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BERGMAN AND HARDY SPACES
WITH SMALL EXPONENTS

KEHE ZHU

We show that for each 0 < p < 1 the dual space of the Hardy
and weighted Bergman space on the open unit hall is isomorphic to
the Bloch space (with equivalent norms) under certain volume integral
pairing.

1. Introduction. We present a new approach to an old problem,
namely, the problem of describing the continuous linear functionals
on the Bergman and Hardy spaces with 0 < p < 1. We restrict our
attention to the open unit ball in Cn, even though our approach has
the potential to generalize to bounded symmetric domains.

Let Bn be the open unit ball in Cn with boundary dBn. Let H(Bn)
denote the space of all holomorphic functions in Bn. For 0 < p < +oo
and a > - 1 we let

Lp(Bn, dυa) = H(Bn) n Lp(Bn, dυa)

denoted the weighted Bergman space, where

dva(z) = Ca(l-\z\2)adv(z).

Here dv is volume measure on Bn and Ca a normalizing constant
so that dva has total mass 1. For / e Lp

a(Bn, dυa) we write

\f(z)\pdva(z)/
B

A linear functional F on Lp

a(Bn, dυa) is bounded if there exists a
constant C > 0 such that \F(f)\<C\\f\\a9p for all / in Lp

a(Bn, dυa).
The dual space of LPa{Bn, dva), denoted Lp

a(Bn, dva)*, consists of all
bounded linear functionals on Lp

a{Bn, dva). For each 0 < p < +oo
the space Lp

a{Bn, dva)* is a Banach space with the norm

Note that Lp

a(Bn, dva) itself is not a Banach space when 0 < p < 1
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For 0 < p < +00 we let Hp{Bn) denote the Hardy space consisting
of holomorphic functions / in Bn such that

11/11//'= sup I"/ \f(rw)\p dσ(w)\ <+oo,
0<r<l \JdB

where dσ is the normalized Euclidean measure on dBn. For 0 <
p < +00 we let Hp(Bn)* denote the dual space of Hp(Bn) consisting
of linear functional F on Hp(Bn) such that

Again Hp(Bn)* is a Banach space with the above norm for each 0 <
p < +00, even though Hp(Bn) itself is not a Banach space when
0<p< 1.

The dual space of Hp(Bn) for 0 < p < 1 has been studied by
several authors. In the one dimensional case Romberg [8] described
the dual of Hp for all p e (0, 1) except p = l/(k + 1) (where k
is any positive integer). Duren, Romberg, and Shields [5] completed
the characterization of the dual of Hp for all 0 < p < 1 in the case
n = 1. They described the dual of Hp of the unit disk in terms of
the Lipschitz spaces and the Zygmund class. These results were then
generalized to the polydisk by Frazier [6] and to the unit ball by Hahn
and Mitchell [7]. The basic ideas and constructions in these papers
are somewhat similar. See [4] for more information on Hp of the
disk with 0 < p < 1.

Shapiro [10] gave a different and quite general approach to the du-
ality problem of Bergman and Hardy spaces with 0 < p < 1. The
results in [10] were stated and proved for the disk, but it is clear
that some techniques and ideas there work in more general situations.
Shapiro's approach, based on the notion of Mackey topologies, is more
geometric.

Coifman and Rochberg [2] also considered the duality problem for
weighted Bergman spaces with small exponents. Their arguments were
based on the theory of atomic decomposition for certain classes of
holomorphic functions.

Our formulation of the duality and the method of approach are
different from the ones mentioned above, the main difference being
in the duality pairing. Let &(Bn) denote the Bloch space of Bn

consisting of holomorphic functions / in Bn with

11/II* = 1/(0)1 + sup{(l - |z | 2) |V/(z) | : z 6 ί Λ } < + o o ,
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where V/(z) = (df(z)/dzx, ... , df(z)/dzn) is the complex gradi-
ent of / at z, and

It is well known that &(Bn) is a Banach space with the above norm.
We describe the dual spaces of Lp

a(Bn, dυa) and Hp(Bn) for 0 < p <
1 in terms of the Bloch functions. Our main results are Theorems 5
and 6, stated below as Theorems A and B, respectively.

