row and downwards in each column. Let T(λ)
denote the set of standard tableaux of shape λ, and Tn the set of all
standard tableaux with n boxes. Observe that t e T(λ) may be iden-
tified with a path on Young's lattice from [1] to λ, i.e. an increasing
sequence of Young diagrams

where λ^ is the diagram which consists of the boxes of t containing
the numbers 1, 2 , . . . , / . By a subtableau of t ,we will always mean
a standard subtableau,

[1] = λW c λ& c c λ<*> for some k < n.

We denote by f the subtableau of size n - 1.
For t e Tn and 1 < i < n - 1, define

d{t, 1) = c{ΐ) - c{i + 1) + r(i + 1) - r(i),

with c(j) and r(j) denoting column and row of the box containing
the number j . Observe that \d{t, z)| is the length of the shortest walk
on the tableau t, with vertical and horizontal steps, between the cell
containing i and the cell containing i + 1, and that the sign depends
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on whether / + 1 is northeast or southwest of / in ί. Define for
d G N\{0} the rational function

In [W2] and [H] an irreducible representation πλ of the Hecke
algebra Hn is defined on the vector space Vλ with (orthonormal)
basis labelled by T(λ) in the following way. These representations
are ^-analogues of Young's normal representations. Let <τ, (f) be the
tableau obtained by interchanging the numbers i and i + \ in the
standard tableau t. Then define

where d = d{t, i). Observe that if t is a standard tableau, σ,(ί)
fails to be a standard tableau only if / and / + 1 are in the same
row or in the same column of t. But in this case, %α_</ = 0, so
the representation stays within standard tableaux. Note that t *-+ t*
induces a linear isomorphism between Vλ and ®uCλ pe^ Vv , which

' n— 1

is evidently an Hn^\-module isomorphism. Thus

(0.1)

The proof of the irreducibility of the πλ is inductive: since the πv

for v e Λw_i can be assumed irreducible, it suffices to observe that
Vven-\Vμ Φ 0 if both v and μ are obtained by removing one box
from λ, and this follows easily from the definition of πχ. One can
also show inductively that the representations %χ for distinct λ are
mutually inequivalent. Since X)Adim(π^)2 = n\ = άm\Hn, it follows
that Hn is semisimple. Similarly, if q is not a root of unity, complex
representations of Hn(q) are defined by the same formulas, and they
are likewise irreducible and mutually inequivalent, which shows that
Hn(q) is semisimple for such q. One can check directly that the
representations %χ factor through the Temperley-Lieb algebra An if
λ has no more than two rows. Since the sum of the squares of the
dimensions of these is the Catalan number Cn, this is a complete
family of inequivalent irreducible representations of An . Thus one
has the Bratteli diagram shown in Figure 0.1 for the inclusions of the
Temperley-Lieb algebras An or An(q) for q not a root of unity.

Fix λ G An and let zλ denote the corresponding minimal central
indempotent in Hn defined by ker(7r^) = (1 - zλ)Hn . For each t G
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EF™

FIGURE 0.1. Bratteli diagram for An

T(λ), let pt be the orthogonal projection of Vλ onto Cί. Since πλ is
an isomoφhism of zλHn onto End(J^), pt may also be regarded as
an element of zλHn . The idempotent pt can be evaluated inductively
in the following way. Let r G Tn_χ. Using the definition of the
representations πχ and the restriction rule (0.1), one obtains

t 0 otherwise.

Since one can show that a^t^-i) Φ ad(s,n-i) f ° r a nY t w o extensions
t Φ s of r, one can compute the ^ ' s as spectral idempotents of
pren-\pr namely if r — t1, then

n Pr^n-lPr " ^d(s,n-\)Pr

s

 ad(t,n-l) ~ ad{s,n-\)

where the product is over all s eTn such that s φt but s' = tf = r.
It is important to observe that for the Temperley-Lieb algebra one

needs to take into consideration only tableaux belonging to diagrams
with two rows at the most. In this case, there is at most one tableau
s such that s ^ t but s' = f = r, so one obtains path idempotents pt

in the Temperley-Lieb algebra as follows:

Pt = p r if T has only one extension, and

ad(t,n-\) ~ ad(s,n-l)
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Furthermore, either a^t,n-\) = 0 or a</(5>/,_i) = 0, so the latter for-
mula becomes

Pi = (ad(t,n-l))~lPren-lPr if Λ</(/,Λ-l) Φ 0,

Pt=Pr- {ad{s,n-\))~lPren-\Pr otherwise.

It is evident that these formulas are evaluable in An(q) if q is not
a root of unity. In the following section, we shall show that certain
of the path idempotents are still evaluable when q is a root of unity,
and moreover, even when the individual path idempotents are not
evaluable, certain sums of them are still evaluable.

