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VERTEX OPERATOR CONSTRUCTION
OF STANDARD MODULES FOR A{

n

ι)

M. PRIMC

We generalize the vertex operator formula for the affine Lie algebra
A^ in the "homogeneous picture" and by using it we construct a
basis of any given standard A^ -module parametrized by coloured
partitions. We also obtain a similar explicit construction of vacuum
spaces of standard ^i^

1. Introduction. In this paper we give an explicit construction of
standard (i.e. integrable highest weight) representations of affine Lie
algebra g of the type A^ .

As usual, for g = s l (n+1, C) we fix a Cartan subalgebra f) and root
vectors xa , and we identify \) = \f via bilinear form (x, y) = Xrxy.
We denote by c the canonical central element of the affine Lie algebra
0 and we write x{ϊ) = x ® tι for x e g and / e Z . As usual we use
triangular decompositions

g = n_ + fj + n+ , g = n_ + t) + n+ .

Let no C n+ be the nilpotent radical of a maximal parabolic subalgebra
of g such that its Levi factor is (isomorphic to) gl(n, C). Let Γ =
{7ι j 9 Ύn} be the set of weights of no (see §2). Then

{xβU)\βeΓ9 jeZ}

is a commutative family in g.
Let L(Λ) be a standard g-module with a highest weight vector v^ .

On L(A) we have a projective representation β ι-> ^ of the root
lattice Q of g (see §5). Let

jez

By using the formal Laurent series technique we extend the ver-
tex operator formula for level 1 Λ>n -modules and for level k > 1
^^-modules to all standard yl^-modules, based on a simple obser-
vation that the vertex operator formula for level 1 representation can
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144 M. PRIMC

be written as an equality of products of exponentials:

exp

exp I ^ ε(γ, φ)xy{ζ)
V

x exp
<i>0

where φ EΓ , P = sφΓ (sφ being a reflection corresponding to the
root φ), and ε(γ, φ) e {±1}. Written in this way the vertex operator
formula holds for every standard module (see §6, Theorem 6.4). The
above formula is to be understood as the equality of coefficients in two
formal Laurent series. For example, the coefficient of ζm of the left-
hand side has the unique summand Xβ(m) of weight β, and hence
Xβ{m) can be expressed in terms of elements eφ , p(/)'s a n d xγ(iYs.
Another consequence of the vertex operator formula is:

(1.1)

where m e Z, βx, . . . , βk+x e Γ, k = A(c).
Set *o = Ylβereβ- Since L(A) = ί/(n_)i;A, by using the vertex

operator formula (as mentioned above) we see that a set of vectors of
the form

(1.2) % β x β J

where p e Z , s > 0 , β\, ... , βs eΓ and j \ < < j s < 0, is a
spanning set of L(A) (see §8, Theorem 8.2). This set of vectors is not
a basis of -L(Λ)—we reduce it further by expressing one monomial

appearing in (1.1) in terms of the rest of them. The final result is a
spanning set of vectors of the form (1.2) satisfying certain combina-
torial conditions, which, in fact, is a basis of L(Λ) (Lemma 9.4 and
Remark 9.5).

Monomials of the form

where s > 0, β\, . . . , βs e. Γ and j \ < < j s < 0, we call coloured
partitions. When we reduce a spanning set (1.2) to a basis of L(A)
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we use induction, and for this reason we introduce an order on the
set of coloured partitions (§3) with three basic properties: it allows
arguments by induction (Lemma 3.2), it respects the semigroup struc-
ture of coloured partitions (Lemma 3.3) and the set of monomials
appearing in (1.1) has the smallest element (Lemma 3.4).

We may call the smallest element appearing in (1.1) the leading term
of (1.1). Denote by D(A) the set of all leading terms for all m < 0
and β\ , . . . , βk+ϊ e Γ. By induction we see that vectors of the form
(1.2) which contain x(μ) € D(A) as a factor may be erased from
the spanning set. We also identify a certain set /(A) of monomials
x(μ) such that x(μ)vA = 0 (Lemma 9.2). In §4 we study a set of all
monomials (i.e. coloured partitions) which do not contain as a factor
any x(v) in D(A) u /(A). For such coloured partitions we say that
they satisfy difference and initial conditions.

Roughly speaking, the main theorem (Theorem 9.1) states that the
set of vectors

(1.3) %x(v)vA,

where p < 0 and x{v) satisfy the difference and initial conditions, is
a basis of L(A).

In order to prove the linear independence of such a set of vectors, we
first study a particular basis of level 1 standard g-module in which vec-
tors of the form x(v)vA have a simple expansion (Lemma 7.2(i)). The
construction relies on the observation that if the Fock space for the
homogeneous Heisenberg subalgebra of sί(2, C)~ is identified with
the algebra of symmetric functions, then the exponential

is to be identified with the generating function for complete symmetric
functions. However, the basis {K{v){\ ®eλ)} corresponding to Schur
functions is better suited for our purposes (see §7).

The second step uses FrenkePs observation that a standard module
of level k > 2 may be viewed as a subspace of level 1 standard module
by the use of a full subalgebra. The main point is the expansion of
(to be basis) elements of the form (1.3) in terms of Schur functions
basis (Lemma 9.7):

(1.4) x(v)vA~aK(v°)(l®eλ) + ]Γ bκK{κ){\ ®eλ).
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In this formula a combinatorial argument is used to show a Φ 0.
Another combinatorial argument shows that a map v ι-> i/° is (roughly
speaking) injective (Lemma 4.6). In this way the linear independence
follows.

This construction does not describe the vacuum space (for the ho-
mogeneous Heisenberg subalgebra) of a standard module, but still by
its main ideas and techniques may be regarded as a part of a general
approach proposed by Lepowsky and Wilson.

In § 10 we extend a construction of the vacuum spaces (for the homo-
geneous Heisenberg subalgebra) of standard ^4^-modules (Theorem
10.2) to standard ^4^-modules (Theorem 10.3). In this case even
a spanning result requires a delicate study of (vertex operator for-
mula) relations (Lemma 10.9). In the proof of linear independence
the analog of expansion (1.4) (Lemma 10.12) is used. This example
suggests the combinatorial difficulties one may expect in the case of
A^\ n > 2, but we fail to understand them.