THEOREM A. Suppose 0 < p < 1, a > - 1 , and β = (n+l+a)/p-
(n + 1). Then the dual space of Lp

a(Bn, dva) is isomorphic to
(with equivalent norms) under the duality pairing

(f,g)= lim / f(rz)J(z)(l-\z\2)fidv(z),

feLp(Bn,dva), ge^(Bn).

THEOREM B. Suppose 0 < p < 1 and β = (n/p) - (Λ + 1).
ίΛe tffwα/ 0/ Hp(Bn) is isomorphic to 3S{B^) (with equivalent norms)
under the duality pairing

</,*>= lim / /(rz)^)(l-|z|ψ^(z),/
BN

It is likely that experts in this field could deduce the above results
from those obtained in [5], [6], [7], [10]. Nevertheless, we think a
direct proof here is more natural and desirable.

The author thanks P. Duren, B. Korenblum, S. Krantz, D. Luecking,
R. Rochberg, and J. Shapiro for their interest, criticism, and point-
ing out additional references after the first version of the paper was
circulated.

2. A class of fractional derivatives and integrals. In this section we
introduce a certain type of radial fractional derivatives and integrals.
Recall that H(Bn) is the space of all holomorphic functions in Bn .
We equip H(Bn) with the topology of "uniform convergence on com-
pact sets". Thus a linear operator T on H(Bn) is continuous if and
only if Tfk —*- Tf uniformly on compact sets whenever fa -» / uni-
formly on compact sets. For / G H(Bn) and 0 < r < 1 we define fr

in H(Bn) by fr(z)=f(rz).
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THEOREM 1. For each a > -1 there exists a unique linear operator
Da on H(Bn) with the following properties:

(1) Da is continuous on H(Bn).
(2) D*fr(z) = D«f(rz) for all f e H{Bn), 0 < r < 1, and z e Bn.
(3) D?[(l - (z, w))~(n+V] = Cβ(l - (z, w))-(»+l+a) for each w e

Proof. We first prove uniqueness. Given / in H{Bn) and 0 < r < 1
we can write

f fr{w)dv(w)

The above integral converges uniformly for z in any compact subset
of Bn. Thus properties (1) and (3) imply that

Dafr(z)= [

fr{w)dυ{w)

This proves the uniqueness of Da.
To prove existence we first define Da: H°°(Bn) -»• H(Bn) by the

formula

This along with the reproducing property of the Bergman kernel shows
that property (3) holds. Also using homogeneous expansions we easily
obtain Dafr(z) = Daf{rz) for each / e H°°(Bn). Now for a general
/ in H(Bn) we define Daf as follows. For each z eBn there exists
r e (0, 1) and z e Bn such that z = rz. We define Daf{z) =
Dafr(z). (Note that fr e H°°(Bn) and hence Dafr is defined.) To
see that Daf is well-defined, suppose z = r\i\ = rizi with AΊ < r2,
say ri = rri for some r e ( 0 , 1). Since f2 is in H°°(Bn) we have

Thus Daf is well-defined. Furthermore, Daf is holomorphic since
for each r e ( 0 , 1) we have
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Thus Da as defined above maps H(Bn) to H{Bn). The linearity of
Da is obvious. Property (2) follows easily from the definition of Da.
It remains to show that Da is continuous on H(Bn).

Let fk -+ f in H(Bn). It is clear that for each r e (0, 1) we have
fk(rz) —• f(rz) uniformly for z e Bn as k —> +oo. Thus for each
Γ G ( 0 , 1) and A: —• +cx) we have

/fc(v^w;)rft;(ti;)

JB ( 1 -

f(y/rw)dυ(w)

uniformly for z eBn. Since r is arbitrary, we see that
uniformly on each compact subset of Bn . This completes the proof
of Theorem 1.

REMARK. The proof of the above theorem shows that for each α >
- 1 the operator Da is given by

If / in H(Bn) is integrable with respect to volume measure, then it
is clear that

THEOREM 2. For each a > -1 the operator Da is invertible on
H{Bn).