1. Path idempotents and nilpotents. In this section and the next, q
will denote a fixed primitive /th root of unity (/ > 3). We collect here
various preliminary results needed for our analysis of the Temperley-
Lieb algebras An(q). Recall that an element of the generic Temperley-
Lieb algebra An is called evaluable if it is a linear combination of
words in the generators e, with rational coefficients having no poles at
q. Our method is to identify idempotents, matrix units, and nilpotents
in An(q) by analyzing evaluable elements in An .

With this in mind, we adopt the following convention: two evalu-
able idempotents e, f in An will be called equivalent only //there
is an equivalence between them which is implemented by evaluable
elements; that is, there exist evaluable u, υ in An such that e = uv
and f = vu.

We will also need the following definitions:

DEFINITIONS, (a) A diagram λ is called critical if w(λ) = λ\ — A2 +1
is divisible by /. The mth critical line on the Bratteli diagram for
the generic Temperley-Lieb algebra is the line containing the diagrams
{λ: w(λ) = ml} (see Figure 1.1). A tableau t of shape λ is called
critical if λ is a critical diagram. We refer to the largest proper critical
subtableau of / (if any) simply as the critical subtableau of t.

(b) If a tableau t has a proper critical subtableau, then the conjugate
1 of t is defined to be the tableau obtained by leaving the critical
subtableau r of t invariant and by reflecting t\r in the critical line
containing the endpoint of r (if this reflection exists); see Figure 1.2
on p. 318. For any tableau t, we define P[t] = pt + Pj if Ί exists;
otherwise we set P[t] = pt.

(c) We say a critical tableau / is evaluable if ρt is evaluable. We
say that a non-critical tableau is evaluable if P[t] is evaluable.
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FIGURE 1.1. Critical lines

(d) A tableau t is called regular if any two successive critical dia-
grams on t are on different critical lines.

REMARKS. 1. We will see eventually that every regular tableau is
evaluable.

2. There is one instance in which t has a proper critical subtableau
but 1 does not exist, namely if the endpoint of the critical subtableau
is on the first critical line, and the endpoint of t is on the second
critical line.

LEMMA 1.1. Let t = ([1], λ&, . . . , λW = λ) be a tableau with no
proper critical subtableau (i.e. such that w(λ®) < I for I < i < k-l).
Then t is evaluable. Furthermore, if t and s are two such tableaux
of the same shape, then pt is equivalent to ps.

Proof. The proof, which goes by induction on k, is the same as
in the generic case, and is contained in [W2]. The interpolation
formula for pt from [W2] is pt = {βd)~XPt'ek-\Ptl > 0 Γ Pt = Pt' —
{9>dYXPt'ek-\Pt' > where d satisfies \d\ < I - 2 or d = 1 - /. In each
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FIGURE 1.2. Conjugate tableaux

case, ad is non-zero and non-singular at q, so if ρt> is evaluable at
q, then so is pt. If t and s are two such tableaux of shape λ, then
one can be obtained from the other by applying a sequence of adjacent
transpositions σz, with 2 < i < k - \. Therefore it suffices to con-
sider the case that s = σf (ί) for some such i. The equivalence is then
implemented by u = l/(ada_d)pteips, i> = / ^ A , with d = d(t, i).

LEMMA 1.2 (Little Diamond Lemma). Let r be an evaluable critical
tableau of shape μ and length k. Set λ = μ + [ l , 1]. Lei s denote the
unique tableau of length k + 2 extending r and ending at λ for which
t = σk(s) is standard. (See Figure 1.3.) Then there exists a 3-by-3
system ofevaluable matrix units in A ^ Ί with the diagonal units equal
to pty prek+\ and pr(\ -ek+{)zλ. In particular przλ is evaluable.

Proof. The three dimensional subspace V of Vλ spanned by s, s,
and t is invariant under the action of e^, ^ + 1 and pr. Set u =
(1 — pr)ekek+\Pr and w* = e^iPrβ^l -pr) Computation with the
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FIGURE 1.3. Little Diamond Lemma

matrix representatives on V show that

1
Pt = a±mlaml±la-{ml±\)

1
j

a±mlaml±\a-{ml±\)

-UU while

U.

Since a±m\ has a simple pole at x = q while the product fl
has a simple zero, it follows that pt is evaluable and equivalent to

A similar computation shows that pr(ί - ek+x)zλ is evaluable and
equivalent to pt. Finally, the sum przλ — prek+x + przλ(l - ekΛ.]) is
evaluable. D

LEMMA 1.3 (Interpolation Lemma). Let t be a tableau with evalu-
able critical subtableau r. Then:

(a) P[t] is evaluable. In particular, if r ends on the first critical line
and t ends on the second critical line, then pt is evaluable.

(b) Let s be another tableau with the same critical subtableau r and
the same shape as t. Then pίS] and P[t] are equivalent.