Theorems 6.4, 8.2 and 9.1 are formulated in [P].
Finally let us make a few remarks:
It should be noticed that the coefficient of ζm in the vertex operator

formula is an operator of degree m on L(Λ) (with respect to the usual
homogeneous grading). For this reason we prefer to use the formal
indeterminate ζ. However, from the point of view of vertex operator
algebra theory and conformal field theory it is far more natural to
express the level 1 setup using z = ζ~ι instead of ζ, and the level k
setup in terms of z = ζ~k .

Although the starting point of our construction is the vertex operator
construction of level 1 modules given by Frenkel and Kac, we obtain
a different basis. Some combinatorial evidence (see Remark 9.10)
suggest that there might be some connection between the basis of the
form (1.3) (or the corresponding Schur functions) and the construction
of level 1 standard modules in terms of Maya diagrams and paths given
by Date, Jimbo, Kuniba, Miwa and Okado.

From A^ case it seemed that one should use the vertex operator
formula to obtain (and reduce further) a spanning set of L(Λ) of
the form eβX(u)υA, where β e Q and x(u) satisfy the difference
conditions. The construction of standard g-modules in terms of Maya
diagrams and paths suggested to use a spanning set (1.3) instead. I
thank E. Date, M. Jimbo and T. Miwa for stimulating conversations
which inspired us to formulate the correct initial conditions. It turned
out that all other ideas necessary to construct a basis came through
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the work with J. Lepowsky and A. Meurman, to whom I express my
gratitude.

2. Affine Lie algebra A[

n

ι). Let g = sl(n + 1, C), n > 1. Let i) c g
be a Cartan subalgebra, R the corresponding root system, Q the root
lattice of R. Fix a basis {cq , . . . , an} of R. Let (x, y) = trxy for
x,y eg and identify I) and f)* via ( , ) .

Fix a bilinear map ε: Q x Q —• {±1} > i.e.

ε(a + β, γ) = ε(a, γ)e(β, γ ) ,

ε(a, β + γ) = ε(a, β)e(a, γ ) ,

such that

ε(a, α) = — 1 for a G i?,

ε ( α , ^ ) ε ( ^ ? α ) = ( - l ) ( α ' ^ for a,βeQ.

Then there exist root vectors x α G j , α e R, such that (cf. [FK], [F],
see also [LP1])

ε(a,β)xa+β iϊa + βeR,

-ot i fα + ^ = 0,

0 otherwise.

Let g = g® C[t, t~~ι] + Cc + Cd be the affine Lie algebra associated
with g—a Kac-Moody Lie algebra of the type A^ (cf. [K]). As usual
set x(j) = x ® V for x e g and J G Z . Then commutation relations
in g are given by

We identify g with g ® t° c g.
Let g = n_ + f) + n+ be the triangular decomposition of g. Set

f) = ί) + Cc + Cflf, n± = g ® ί ^ ^ t ^ 1 ] + n± . Then we have a triangular
decomposition g = n_ + ^ + ή+ .

Define δ e ί)* by ί(rf) = 1, δ\t) + Cc = 0, and α 0 = 5 - 0,
where 0 e i? is the maximal root. Set QQ = c - θ, α^ = α/ for
/ = 1, . . . , n, and define fundamental weights Λ, G fj*, i = 0, ... 9 n9

Let ^i , . . . , en+\ be the canonical basis in R w + 1 , and i? = {et — ej
i ^ j}, <xι=eι-e29...,an = en- en+x. For i e {1, . . . , n + 1} set
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Γ; = {βi - βj j Φ ϊ). Notice that R = Γ\ u U ΓΛ +i and that each
Γ/ is a basis of Q.

Set }/,• = e\ - ^+2-7, 7 = 1, . - , n, and γx > γ2 > > yn . Set

Γ = A = {7!, . . . , γn}9 f_ = {ΛyC/) y e Γ, 7 < 0}

and define an order on Γ_ by Xβ(i) < xy(j) iΐ i < j or i = j , β < γ.
Set no = spanc Γ_ . Notice that no is a commutative subalgebra of

n_.
Denote by

B = ^ I) Θ ί7 + Cc
i€Z\{0}

the infinite dimensional (graded) Heisenberg subalgebra and by s- =
sn f t - .

For integral dominant

Λ = fcoΛo + k\Aι H + /:WΛW, fc/ G Z+,

(where Z + = {0? 1, 2, . . .» set

fc = Λ(c) = fco + /ci + + kn,

^7 = Λ(y7) = kx + '" + K+γ-j, = 1, . . . , n.

Then /: > gi > g2 > > gn > 0 determines Λ, and we shall also
write

3. Coloured partitions. Let S be a set. Denote by &>(S) the set
of all functions μ: S —• Z + with finite support supp(μ) = {α e S
//(α) ^ 0}. We will call such functions a partition with μ(a) parts a.
Clearly ^ ( 5 ) is a semigroup with pointwise addition μ + v . Define
the length of μ by

aeS
and set

Then we have

m>0

Let δ\9δ2, -.-'. &{S) —> Z be a sequence (or well ordered set)l)f
additive functional, and set μ > v if there exists s such that

δs(μ) > δs{y) and δr(μ) = Jr(i/) for all r < s.

Clearly we have:
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LEMMA 3.1. Let μ, v, K e

(i) If μ > v and v > K , then μ>κ.

(ii) If μ>u, then μ + κ>v + κ.

(Hi) Ifδ\9δ2,... is such that δi(μ) = δi(u) for all i = 1 , 2 , . . .

implies μ = v, /A^n > is a linear order on

Now take S = f« = {jc^(y) i» e Γ, 7 < 0}. We will call // 6

_) a coloured partition with μ(Xβ(j)) parts x^O) of degree 7

and colour (weight) /?. Recall that we have defined the order on Γ_

by Xβ(i) < Xγ(j) if / < j or / = j , β < γ. Then a coloured partition

μ may be written as a sequence

t/l) < */?2l/2) < < Xβ$Us) ,

where the element Λ ̂ O') appears in this sequence μ{Xβ(j)) times.
We may visualize μ by its "Young diagram" representing a part Xβ(j)
with -7 boxes of colour β. For example,

is represented by the Young diagram on the left-hand side of Figure
1, where 3 stands for 73, etc. (Sometimes we shall also write β(i)
instead of Xβ{i).)