Proof. For each a > - 1 define an operator Da on H{Bn) as fol-
lows.

Daf(z) = hmί { { )

n

Using arguments similar to those in the proof of Theorem 1 we can
show that each Da is a well-defined continuous linear operator on
H(Bn). Moreover, by Fubini's theorem and Proposition 7.1.2 of [9]
we easily check that DaDaf = DaD

af for all f eH°°(Bn). By the
continuity of Da and Da and the density of H°°(Bn) in H{Bn) we
conclude that Da is the inverse of Da on H(Bn) for each a > - 1 .
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REMARK. If a > - 1 and / is in L\{Bn, dva), then we have

-\w\2)°f(w)dυ(w) _ D=/,

We call Da a radial fractional differential operator of order a and
Da a radial fractional integral operator of order a. Note that when
- 1 < a < 0 "integration" here is really "differentiation" and vice
versa.

3. Weighted Bergman spaces. In this section we characterize the
dual of Lp

a{Bn, dva) for each a > - 1 and 0 < p < 1. Recall that

\f(z)\p dva(z) feLp(Bn,dva).

Also recall that for a > - 1 the operator Pa is given by

The proof of the next lemma is due to D. Luecking.

LEMMA 3. For each 0 < p < 1 and a > - 1 there exists a constant
C > 0 such that

W dv{z) < C\\f\\a%p

for all f in Lp

a(Bn, dva).

Proof. Fix z in Bn and let D(z) be the open Euclidean ball in Cn

with center z and radius (1 - \z\)/2. By the subharmonicity of \f\p

we have

^^rπr^ ί
V\DKZ)) JD

ί
D(Z)

Since 1 — |-ιi7| — 1 — |z| for w e /)(z) and υ(D(z)) - (1 - | z | 2 ) w + 1 , it
is easy to find a constant Q > 0 such that

for all / in Lp

a(Bn, dva) and z e Bn. For 0 < p < 1 we can write
\f(z)\ = |/(z)| / > |/(z)| 1~^ and estimate the second factor using the
above inequality. This easily produces the desired result.



BERGMAN AND HARDY SPACES 195

LEMMA 4. Suppose a > -1 and f is holomorphic in Bn. If either
f or the function (\-\z\2)~af(z) is bounded on Bn, then the function
(1 - \z\2)aDaf(z) is in Lι(Bn,dv) and

j f(z)J(z)dv{z) = J D«f{z)J(z){\ - \z\2)°dv{z)

for all g in H°°(Bn).

Proof That the function (1 - \z\2)aDaf(z) is in Lι(Bn,dυ) fol-
lows from the definition of Da and 1.4.10 of [9]. The desired result
then follows from Fubini's theorem and the fact that the operator PQ

reproduces bounded holomorphic functions (see 7.1.2 of [9]). (Note
that the applicability of Fubini's theorem here also follows from 1.4.10
of [9] and the assumption about /.)

THEOREM 5. Suppose 0 < p < 1, a > - 1 , and β = (n + l+a)/p-
(n + 1). Then we have Lp

a{Bn, dυaf ~ 3§{Bn) with

</,*)= lim / f(rz)J(ϊj(\-\z\2γdv(z),
r->l JBn

feLP(Bn>dva), ge^(Bn).

Proof. Fix 0 < p < 1, a > - 1 , and F e Lp

a{Bn, dυa)*. Since
\\f-fr\\a,p -> 0 as r -> I" , we have F(f) = l i m r _ r F(fr) for all
f€Lp

a(Bn,dva). Write

( } ~

Since the above integral converges in Lp
a(Bn , dva), the continuity of

F implies that

Let

Then Λ is holomoφhic in Bn and

/
B
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It follows from the boundedness of F on Lp

a(Bn, dυa) and 1.4.10 of
[9] that Lemma 4 can be applied to obtain (The case β = 0 does not
require the use of Lemma 4.)

F(fr)= ί fr(w)Dβh(w)(l-\w\2γdυ(w),

where

By Property (3) of Theorem 1 we have

Let g = DP/i. Then

F(fr) = /

and

9g . v (Λ + 1 +
dwk

κ ' p

Using 1.4.10 of [9] and the boundedness of F on Lp

a{Bn, dυa) we
easily see that g is in the Bloch space £&(Bn).