Proof, (a) Write t = ( [ l ] ? λ ( 2 ) , . . . , λ™), and let k denote the
length of the critical subtableau r. Suppose that r ends on the rath
critical line at the diagram μ. Also, suppose without loss of gener-
ality that λ^ is weakly to the right of the rath critical line; that is,
w(λW)>ml.

We proceed by induction on n - f e . If w - f e = 1, then p^ = pr,
which is evaluable by hypothesis. If n-k — 2, then p[t] = prz^μ+[χ ? ^
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or p[t] = pr{\ — Z(μ+[\ i])) in either case, P[t] is evaluable by Lemma
1.2. Suppose now that n-k>?> and that p^ is evaluable.

Case 1. λW =A("-2) + [J.? 1].
Set d = d(t, n - 1) and d = d(Ί, n -1). Then a^ and aj are non-

zero and non-singular at q, and a^q) = a^(q). Let s be the unique
tableau such that s ψ t and sf = t', and consider the space V with
basis {?, 7, f, $•} . (If m = 1 and s ends on the second critical line,
then s does not exit; in this case take instead V = span{7, t, s} .) On
V, the element E = p^en^ιp^ has matrix diag(0, a^, a^, 0) (resp.
diag(α^, α^, 0) in the special case). Moreover, observe that p[t] is
given by the matrix diag(0, 1, 1,0) (resp. diag(l, 1,0)). Hence it
follows that

Pit] = (ad<*3)-ι((<*d + "7i)E ~ E2),

so P[t] is evaluable.

Case 2. λ^ = λ^2) + [2,0] or λ(n) = λ^n~^ + [ 0 , 2 ] .

With s defined as above, P[S] is evaluable by Case 1, and thus
p^ = py^ — p^ is evaluable. In the special case that m = 1 and
t ends on the second critical line, observe that 7 is not defined but
pt = p^/j -p[S], so pt is evaluable.

(b) Our assumptions imply that s exists if and only if 7 exists;
suppose this is so, the other case being similar. Now the proof is
essentially the same as that of the equivalence statement in Lemma
1.1, except that we will have to adjust our initial choice w, w* for
elements implementing the equivalence because the representing ma-
trices for u*u and ww* have two distinct non-zero eigenvalues.

The tableau s can be obtained from t by applying a sequence of
adjacent transpositions. Therefore it suffices to suppose that s = σ, (ί)
for some i. Set u* = P[t\^iP[s] a n d u — P[s]^iP[t] O n the space with
basis {s, 7, t, s}, the element u*u has matrix diag(0, c_ , c+, 0) and
uu* has matrix diag(c_, 0, 0, c+), where the rational functions c_
and c+ are non-zero and non-singular q. It follows that

(c-c+)~ι(u*u - c-){u*u - c+)(p[s] +p[t]) = p[s].

Expanding this and solving for p[q gives

p[t] = u*υ and P[S] = vu*,

where v = -(c-C+)~ι(uu*u - (c_ + c+)u).
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FIGURE 1.4

COROLLARY 1.4. Let r be an evaluable critical tableau of length k
and shape μ. Set λ = μ + [1, 1]. Consider the six extensions of r of
length k + 3 which end at μ + [2, 1] oratμ + [l,2], and let t denote
the leftmost of these extensions in Figure 1.4. Then there is a 3-by-3
system of evaluable matrix units in Ak+>$ with diagonal matrix units
p[t], prek+ι, and pr(l - ek+x)zλ.

Proof. Observe that przλ and p[t] are evaluable by Lemmas 1.2
and 1.3. One obtains the equivalences by the same computations as
in Lemma 1.2, where one has to add a correction term for the matrix
units as in Lemma 1.3(b). D

The following lemma concerns a rational function which appears as
the trace of a certain evaluable essential idempotent in the Temperley-
Lieb algebra over C(x). We need to show that this quantity is non-
zero and non-singular at x = q in order to know that the evluation
of the algebra element at x = q is still an essential idempotent.

LEMMA 1.5. Fix m>\. The function

Tk = (βml-\a\-mia-mί)k~X a-ml + (^

has a removable singularity at q, and

where τ = q/(\ + q)2. In particular Tk(q) Φ 0 for k > 3.

Proof. It suffices to prove this for m = 1 since the /th root of
unity q is in particular an ra/th root of unity. Let tk denote the
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quantity τk(q + 4 - 2k + q~ι). We find a recursion for Tk and for
tk. First T\ = a\ + a_\ = 1 = t\. Denote Z>_ = a\__\a\_\a_ι and
D + = α/+1α_(/+i)α/. Then 2λ_ and Z>+ are non-singular at q with
value D-(q) = £>+(#) = τ . We have

Now one computes that

(D-D )a.(x)-
{D+ D-Mx)- { ί + χ ) 4 { χ _ χ l ) ,

so that (£>+ - D-)aι(q) = - 2 τ 2 . Assuming inductively that 7^ is
non-singular at q and that T^q) = tk, we obtain that Tk+X is non-
singular as well and

Because 0 < lί + ί"1! < 2, the quantity tk is non-zero for all
k>3. Π

LEMMA 1.6 (Big Diamond Lemma). Let t be a tableau such that
both t and its critical subtableau r end on the same critical line. Sup-
pose that pr is evaluable. Then p^ dominates an evaluable minimal
idempotent f whose matrix coefficients on the space with basis {7, t}
all have simple poles x = q.