For coloured partitions we write v\Jκ and v = 0 instead of v + κ
and v = 0, and z/ c K: if i/(α) < κ{a) for all α e Γ_ . If v c K , we
say that TC contains z/.

Define the length /(μ), degree |μ| and weight w(μ) of μ by

aeT_

where degx^(J) = 7 and w(xβ(j)) = β.
If μ and v are given by

μ : ax < a2 < •- < as, v\ b\ < b2 < ••• <

then we shall write
μ < v
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if μ Φ v and one of the following statements are true

(i) l(μ) > /(i/),
( i i ) l ( μ ) = / ( i / ) , \μ\<\v\,

(iii) = H and

= degbs, . . .

for some s > i > 1,
(iv) /(//) = /(i/), \μ\ =

degα*

, degα, = deg*, for / = 1, . . . , s and

w(fl5) = w(bs),..., w(aM) = w(bi+ι), w(at) < wφi)

for some s>i>\.

For example,

Obviously, we have:

5

3

< 2

2

5

2

< 3

2

FIGURE 1

LEMMA 3.2. ΓAe relation < is a {reverse) well order on

The element 0 w the largest element in

Notice that the relation < may be defined by a sequence of func-
tionals

where

Hence we have:

. L E M M A 3 . 3 . Let μ, v , κ e 3?{S). If μ>u, then κ>v

This is a crucial property of the order > and our construction may
be regarded as a "commutative version" of the construction in [LW,
Proposition 6.2].

Later on we shall need the following:



CONSTRUCTION OF STANDARD MODULES FOR A™ 151

LEMMA3.4. Let rae-Z+, φ =
and q\ + + qn = k + 1 > 2. Let

(i) The set Aψ 0 has the smallest element.
(ii) Let v be a coloured partition Xβ (j\) < < x^

. Then v is the smallest element of A if and only if

h = Jk+i o r Jι - - 1 + Jk+i > β\ > ^ + i

Proof. Since 4̂ is finite, (i) is clear. It is also clear that for the
smallest element

must be either j \ = j k + ι of j \ = - 1 + j f c + 1 .
In the case

h = * * = it = - 1 + Jt+ι = = — 1 + Jk+\

write a sequence

Vi >•••> ^ > Ψt+ι > > Ψk+i>

where γ\ appears q\ times, . . . , γn appears qn times. Then for

βt+\ = Ψk+\ > >

// is the smallest element in A. Hence β\ > βk+ι- Conversely,

βt > > β\ > βk+\ > > A+i determines the sequence ( ^ ) . D

REMARK 3.5. If v e A is not the smallest element, then ji <
- ! + Jk+\ > a n d if 7i = ~1 + Jk+ι, then >ffi < βk+ϊ. (Cf. a definition
of difference conditions in the following section.)

4. Difference and initial conditions. In this section we fix a natural
number k and a sequence of nonnegative integers k > g\ > gι >
• > gn > 0. We shall write

Λ = [k gx, g2, . . . , gn], ft = A(y/), / = 1, . . . , n.

Let us denote by D(A) a set of coloured partitions v of the form

such that
0 Γ 7i = - l+Λ+i» β\>βk+\-
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We shall say that a coloured partition μ satisfies the difference con-
ditions D(A) if μ does not contain any v G D(A). Equivalently, a
coloured partition μ of the form

satisfies the difference conditions D(A) if

js < - 2 + j s + k or j s = -1 + j s + k , βs < βs+k

for s = 1, . . . , r - k.

Let us denote by /(A) a set of coloured partitions of the form

xβ{-\)<xβι{-ϊ)<-<Xβa{-\), s = k-A(β).

We shall say that a coloured partition μ satisfies the initial conditions
/(A) if μ does not contain any v e /(A). Equivalently, a coloured
partition μ satisfies the initial conditions I (A) if μ has at most k-gi
parts of degree - 1 and colours > yf , / = 1, . . . , n.

Consider a set of points A<z7?

(/!,0), (n, - 1 ) , . . . , (n, - £ i + l ) ;

( Λ - 1 , 0 ) , ( Λ - l , - l ) , . . . , ( Λ - l , - & + l ) ;

( n - 1, 1), . . . , (n- l,k-gι),

( n ~ 2 ? 0 ) ? ( π - 2 , - l ) , . . . , ( n - 2 , - f t + l ) ;

( Λ - 2 , 1), . . . , (n-2,k- g2),

(1,0), ( 1 , - 1 ) , . . . , ( 1 , - ^ + 1);

(1, 1 ) , . . . , (1, A : - ^ . . ! ) , (0, l ) , . . . , ( 0 , £ - £ „ ) .

Notice that in the first row we listed gi points, in second row g2 +
(k - gi) points, and so on.

Let

B = {(p + (n + \)r, q - kr) G Z2 (p, q) e A, r G Z}.

LEMMA 4.1. (i) #A = k-n.

(ii) For eαcλ horizontal line I = {(α, b) α G Z} we Aαve #(Bnl) =
Π / w α« interval.

Proof. The first statement is clear. To prove the second statement,
let 0 > b > -k. If for some r we have
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then ΐovn>t>r+l>r>s>l we have gt < gr+\ < gr < gs and

- & + 1 <b, -k + (k-gt)>b.

Hence

fin/ = { ( « + l - r , 6 ) ( n + l - l , i ) ,

(0 + n + 1, b), . . . , (n - r - 1 + n + 1, b)}.

Since B is periodic, the statement follows. D

Label each point of the interval B n / by colours y\ to γn (from
left to right). In particular, to each point of A c B we associate a
colour. Define a coloured partition i/Λ by associating to each point
(p, q) e A of colour β a part Xβ(—p ~ 1).

For example, if Λ = [2; 2, 1, 1], then we have (writing s(j) in-
stead Of Xγs(j))

vκ = (3(-4), l ( - 4 ) , 2(-3), 3(-2), l ( - 2 ) , 2 ( - l ) ) .