On the other hand, if g is in &(Bn), we shall show that the formula

= lim / /r(z)^(i)(l-|z|ψrft;(z), feL*(Bn,dva)
n

well defines a bounded linear functional on Lp

a(Bn, d t ^ ) , where j? =
(n + 1 + α)//? - (Λ + 1). By [1] there exists a function φ e L°°(Bn)
such that

BW s.M-/; t,L t < ' *e*«
Using Fubini's theorem and the reproducing property of Pβ we easily
obtain

fr{z)J(z){\-\z\1γdv{z)= ί fr(w)φή(l-\w\ψdv(w).
JBn

/
Bn

By Lemma 3 we have

= lim / fr{zMz){\-\z\2γdv{z)
r-*l" JBn
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with \F(f)\ < C | |^ | | 0 0 | | / | | β > p for all / in ! * ( * „ , dva).

4. Hardy spaces Hp(Bn) with 0 < p < 1. In this section we de-
scribe the bounded linear functional on the Hardy space Hp(Bn) with
0 < p < 1. The result and method are similar to those in the previous
section.

THEOREM 6. Suppose 0 < p < 1 and a = n/p - (n + 1). Then
with

(f,g)= lim / f(rz)J(ϊ)(l-\z\2rdv(z),
r-+l~ JBn

feH'(Bn), g

Proof. For 0 < p < 1 it is clear that a = n/p - (n + 1) > - 1 . If g
is in 3§{Bn) then by [1] there exists φ G L°°(Bn) such that g = Pα$?.
Writing g as an integral, applying Fubini's theorem, and using the
reproducing property of Pa, we see that

/

B
fr(z)J(Γ)(l-\z\2rdv(z)= I

JB
n

for each f e Hp(Bn) and r e (0, 1). By Theorem 11 of [7] there
exists a constant C > 0 such that

\f(z)\(l-\z\2rdv(z)<C\\f\\HP

for all / in Hp{Bn). This clearly shows that

/?(/)= lim / /(rz)^)( l~ |z | 2 ) α ^(z)

^ 2 ) , feHp(Bn),

defines a bounded linear functional on Hp(Bn).
Conversely, if JF is a bounded linear functional on Hp(Bn), then

by the first few lines of the proof of Theorem 5 we have F{f) =
and

fr)= I fr(w)h(w)dυ(w),

where
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If a φ 0, then 1.4.10 of [9] and the boundedness of F on HP{Bn)
imply that either h is bounded in Bn or there exists a constant C > 0
such that |Λ(w)| < C||.F||(1 - \w\2)a for all w € Bn. Thus we can
apply Lemma 4 to obtain

F(fr)=

where

This is obviously true if α = 0. For each 1 <k <n we have

It follows easily from 1.4.10 of [9] and the boundedness of F on
Hp(Bn) that there exists a constant C > 0 such that

(i-M2)
dg

(w) < C\\F\\
dwk

for all w in Bn and 1 < k < n. Thus g is in £&(Bn) and the proof
of Theorem 6 is completed.

5. Further remarks. In order to generalize our results to bounded
symmetric domains we need to answer the following questions:

(1) Does each weighted Bergman projection Pa map L°°(Ω) onto
the same space?

(2) If the answer to the above question is affirmative, then how to
describe the space PaL°°(Ω) in terms of partial derivatives?

In the case of the polydisk we can settle the above questions satis-
factorily. It is proved in [11] that each Pa maps L°° of the polydisk
onto the same space X, which consists of holomorphic functions /
on the polydisk such that

is bounded on the polydisk for each 0 < m < n and 1 < i\ < ~<
im < n. Using this result it is then shown in [11] that the dual space
of each weighted Bergman space and Hardy space with 0 < p < 1
on the polydisk is isomorphic to the above space X (with equivalent
norms) under certain integral pairing over the polydisk. Note that the
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duality problem for both the weighted Bergman space and the Hardy
space of the poly disk with 0 < p < 1 were also studied in [3] and [6].
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