Proof. Suppose that r ends at the diagram μ of size k on the mth
critical line and that t ends at μ + [n, n]. We consider first instead
of the original t the following zig-zag path s (see Figure 1.5):

s = (Γ, μ^ι\ . . . , μ(k+2"ϊ = λ + [n, n])9

where

μ + [j+ 1 , 7 - 1 ] for 1 < j < n - 1,

μ(k+2j+i) = μ + [j+l9j] f o r 0 < j < n - 1.

We show that P[S] dominates an evaluable minimal idempotent p
whose matrix coefficients on the space spanned by {s, s} have simple
poles at x = q. Define

w = (ek+iejc+3 ' * * e*+2n-l)(e*+2e*+4 * * *k+2n-2)P[s]
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^+[4,4]

FIGURE 1.5. Big Diamond Lemma

and

The matrix of w*w on the space with basis {s, s} is

where the off-diagonal entries are the square root of the product of the
diagonal entries. The trace of this matrix is the rational function Tn

of Lemma 1.5, which is non-zero and non-singular at q. Therefore
p := T~ιw*w is a minimal idempotent with the desired properties.

Rewrite the matrix of p as [ j ^ ] .

It remains to observe that the equivalence between P[S] and P[t]
which is given by Lemma 1.3(b) preserves thτ poles of the matrix
representatives. For this, note that the matrices of the implementing
elements u, w* on the space spanned by {7, s, s, t} are of the form

"0

u
0

<*_
0

0
a+

0
0

and w* = a

0
-1

0
0

0
0

ot
- 1

0
where a± are rational functions which are non-zero and non-singular
at q. A simple matrix computation shows that / = upu* has the
desired properties. D

Several of our lemmas have hypothesized an evaluable critical
tableau, but so far the only such tableaux which we have in hand are
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those provided by Lemmas 1.1 and 1.3(a). We are now in the posi-
tion to produce a sufficient family of evaluable critical tableaux of any
critical shape. Recall that a tableau is called regular if its successive
critical diagrams lie on different critical lines.

LEMMA 1.7. (a) Every regular critical tableau is evaluable.
(b) If s and t are regular critical tableaux with the same critical

subtableau and the same shape, then ps and pt are equivalent.

Proof. The proof of (a) is by induction on the number of critical
diagrams on the tableau t. If this number is one or two, the conclu-
sion follows from Lemmas 1.1 and 1.3(a). So suppose that t has at
least three critical diagrams and that every regular critical tableau with
fewer critical diagrams is evaluable.

Consider the case that t = ([1], λ^ 9 ... , λ^ = λ) has its last three
critical diagrams λ^ , λ^ , and λ^ = λ on the rath, (ra± l)st, and
rath critical lines. We can assume that 1 exists, since otherwise the
desired conclusion follows from the induction hypothesis and Lemma
1.3(a). Set s = σ, (ί). See Figure 1.6. By the induction hypothesis
and Lemma 1.3, both p[S] and p[q are evaluable and by Lemma 1.6,
P[S] dominates an evaluable minimal idempotent / whose matrix co-
efficients on the space with basis {s, s} have simple poles at x = q.

Let b denote the matrix coefficient, psfps = bps. Define u =
fejP[t] and w* = P[t\ejf. Computation with the matrix representa-
tives of / , βj, and P[t] on the space with basis {s, s9 t9 t} shows
that

pt = T u*u and / = •=- uu*.

Since b has a simple pole at x = q while the product fl(W±i)/τi x
β-((m±i)/=Fi) h a s a simple zero, it follows that pt is evaluable and
equivalent to / .

If the last three critical diagrams on t are all on different critical
lines, then 1 is evaluable by the previous case, while P[t] is evaluable
by the induction hypothesis and Lemma 1.3, so pt is also evaluable.