From the above construction it is easy to see that we can construct uA

in another way: write

A = Aiι + - + Aik

as the sum of fundamental weights

Λo = [ l ; O , . . . , O ] ,

Λ/ = [ l ; 1 , . . . , l , 0 , . . . , 0 ] , 1 < / < / ι ,

where zero appears i — 1 times. Then

^Λ = *Ά U U i / A ,
Ί ιk

where

^^7n{-n)9...9 y 2 ( - 2 ) , 7 i ( - l ) ?

^ΛΠ 'M-n- 1); yΛ(-Λ + l ) , . . . , 7 2 ( - l ) ?

i/A/ :yΛ-, + i ( - / i - l ) , . . . , ? i ( - / - 1); y Λ ( - / + l ) , . . . , yΛ-, + 2 ( - l ) ,

^Λ, : y Λ ( - Λ - 1), . . . , 72(-3), 7 i ( - 2 ) .

LEMMA 4.2. (i) /(i/A) = k-n.

(ii) - | i / A | =
(iii)

Proof, (i) follows from Lemma 4.1(i). From the construction it is
clear that each colour in A appears k times, and hence (iii) holds. To
prove (ii), notice that there is k—gn parts of degree - 1 , {k-gn-\)+gn

parts of degree - 2 , . . . , gx parts of degree -n - 1. •
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PROPOSITION 4.3. A coloured partition uA satisfies the difference
conditions D(A) and initial conditions I (A).

Proof, For each horizontal line /̂  = {(a, b) a e Z} we have that
B Π 4 is an interval with n points. From construction of A we see
that for 0 > b > -k+1 the beginning of the segment Bπl^i is to the
right from the beginning of the segment B n /#. Since B is periodic,
this is true in general. By the way B is coloured, it is clear that on
each vertical line {(α, b) b e Z} Π B the colours are descending
(while going up): β{a^b) < β^9b-i) (Recall that γx > > γn .) This
means that colours of the parts of vA of degree -a - 1 are arranged
in the Young diagram of uA in the same way as the colours on the
vertical line A n {(a, b) 6 e Z}. Now to check that the difference
conditions hold for vA is the same as to check whether for adjacent
points (a, b), (a+l, b) eA (on horizontal line) their colours satisfy
relation β(a+\,b) < β(a,b) B u t this is true by construction.

By inspecting the construction of uA, we see that on the first vertical
line in A colours β >y\ appear k — g\ times, colours β > 72 appear
k - g2 times, . . . , and hence vA satisfy initial conditions as well. D

For a coloured partition μ and j > 0 denote by μj a coloured
partition defined by

μj(Xβ(q ~ J)) = β(Xβ(<l)), βj(*β{r)) = 0 for r > -j.

Clearly the Young diagram of μj is obtained by adding to each part
of μ additional j boxes.

For a coloured partition μ and q > 1 set

For example, if μ is given by

3 ( - 2 ) , l ( - 2 ) , 2 ( - l )

and Λ being as in the previous example, then μΪA is given by

PROPOSITION 4.4. Let μ e &>(Γ_). Then it is equivalent

(i) μ satisfies the difference conditions D(A) and initial conditions
/(A).

(ϋ) βq,A satisfies the difference conditions D(A) for q > 1.



CONSTRUCTION OF STANDARD MODULES FOR A™ 155

Proof. It is enough to consider the case when q — 1. Clearly one
has to compare the parts of μ\. (n+i) of degree - 1 - (n +1) with parts
of uA of degree ~(n + 1), let us denote them by

as < * * < o-x <bgi <-" <b\.

In i/Λ there is g\ parts of degree -(n + 1). If gi = 0, i.e. there
are no parts of degree -(n + 1), then the difference conditions are
clearly satisfied. But then £1 = = gn = 0, so μ satisfies the initial
conditions if it satisfies the difference conditions. Hence in this case
the proposition holds.

Now assume g\ > 1, and let (i) hold. We have to compare colours
of parts bj and a^_g +j. In bfs colour γ\ appears £1 - £2 times, γι
appears £2 - £3 times, . . . > γn appears gn times, i.e.

w(bgι-g2+ϊ) = = w(bgι-g3) = 72,

Since μ satisfies the initial conditions, we have

w(ak_gn+ι) < γn, i.e. s<k-gn.

Hence w(b\) = γ\ > w(ak_g+\), . . . , and the difference conditions

hold for μi?Λ
The other implication is proved similarly. D

Later on we shall need the following construction (recall that k>\
is fixed): For a coloured partition

v = Ctyί/i)> ? XβaUs)), XβJJx) <•-< XβJJs),

set

and

u° = (xβι(kj\ +s - 1) , . . . , xβ{kjs))

Clearly, we have a map v -* v1 —• i/° from ^ ( Γ _ ) into "coloured
sequences" which may be visualized as multiplying the number of
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boxes in the Young diagram of v by k, and then going upwards
erasing 0 , 1 , 2 , . . . boxes. For example (k = 2, v = vA as before):

z/ = ( 3 ( - 4 ) , l ( - 4 ) , 2 ( - 3 ) , 3 ( - 2 ) , l ( - 2 ) , 2 ( - l ) ) ,

i/' = (3(-8), l ( -8) , 2(-6), 3(-4), l ( -4) , 2(-2)),

i/° = (3(-3), l ( -4) , 2(-3), 3(-2), l ( -3) , 2(-2)).

First we list some obvious properties of i/°:

LEMMA 4.5. Let v satisfy the difference conditions D(A). Then

(i) Pr < Pr+k >
(ii) Pr = /V+fc WφfteS β r < βr+k >

(iii) /?5_7 Ξ J mod/:,

(iv) p Γ < - l ,

(v) for rφq we have xβr{pr) φ Xβjj>q)

Let j > 1. Call the sequence of all parts of v of degree -j a j-block
°f v [if nonempty), denote it by B(u, j). Clearly, #B(v9 j) <k.

(vi) {pΓ; ^ r ( Λ ) € 5(i/, 7)} is an interval in Z, denote it by [aj, bj].
(vii) If i > j

We may think of i/° as a coloured partition, i.e. i/° €

LEMMA 4.6. F/x 9? = αi γ\ H h α^yrt, a\, . . . , an G Z + .

° the set

{v G ̂ ( Γ _ ) v satisfies difference condition D(K) and w(u) = φ}

into &*(f _) is an injection.

Proof. Let μ and z/ be coloured partitions which satisfy the dif-
ference conditions and w{v) = w(μ) = φ. Then l{y) = l(μ) =
a\ Λ h an = s. Let

and

. . . ,Xβs(ps)), μ° = {x

We need to prove that μφv implies μ° Φ v°.
For this purpose define a relation < by conditions (i), (ii), (iii) in

§3, i.e. by a sequence of functional - / , | | , δ\, δ^, . . . . Let μ φ v .
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(a) If v < μ, then i/° < μ°.
The case |i/| < |μ| is obvious, so assume \v\ = |μ | . Let

js = h> •>• 9 Λ+i = *V+i > 7r < *V

Then

Ps = <ls, .-• , Pr+l = Qr+\ > Pr<4r

By Lemma 4.5 we have

Moreover

Pr-k+\ <-k + qr + k-\ <qr,

Pr-k <Pr<Qr,

Pr-k-1 <Pr-\ <Qr.

H e n c e p r - j < q r f o r j > 0 , a n d Pj = gj f o τ s > j > r + l . I f w e
arrange the parts of i/° and /έ° by degrees, we see that in degree qr

μ° has (at least) one part more than i/°, and that v° < μ°.
(b) Let Ty = is, . . . , 7! = / j . Then v and μ differ in "colouring".

To prove v° φ μ° it is enough to show that the colouring of v is
determined by the colouring of u°.

Consider

v1 = (xβι(kjι)9... , Xβs(kjs)), Xβχ(kjx) < < Xβs(kjs),

° + 5 ~ 1), ... , Xβ^ikjs-i + 1). *βs(kjs))

In the sequence p\, . . . , ps consider all elements equal - 1 , say
Ptχ9 . . . ,Ptr. By Lemma 4.5(ii) we have βtχ < βt2 < < βtr - Hence
z/° (starting from the right) looks like

< xψ{-2) < xPtι (-1) < < xβt{-l).

The point is, if we know i/° and j \ , ... 9 j s , then we know Λ;y5 + s -
1, . . . , kjs-\ +1, kjs, and we know the places for colours βtχ9 . . . ,βtr.

Next we consider all elements equal - 2 in the sequence p\, .. . , ps

and, arguing as above, we reconstruct positions of colours in an-
other part of v. Hence in finite number of steps we determine v
completely. D
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5. Standard representations. A highest weight g-module V is gen-
erated by a highest weight vector vA such that

h-vA = A(h)vA for all h e §,

x. yA = 0 for all x £ n+,

where Λ e ί}* is the highest weight of V. A highest weight g-module
F is a direct sum of weight subspaces Vμ = {υ e V; h-v = μ(A)v
for all h e ϊ>}, /ι e 6*.

Standard g-module (i.e. integrable highest weight g-module) we
may define (cf. [K]) as an irreducible highest weight module with high-
est weight

Λ = k0A0 + k\A\ + •- + knAn,

where fc, € Z+ , for i = 0, . . . , n, and we denote it by L(A). The
central element c acts on L(Λ) as a scalar

k = Λ(c) = k0 + kι + -" + kn

called a level of L(Λ).
On each standard module L(Λ) we define operators

sa = expxα(0) expx_α(0) expxα(O),

-a = expx_ α ( l)expx Q (-l)exρx_ α ( l),

for each a e R. Then a map α —• ea extends to a projective repre-
sentation of Q on L(A) such that

e α ^ = e(a, ^ ) / c ^ α + ^ for all α, jS € Q,

where A: is level of L(Λ).
On a standard g-module we have

eade~ι =d + a--(a,a)c,

eaβe-ι=β-(a,β)cy

eaβ(j)e-1 = β(j) for 7 / 0 ,

where a, β eQ, j eZ, γ eR. (Cf. [FK] or the next section.)
Denote by T the group generated by ea9 aeR. We may identify

T with {±eφ ^ G β } .
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6 Vertex operator formula. For a given standard module L(A) of
level k and a e R denote by xa(ζ) a formal Laurent series

jez

in ζ with coefficients in End(L(Λ)), where xa(j) are fixed as in §2.
For a e Q define a formal Laurent series ζ-c~a with coefficients

in End(L(Λ)) by

whenever vμ e L(A) is such that h-vμ = μ(h)uμ for all h el).
For α e fj define a formal Laurent series

(a, ζ) = exp
\i>0

Then the vertex operator formula due to I. Frenkel and V. G. Kac
[FK, Theorem 1] (in our notation) states:

THEOREM 6.1. Let A be a fundamental weight Then on L(A)

for aeR.

It will be convenient to recall the Frenkel-Kac vertex operator con-
struction of a fundamental g-module (our notation is as in [LPl]):

Recall that we denote by

5 =

the infinite dimensional (graded) Heisenberg subalgebra of g and by
5 _ = s ί l n _ . On the symmetric algebra S(s-) we define a representa-
tion of s so that for he i) and / € Z the elements h(i) act as multi-
plication operators h(i) if / < 0 and as derivations i(h, h)d/dh(-i)
if / > 0, and set c = 1. Grading on s_ induces the grading on S(s-)
and we denote by d the degree operator. Define a formal Laurent
series E±(a, ζ) with coefficients in End(5'(s_)) as before. Then we
have [LPl, Lemma 3.2]:

LEMMA 6.2. Let φ, ψ e ί). Then

iψ, ζ2) = (1 - ζι/ζ2γv^E-(ψ, ζ2)E+(φ, f i ) .
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{Here ζ\ and ζι cire commuting indeterminates and the expression
(1 - ζ\/ζ2)a is understood to be the formal power series in C1/C2 ob-
tained by means of the binomial expansion.)

Let Q be the root lattice of R and P the weight lattice. Then
Q c P. Let λ\, . . . , λn be the fundamental weights. Set λo = 0.
Denote by C[Q] and C[P] the group algebras of Q and P with
basis elements of the form eμ and multiplication eμev = eμ+v . For
φ EQ and fixed i 'G{0, . . . ,n} define a linear map

φ /ι e β .