For part (b), note that s can be obtained from t by applying Ά
sequence of adjacent transpositions; the same proof as in Lemma 1.1
shows that ps and pt are equivalent. D

LEMMA 1.8. Fix m > 1 and let t be the unique tableau of shape
X = [(m + ! ) / - ! , / ] which passes through the diagram [(ra + 1)/ - 1].
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FIGURE 1.6

Then pt is equivalent to pr where r is a tableau of shape λ
critical subtableau of shape [(m - 1)1 - 1].

with

Proof. Set s = σ^m+^ι_χ{t) and r = σmι_γ(s). Both pt and pr are
evaluable by Lemma 1.7. Moreover, by the argument of Lemma 1.7,
both are equivalent to / , where / is the evaluable minimal idempo-
tent dominated by p[S] which is given by Lemma 1.6. D

Let t be a non-critical tableau of length n with a critical tableau r
of length k. In the generic algebra, the element p^e^p^] is an essen-
tial idempotent, in fact essentially pt or p-t. However, the evaluation
of such elements in An(g) gives non-zero nilpotents of order 2 which
moreover are contained in the radical of An(q).
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LEMMA 1.9 (Nilpotent elements). Let t be a non-critical tableau with
critical subtableau of shape [ml-I] for some ra > 1. Assume that the
endpoint of t is to the left of the mth critical line. Write e = emι_x,
s = σml_x{t), and n[t] = P[t]ep[t].

(a) nm(q)ϊ0 but n[t](q)2 = 0.
(b) P[t]Anp[t](q) is two dimensional, isomorphic to C[x]/(x2).
(c) P[t]Anp[s](q) and p[s]Anp[t](q) are one dimensional.
(d) p[t]Anp[s]Anp[t](q) = Cn[t](q) and

( (0) ifm = 1
P[s]AnP[t]Anp[S](q) = <1 J ι J L J I Cn[S](q) otherwise.

(e) n[t]p[t]Anp[s](q) = p[s]Anp[t]n[t](q) = (0). // m > 1, then

P[t]AnP[s]n[s]{q) = n[s]p[s]Anp[t](q) = (0).

Proof. The idempotents P[t] and P[S] are evaluable by Lemmas
1.7 and 1.3. For part (a), note that P\t\ep\t\ = P&Pt = ami-\Pt> so
(/V]£/fy])2 = ami-\P[t]eP[t] - This last relation can be evaluated at q
and gives (P[t]ekP[t])2{q) = 0. To see that P[t]ep[t](q) Φ 0, let Γ be
an extension of / ending on the mth critical line and also having
critical subtableau of shape [ml - 1]. Let / be an evaluable minimal
idempotent dominated by P[j] whose matrix coefficients with respect
to the basis {Γ, T} have simple poles at x = q let b denote the ma-
trix coefficient, pτfPτ = bpτ. Note that f{p[t]ep[t])f = a^^fpj =
ami-\fPτf = ami-\bf'. Since am\_\b is neither zero nor singular at
Q, f(P[t]ekP[t])f(4) = aml-xbf{q) ^ 0.

(b) It follows from constancy of dimension that P[ί];4«/ty](#) is two
dimensional, so that {/?[,], «[,]} is a basis.

(c) Follows from constancy of dimension.
(d) Set u = P[S]ep[t] and w* = /fyje/fc]. By the calculation of part

(a), we have αw/_iΛ = % ] , so that w*w = ptepsept = aml_xax_mιpt =
ai-min[t]- Now evaluating at x = # gives u*u(q) = %](#). In
particular, t/(#) and u*(q) are non-zero. If m = 1, then /?5 is
evaluable, and uu* = psepteps = CLm\-\a2-miPs - Evaluating this at
Λ: = # gives uu*(q) = 0. If m > 1, then ww* = tfm/-i<Zi-m/Λ .=

C^Cm-i)/-!)'1^] - Evaluating this at x = ̂  gives ww*(̂ ) =

(e) It follows from calculations similar to those in part (d) that
= un[t](<l) = 0, and, if m > 1, then also u*n[S](q) =
0. Π
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2. The structure of An(q). In this section we will complete the
analysis of the structure of the Temperley-Lieb algebras An(q) at a
primitive /th root of unity q (I > 3). The first step is to identify
idempotents which map to the minimal central idempotents in the
maximal semisimple quotient of An(q), and to analyze the reduction
of An(q) by these idempotents.

Let λ be a diagram between the mth and m + 1st critical line.
Partition the set T(λ) of tableaux of shape λ into the classes L(λ)
and R(λ), which consist of those tableaux t whose critical subtableau
ends in the mth (for L{λ)), or in the m + 1st critical line (for R(λ)).
If m = 0, then L(λ) consists of those tableaux of shape λ having no
intersection with a critical line. Let fχ, ff, and fχ denote the
cardinalities of T(λ), R(λ), and L(λ) respectively. Define

and zL

λ = ] [ > m : t eL(λ)}.

The summands in these expressions are not necessarily evaluable. Ob-
serve that if μ is the image of λ under the reflection in the m + 1st
critical line, we have zf = z^ and ff = f^. The summation
formula for fχ given in the introduction can be obtained as fol-
lows: fχ = fχ- ff = fχ — fjΐ\ iterating this step gives the formula

ft = fχ-U + -
We are going to show that

{zχ(q): λ non-critical and \λ\ = n} U {zχ(q): λ critical and |Λ| = n}

are all the minimal central idempotents of An(q) modulo its radical
and that the corresponding simple components are isomorphic to fχ x
fχ (resp. fχx fχ) matrix rings over C.

We shall need some more notation for the inductive proof of this
statement. Observe that any diagram λ with two rows has at most two
subdiagrams with one box less. We use the notation a = λ-[l, 0] (the
left subdiagram) and β = λ - [0, 1] (the right subdiagram), whenever
these diagrams exist. Obviously, we have the identities

fλ = fa + fβ 9

and, if both a and β are noncritical,

If a is critical, then

ΛL = /α + // and Jf = //.
and similarly if β is critical.
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In the following proposition we will construct a semisimple subal-
gebra of An(q) which will turn out to be an isomorphic lifting of the
maximum semisimple quotient of An(q). We do not work directly
in An(q) but rather with evaluable elements of An . To construct the
semisimple subalgebra, we assume inductively that we have a partition
of unity of mutually orthogonal evaluable idempotents of An_\ and
sufficiently many evaluable matrix units connecting them. Further-
more, we assume that each of the equivalence classes of idempotents
contains an evaluable path idempotent pt or P[q corresponding to a
regular path t. Then by "refining" these path idempotents and apply-
ing the lemmas of the previous section, we obtain a partition of unity
in An with the same properties. Thus the inductive construction of
the semisimple lifting is analogous to the proof of irreducibility of the
representations πχ which we sketched in §0.3.

We recall our convention that equivalence of evaluable idempotents
in An means equivalence implemented by evaluable elements.

PROPOSITION 2.1. (a)Ifλ is a critical diagram, then zλ has a parti-
tion of unity consisting of fχ mutually orthogonal mutually equivalent
evaluable idempotents, among them at least one pt such that t is reg-
ular of shape λ. Moreover, for any two regular tableaux s, t of shape
λ, ps is equivalent to pt.

(b) If λ is non-critical then z^ has a partition of unity consisting of
f£ mutually orthogonal mutually equivalent evaluable idempotents,
among them at least one p[t] for a regular t e L(λ). Moreover, if s
and t are two such tableaux, then P[S] and P[t] are equivalent

Proof. The proof is by induction on the size of the diagram λ.
The statements hold for all diagrams with one row by Lemmas 1.7(a)
and 1.3(a), and for all diagrams to the left of the first critical line by
Lemma 1.1. We assume that they hold for all diagrams of size less then
\λ\, that λ has a non-zero second part, and that λ is on or to the right
of the first critical line. It suffices to produce the required number
of mutually orthogonal, mutually equivalent evaluable idempotents
dominated by zλ (resp. zf), including those of the specified types,
since the sum of these is then necessarily equal to zλ (resp. zf).

First consider a diagram λ on the mth critical line. Set μ =
λ - [1, 1], and let r and t be tableaux of shape μ and λ respec-
tively whose critical subtableaux are of shape [(ra - 1)1 - 1] (or, if
m = 1, which have no proper critical subtableaux). These are regular,
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so evaluable by Lemma 1.1 or 1.7. By the induction assumption and
Lemma 1.1 or Lemma 1.3(b), z£ has a partition of unity consisting of
f% mutually orthogonal, mutually equivalent evaluable idempotents
in An_ι, including p^t^. From this we obtain the same number of
mutually orthogonal, mutually equivalent idempotents in An, dom-
inated by z%zλ, and including pt namely, if {wy} is a system of
evaluable matrix units with u\\ = p^^, then {Vij = Ui\ptu\j) is such
a system with v\\ = pt. By Lemmas 1.7(b) and 1.2, pt is equivalent
to both pren-\ and pr(l - en-\)zλ. Using this and the induction hy-
pothesis for Zμ, we obtain 2fμ = 2f* mutually orthogonal, mutually
equivalent evaluable idempotents in An dominated by z§zλ, and all
equivalent to pt. If λι < I, this suffices, since ff = 0. Now suppose
λi = / then fj* = l9 corresponding to the unique tableau s of shape
λ with critical subtableau of shape [(m + 1)1 - 1]. The idempotent
ps is evaluable by Lemma 1.7 and equivalent to pt by Lemmas 1.7(b)
and 1.8. Finally, suppose A2 > /. Using the induction assumption for
z^ (which is the same as z~, where β is the reflection of β in the

(m + l)st critical line), and arguing as above, we obtain fjf mutually
orthogonal, mutually equivalent evaluable idempotents dominated by
z^zλ, and all equivalent to Pfen-\, where f is some tableau of shape
μ with critical subtableau of shape [ ( m + l ) / ~ l ] . But pr is equivalent
to Pf in An_2 by the induction assumption, so pfen-\ is equivalent
to pren-\ and hence to pt in An .