Hence we have a projective representation φ —> eφ of Q such that
eφeψ = ε(φ, ψ)eφ+ψ.

Define a grading on C[P] by rfe^ = ~^(/ι, / ι ) ^ .
Define the action of f) on C[P] by A^̂  = (/z? h)eμ . As before we

define a formal Laurent series ζa for α E f).
For / G {0? . . . , n} set

Then on V\ we have the action of the Lie algebra s (acting on the first
tensorand), the action of f) and Q (acting on the second tensorand)
and the grading defined by d — d®\ + \®d. Clearly Vj is irreducible
for action of these operators.

By using Lemma 6.2 it is easy to see that coefficients of the formal
Laurent series

E-(-a9ζ)E+(-a9ζ)<g>eaζ-ι-°

satisfy the same commutation relations as Lie algebra elements xa(j) >
so by the vertex operator formula Vι is a g-module equivalent to
L(Λ;). (To be precise, the action of [g, Q] is equivalent, and the
grading is shifted by -j(λ/, λi).) Moreover, operator ea is equal to
s#-asa (introduced in §5).

If a, β e R and (α, β) > 1, then the family {jcα(7), xβ(j) \ J e
Z} is commutative and the formal Laurent series xa(ζ)Xβ(ζ) is well
defined. As a consequence of the vertex operator construction and
Lemma 6.2 we have:

PROPOSITION 6.3. Let A be a fundamental weight and a, β e R,
(a,β)>l. Then on L(Λ)
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Similarly, for β\, ... , βs e Γ, the coefficients of x^ (ζ), . . . , Xβs(ζ)
commute and the formal Laurent series Xβ (ζ) -Xβ (ζ) is well de-
fined. Since by the complete reducibility theorem [Kj Theorem 10.7]
a standard module L(A) of level k is a submodule of the tensor
product of k fundamental modules, Proposition 6.3 implies that for
β\, , βk+\ £ Γ;

on L(A). Hence the formal Laurent series

exp j 2 ^ Xβ(ζ)

is well defined on L(Λ).
Now we can state a generalization of the vertex operator formula:

T H E O R E M 6 . 4 . L e t i, j e { I , . . . , n + \ } , i φ j , a n d s e t φ =
ei - ej e Γ, n (-Γ 7 ). Then on L(Λ)

(6.1)

exp Σ xβ(0

= E-(-φ,ζ)exp ζe(y, φ)xγ(ζ)

Proof. In the level 1 case these are vertex operator formulas. Since
the relation (6.1) holds for fundamental modules, it holds on tensor
products of fundamental modules, and hence on every standard mod-
ule (cf. [LP2, Theorem 5.6]). o

Formula (6.1) can be written by components:

(6.2) ε(ψ-kφ

w h e r e forf ixed iφj we take Γ, = {f t , . . . , βn}, Γ, = { ? i , . . . , yn},
φ e Γ, Π ( - Γ ; ) , Piβi + •••+ pnβn = ψ = qλγx + • • • 4- qnyn + kφ ,

rx + • • • + rn = k + 1, ps, qs, rs > 0 .



162 M. PRIMC

7. Schur functions. In this section we set V = 5(s_) <g> C[P] =
VQ + + Vn and we consider formal Laurent series in commuting
indeterminates Ci, - - , Cm , w > 1, with coefficients in End(F).

Denote by Sm the symmetric group and by ε(w) a sign of per-
mutation w e Sm. The symmetric group Sm acts on Zm by per-
muting the coordinates. Set δm = (m - 1, . . . , 1, 0) e Zm. For
β = {h , . . . , 7m) G Z m write Ĉ  = Ĉ 1 Cm - Then we have

Notice that for )ffi,..., βm e Γ = Γi formal Laurent series Xβ (Ci),
.. . , Λ:^(Cm) commute.

For A , . . . , βm e Γ set

(7.2) tf(A(Cl),...,/MCm))

= <*.-*/». Π (CΓ1 -CJ 1 )

/ = 1 ( = 1 1=1

K(βXUl),...,βmUm))ζϊ---ζk.

We shall also write

K{β\{j\), ..., βmUm)) = K{β\ , ... , β m ; jι, ... , j m )

By using the vertex operator formula and Lemma 6.2 we get:

LEMMA 7.1.

(i) K{β,{ζx),...,βm{ζm))

= Π wi-Cί/or^co ί̂Cm).
l</<7<m

(ii) xΛ(Ci) ^m(Cm)

= Π (CΓ1-C71)*(A(Ci),...,£«(ί«)
l<ϊ<7<m

(iϋ) A'(^ti,(1)(C1ι;(i)) , . . . , βw{m)(Cw(m)))

In particular, Lemma 7.1 and (7.1) imply:
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LEMMA 7.2. For βx,..., βm e Γ, j \ , . . . ,jm eZ and w e Sm

we have.

(i) Xβ.Uύ- -Xββm)

(iί) K(βw(l)Uw(l)) > > βw(m)Uw{m)))

= ε(w)K(βι(jι),...,βm(jm)).

Let l e P be dominant. Elements in F of the form

we will call Schur functions.
For jβ = y, € Γ denote by «̂ W c «^(Γ_) the set of all coloured

partitions of colour β = γι•:

XβUl)< - <XβUm).

For β = ji € Γ define elements s$ G 5(5-) by

summed over all μeZm (or K e Zm).
By [LP2, Proposition 7.3] the family

is a basis of 5(s_). (Here we identify (β = yz, JΊ < < Jm < 0)
with y/OΊ) < < YiUm) •) Also notice that for j \ < < j m < 0 we
have

It is clear that a coloured partition v e &(YS) can be written in
the unique way as

1/ = !/(!) H h !/(") ,

where i/W e ^ ( 0 .
For a sequence

^ = ( ^ 0 Ί ) 5 ... ,XβmUm))
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we set

K(v)=K(β1(j1),...,βm(Jm))

Let v G «^(Γ_) with weight w(u) = φ = ni\γ\ H h mrtyw . Set

^ = (yf. 5 A). Then it is clear from the definition that

(7.3) K("){l®e*) = f[s® ®eeλ+*,

where e G {±1} and

κ « + ( - l - f t , . . . , - l - f t ) = i/(/), ί = l , . . . , n .
LEMMA 7.3. The following two statements are equivalent:

(i) ΛΓ(ΛC/i)>...>i»mC/m))(lβeλ)5t0.
(ϋ) j r < -I - (λ, βr) for all r = I, ... , m and all parts βr(jr) are

mutually different, ίe. βr = βs implies j r φ j s .