We now know that zλ is evaluable and has the required partition
of unity; it remains only to verify the statement regarding equivalence
of idempotents corresponding to regular tableaux. For two regular
tableaux s and t both coming from the left or both from the right,
equivalence of ps and pt follows from the equivalence of p^s^ and
/?^'j, which is given by the induction hypothesis, together with the
equalities ps = zχp^^ and pt = zχp^t'^ and the centrality of zλ. On
the other hand, we already showed the equivalence of ps and pt for
two particular regular tableaux s and /, one coming from the left and
one coming from the right.

Next we consider the case that λ is non-critical. In case the prede-
cessor β of λ is critical, both the existence of the required partition
of unity and the statement regarding equivalence of idempotents fol-
low from the induction statement applied to z£. Suppose next that
a is critical. From the induction hypothesis applied to za = z^za,
we obtain fa mutually orthogonal mutually equivalent evaluable
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idempotents dominated by z^za. Furthermore, using the induction
hypothesis, Lemma 1.2 and Corollary 1.4, we see that each of these
is equivalent to P[t], where t is regular and has critical subtableau of
shape a - [1, 1]. From the induction hypothesis applied to z£, we
obtain a collection of fjf mutually equivalent, mutually orthogonal
evaluable idempotents dominated by z^z^, including P[t]. This gives
the required partition of unity and the evaluability of zf. Finally,
the equivalence statement is obtained as before from the induction
hypothesis, the centrality of zf in (za + zjj)An(za + z^), and the
equivalence, known from Corollary 1.4, between p[ιS] and P[t] for two
particular s and t, with s1 G T(a) and t1 e L(β).

The last case to consider is that the diagrams λ, α, and β are
all non-critical. Let t be any regular tableau of shape λ such that
f e L(a), and f has shape μ = λ - [1, 1]. Set s = σw_i(ί), so
that sf E L(β). Then all of the idempotents P[t], p^, p[S], and p[s^
are evaluable by the induction hypothesis and Lemma 1.3(a), and P[t]
and P[S] are equivalent by Lemma 1.3(b). The induction assumption
gives fa mutually equivalent, mutually orthogonal evaluable idempo-
tents dominated by z^zj^, including p^, and fjf such idempotents
dominated by zjjzf, including p M . This gives the desired partition
of unity and the evaluability of z%. The equivalence statement is
proved as before. D

THEOREM 2.2. (a) If λ is a critical diagram, then zλ is evaluable
at q, and is a minimal central idempotent in An(q)d. Furthermore
zλAn(q)^Mfλ.

Suppose now that λ is a non-critical diagram. Then:
(b) zf is evaluable at q.
(c) If λ is to the left of the first critical line, then z^Anz^{q) = MfL.

(d) Otherwise, zL

χAnz
L

λ{q) = {[ J J ] : A, B e M ^ } .

Proof. From Proposition 2.1, we obtain for each critical diagram
λ an fx-hy-fx system of matrix units in An{q) dominated by zλ(q),
and for each non-critical diagram λ an ff-by- fχ system dominated
by zf (q). If λ is critical, then dim(zλAn(q)) = fj by the principle
of constancy of dimension, and therefore zλAn(q) = Mf . Similarly,
if λ is to the left of the first critical line, then z^Anz^(q) = M^L .
If λ is between the rath and (ra + l)st critical lines for ra > 1,
then dim(z%Anz%(q)) = 2(fχ)2 , and the system of matrix units {UΪJ}
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in z^Anz^(q) can be chosen such that U\\ = P[t](q), where t is a
(necessarily evaluable) tableau of shape λ with critical subtableau of
shape [ml - 1]. Now n := P[t]emi-\P[t] is a non-zero nilpotent of
order 2 by Lemma 1.9. It follows that N := Σ w / i Λ M i / *s a non-zero
nilpotent of order 2 commuting with all w, 7 . Thus the subalgebra of
z^Anz^(q) generated by N and the matrix units Uij is isomorphic to
MJ-L ® C[x]/(x2) — {[β^]' A, B e My*} . Because of the dimension
constraint, this is all of z^Anz^(q). D

We can now finish the description of the blocks, the radical, and the
maximal semisimple quotient of An(q). We know that for a critical
diagram λ of size n, zχ(q) is a minimal central idempotent in An(q),
and zλAn(q) = M,L . Now consider an orbit [λ] of a non-critical

diagram under the action of A[{) . Note first that
zμ= 1^ zμ

μe[λ] μe[λ]

is an evaluable central idempotent. We will show that z^An{q) is a
block of An(q). If μ, v e [λ] are adjacent (that is, if they are in adja-
cent fundamental intervals for the AL^ action), then dim(z^Anz{;(q))
— fμfv > while if μ and v are not adjacent, then zj^Anz{;(q) = (0),
by constancy of dimension. Furthermore, using Lemma 1.9 and the
results of this section, one has for adjacent diagrams μ, v ,

zL

μAnzϊ{q)τaά{zΪAnzϊ{q)) = mά{zL

μAnz
L

μ{q))zL

μAnzϊ{q) = (0),

and as a MfL-MfL bimodule, zμAnz^(q) is isomorphic to the space

of fμ-by-ff matrices. Moreover,

μ^inzuΛnzμ\q) — τά<d{ZμΆnZμ {q)).