Proof Let K(v){\ ®eλ) Φ 0. By Lemma 7.2(ϋ) all parts of v must
be different. It follows from definition (7.2) that

K{βx{ζx),...,βm{ζm)){\®eλ)

may have a nontrivial coefficient of Cί1 * * * Cm only if jV < — 1 —

{λ'Pr)m

Conversely, if (ii) holds, then clearly K^ G —Z!^ 1 . Moreover, all

parts of partition i/W being different, we have K^ + δm. G - Z ^ 1 .
Hence by [LP2, Proposition 7.3(b)] s &,s Φ 0 and the lemma

mi

follows. D

LEMMA 7.4. Fix φ = mxγι + h mnyn, mx, . . . , mn e Z+. 5 ^

^ = {K(u)(ί ®eλ)\ve&><JΓJ), w{y) = φ}.

^4\{0} is linearly independent

Proof. Since φ is fixed, the length /(i/W) = m, is fixed, and hence
is a subset of the basis of V of the form

c X 1 ) . . . « ( β ) 6?)

and the lemma follows.

REMARK 7.5. If β e Γ, then Lemma 7.1(i) implies
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and the action of Xβ(j) on Schur functions can be given a simple
combinatorial interpretation in terms of Young diagrams. In order to
obtain a similar description for the action X-β(j) for β e Γ one may
use the fact that elements defined by

\<i<m
Π
Π (cr1 -cj1) Π

l<i<j<m 1<Ϊ<W

satisfy
s-μ = s_μ<

for a partition μ, where μf denotes the transposed partition (cf. [M,
§1.3]).

8 A spanning set of L(Λ). Recall that T = (ea aeR). Set

and denote by TQ C T a subgroup generated by
Recall that

no = X)

is a commutative subalgebra of n_ .
Let L(Λ) be a standard 0-module of level k and let v^ be a highest

weight vector.

LEMMA 8.1. L(Λ) = TU(no)vA.

. Set

α€Γ,

Then ή c j is a commutative subalgebra. Notice that n is invariant
for the adjoint action of the Heisenberg subalgebra s and that ft and
s are invariant for the adjoint action of the group T. Since R =
Π u U Γ Λ +i, by using a relation (see (6.2))

we see that

From the relation (see (6.2))



166 M. PRIMC

we see that U(s)vA c TU(n)vA (cf. [LP2, Propositions 7.1 and 7.2]),
so

L(Λ) = Γt/(n)^Λ

and
L(A) = TU (no)vA. Π

THEOREM 8.2. For a given weight subspace L(A)μ there exists po >
0 such that

L(A)μc t~pU(no)vA

whenever p > Po
In particular

= T0U(n0)vA.

Proof. Since dimL(Λ)^ < oo, by Lemma 8.1 there exists a spanning
set S of finitely many vectors of the form

where qΪ9 . . . ,qneZ, βΪ9 . . . , βs e Γ and j \ , . . . , j s < 0. Let
Po > 0 be such that po > —q\, . . . , -^ w for each vector in S, and let
p >Po- Then ίg = ± ^ -eξn, and vectors ίg^ are of the form

= ±xβι(j[) 'XβsU's)eq

y\
+P - ^ ; + V 6 £/(no)"Λ,

the last statement being a consequence of relations (see (6.2))

( y e Γ ) , applied to vA and reading off the coefficient of ζ-k-Mv) # •

9. A basis of L(A). In this section we construct a basis of a stan-
dard module of level k > 1.

To each coloured partition z/ we associate x{y) e C/(fto) by

χ(") = χβιUi)-χβ,Us)= Π α I / ( f l )

For a coloured partition ι/ define e(v) E {±1} by

Then ε(z/ u //) = e(v)e(μ), β(i/7 ) = β(i/) and β(ί/A) = 1.
By Lemma 9.8 (in this section) x(vA)vA φ 0. Since x{yA)vA e

L(A)t A and dimL(Λ), Λ = dimL(Λ)Λ = 1, we may define αA Φ 0
by
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THEOREM 9.1. Let L(Λ) be a standard level k g-module, μ e \f
and m e Z. Let p > 0 be such that L(A)μ_mδ c t^pU{ho)vA, Then
the set of vectors

such that

(1) v satisfies the difference conditions D(A) and the initial condi-
tions /(Λ),

(2) w(v) = μ-A\l) + kp(γι + + γn),
(3) \u\ = - m - n(n + l)kp2/2 -p{γ{ + ... + γn9μ), is a basis of

Moreover, this basis does not depend on a choice of p.

Notice that

Since under our assumptions v —• ι/1Λ is injective, it is clear that a
basis does not depend on a choice of /?.

The rest of this section is devoted to the proof of Theorem 9.1.
Let §(fc) c ij be the full subalgebra of g of depth k > 1 defined as

Q(k) = fl ® C[ί*, r f c ] + Cc + Cd.

Then g(jt) — fl v ^ a the isomorphism

given by

xeg, j eZ,

If π: 0 -» End F defines a g-module structure on a vector space
V, then the restriction of π to the full subalgebra Q^ defines the
representation
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of 0, and we denote this g-module by V^k). If V is a standard g-
module of level 1, then V^ is a direct sum of standard g-modules of
level k. Moreover, if we take

then all standard modules of level k appear in V^ . Let

Λ = k0A0 + k\Aι + + knAn, kt e Z+,

k = k0 + &i H h A:w ,

and set λ = Λ|fj. Then the g-submodule of V^ generated by the
vector I <g> eλ is equivalent to L(Λ) and 1 ® eλ is a highest weight
vector, i.e.

L(Λ) = U(a(k))(l ®eλ) c S(s_)

^ βs ^ β s ( l ® eλ).

Fix
Λ = fcoΛo + fciΛi + + knAn = [k gx, . . . , g w ] ,

where gz = Λ(y, ) , / = 1 , ... 9n, k = k0 + + kn .