It follows that

% ] : = Θ ziAn4(q) θ φ ™d(zL

μAnz
L

μ(q))
μ,ve[λ] μe[λ]

μ, v adjacent

is a nilpotent ideal in z^An(q). But the quotient is semisimple:

z[λ]An(q)/R[λ] = φ zL

μAnz
L

μ{q)lrzά{zL

μAnz
L

μ{q)) = φ M ^ ,
μe[λ] μe[λ]

so in fact i?μj is the radical of zwAn(q). Since the zμ(q) are mini-
mal central idempotents modulo the radical, it follows that any central
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idempotent in z^An{q) is a sum of certain of these plus an element
of i?μj. But one easily checks that no such element is a central idem-
potent, other than z^{q). To summarize:

THEOREM 2.3. If λ is a non-critical diagram, then zμ^(q) is a
minimal central idempotent in An(q). The radical of z^An(q) is
nilpotent of exponent 3 and is spanned by the spaces z^Anz^(q) for
pairs of adjacent diagrams μ,v in the orbit [λ] and by the algebras
rad(ZμAnZμ(q)) for μ e [λ]. The maximal semisimple quotient of
z[λ]An(q) is isomorphic to ®μe[λ]MfL.

For each ζ e C\{-1}, one has a representation of An(ζ) on (C 2 ) 0 W

defined as follows. Define E(ζ) e End(C2 ® C2) by

E{ζ) = γ^Γζi&n ® β22 + β22 ® εn + ζεn Θ e2i + β2i

and for 1 < i < n - l , l e t E, (C) = /® -®I®E(ζ)®- - ®/5 where E(ζ)
acts in the zth and (/+ l)st tensor places. Then πζi e\ ι-> Eι defines
a representation of An(ζ). This representation was introduced by
Temperley and Lieb and was later rediscovered by Pimsner and Popa
[PP] in their study of the Jones index. The operator E(ζ) is a spectral
idempotent for the R matrix for the quantum universal enveloping
algebra of sl(2) in its vector representation.

THEOREM 2.4. The representation πζ of An{ζ) on (C2)m is faithful
for all ζ Φ - 1 . The dimension of Uζ{An{ζ)) is the Catalan number
Cn.

Proof. This is known for ζ not a root of unity, but we include
a proof of this case as well. The faithfulness of the representation
for ζ = 1 follows from the representation theory of the symmetric
group on tensor space. If p is any idempotent in the C(x)-algebra
An, then p is evaluable at all but finitely many complex numbers
and ζ *-• 7tζ(p) is a continuous family of idempotents in End((C2)<g)W)
on the complement of this finite set, hence of constant rank. For all
Young diagrams λ with no more than two rows and for all ζ not a
root of unity, zλ is evaluable at ζ and zλ(ζ) is a minimal central
idempotent in the semisimple algebra An(ζ). Since n\{zλ) is non-
zero, so is 7tζ(zλ) for all such ζ . Therefore πζ is faithful on An{ζ)
for ζ not a root of unity.

Now consider the primitive /th root of unity q. If p is any idem-
potent in the C(x)-algebra evaluable at q, then p is also evaluable at
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ζ in a neighborhood of q. Because πζ is faithful and thus 7tζ(p) φθ
for ζ in a deleted neighborhood of q, it follows by constancy of rank
that πq(p) Φ 0 as well. This implies that πq is faithful on a lifting
of the maximal semisimple quotient of An(q).

Let λ be a non-critical diagram, t a regular tableau of shape λ,
and Π[t](q) a non-zero nilpotent in the two dimensional algebra
P[t]Anp[q(q). The proof of Lemma 1.9 shows that there is an evaluable
minimal idempotent / in AN for some N > n such that fri[t]f(q)
is a non-zero multiple of f(q). The representations πq inter-
twine the usual imbeddings of An(q) in A^(q) and of End((C2)Θ w) in
End((C 2)Θ i V), so πg(f) φ 0 implies that πq(n[t]) φ 0. Now for any
non-zero element in τad(An(q)), the ideal generated by this element
in An(q) contains an element of the form Π[t]. Hence πq is faithful
on τad(An(g)).

The statement regarding dimensions results from Proposition
0.1. α

It is also possible to give a short combinatorial proof of the faith-
fulness of the representation on tensor space which does not rely upon
our structure theorem.
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