LEMMA 9.2. //1/ e /(A), ίAβn x(^)(^Λ) = 0.

Proof. By using the full subalgebra, we have

x(i/)υA = xβι(j\)' -XβsUs)vA

= xβχ{kjχ)--Xβs{kjs){\®eλ)

= x(v')(\ ® eλ).

Now let v e /(A), i.e.

where β\<-<βs,s-\=k- A{βx). By Lemma 7.2(i)

x(v')(l®eλ)

and by Lemma 7.3 each of the summands on the right-hand side equals
zero since for some r

> -Λ(^ r) > - 1 - A(βr). D



CONSTRUCTION OF STANDARD MODULES FOR A™ 169

LEMMA 9.3. Let p e Z and v e &>(Γ-). Then tΰPx(v)vA e
μ_mj, where μ £ ϊ)* and meZ are given by

μ = W{v) + Λ|ϊ) - kp{yx + + yn),

- m = |i/| + A(έ/) + n(π + \)kp2/2 +p(γx + + yΛ|/ι>.

Proof. The statement follows by using the formulas for adjoint ac-
tion of eφ listed in §5. D

L E M M A 9 . 4 . L e t φ = axyχ + ••• + anyn> aΪ9 . . . , an e Z + , and
r e Z + . Then

z/ satisfies conditions D(A) and I (A)}.

Proof. If ^ contains a partition τ e /(Λ), then by Lemma 9.2
x(τ)vA = 0, and hence x(v)vA = 0.

If v contains a partition τ e D(Λ), relation (6.3) and Lemma 3.4
implies that

κ>τ

for some aκ e C, and hence by Lemma 3.3

μ>v

for some bμeC. Now the lemma follows by induction. D

REMARK 9.5. Lemmas 9.3 and 9.4 imply that vectors described in
Theorem 9.1 form a spanning set of L(A)μ_ms. What remains to
prove is the linear independence of this set.

LEMMA 9.6. Let v e ^ ( f _) satisfy the difference conditions D(A)
and initial conditions /(Λ). Then

Proof. Let v be given by

x ^ t / i ) < < xβrUr) < Xβr+ι(~ι) <•-< xβs(~ι)>

where j r < - 2 . Since difference conditions are satisfied, we have
s-r < k.
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Moreover, since initial conditions are satisfied, we have for r + 1 <

Now the corresponding ι/° is given by

* β χ { k j \ + s - 1 ) , . . . , X β ( k j r + s - r ) ,

X β r + S ~ k + S~r~ * ) > ••• > xβs(~k^

and for r + 1 < / < s

Now let Xβ (pt) be a part of u° such that pt> -k. We want to show
that

For t = r + 1, . . . , s this is true. Let t < r + 1. By Lemma 4.5(vii)
Pt < Pr+\ - Moreover, by Lemma 4.5(i), (ii), (iii) we have

Ps = -k <pt< pt+k < pt+2k < < Pr+\

hence

Pt = Pt+k = Pt+2k = '"=Pi> βt< βi

for some i e {r + 1, . . . , s} . But then

Since by Lemma 4.5(v) all parts of u° are mutually different, Lemma
7.3 implies that K(u°)(l ®eλ)φQ. D

LEMMA 9.7. Let φ = a\y\ + + anγn, a\, . . . , an e Z + .
v G c^(Γ_) satisfy the difference conditions D(A) and let w{v) = φ.
Consider v° as coloured partition. Then there exists an integer aφQ
such that

x(p)vA Ξ aK(u°)(l ® eλ) + ΣbκK{κ){\®eλ),

summed over K e ^ ( Γ _ ) , w(κ) = φ, K > v°.

. Let

z Ή ^ l / l ) , . . . ,XβmUm)),

b = (βi,...9βm),

μ = {kjΪ9 . . . ,/c7m),

i"0 = (kji + m - 1 , . . . , kjm) = (P\, ... ,Pm).
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By using the full subalgebra and Lemma 7.2(i) we have

Recall that δm = ( r a - 1 , . . . , 0), so the parts of wδm are 0, 1,2,.. . .
W r i t e τ = ( b ; μ + w δ m ) = ( β \ , β 2 , ... \ t l 9 t 2 , . . . ) = ( x β ι ( t i ) ,
Xfi2(h)> ) and consider it as a coloured partition. We want to see
that either K(τ)(ί ® eλ) = 0 or τ > i/°. Let y = -jt 1 ) = j m and
consider /^-block of i/ (see Lemma 4.5)

and the corresponding sequence in i/°

*/? r (/V), . . . ,Xβm(Pm),

Pr = -kj + m-r, ... ,pm =-kj.

By Lemma 4.5(vϋ) pr >Pi for / = 1, . . . , m. If wδm is not of the
form

(9.1) (... , Ϊ Γ , . . . , ί w ) , {ίr, . . . , ιm} = {0, 1, . . . , m - r } ?

then τ has a part which is strictly greater than pr, and hence τ > v°.
Hence consider τ such that wδm has the form (9.1). Now consider

next 7*(2)-block of v, where —β2) = 7V-1 - By the same argument we
see that if wδm is not of the form

then τ > i/°. By proceeding in this manner we see that it is enough
to consider τ of the form

T = (β\ 9 ... , βm', t\ , ... , tm) ,

where

(9.2) (ti9...9tm)=μ + wδm,

and the permutation w leaves each interval [cs, cs+\ - 1] invariant,
where
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In particular, for coloured partitions i/° and τ the condition (iv)
in the definition of order < (see §3) should be checked. So consider
colours of i/° and τ , first for the first block B{v,

Xβr(Pr), . . . ,Xβm(Pm),

> ••• > Xβm(tm),

& < < An

Let βr = •> = βj < βM, where r < i < m. By Lemma 4.5 we
have /?/ < /?r, and /?ί = /?r implies βt < βr. Hence the largest part
in i/° is βr{pr). If Pr = (/ for j > i, then Xβ{pr) < Xβ{tj) and
hence u° < τ. So let τ be such that /?r = ί7 for r < j < i, i.e.
Xβ(pr) = ^ . ( ί 7 ) . If another part of degree pt = pr appears in i/°, it
must be with colour βt < βr, so (cf. Lemma 4.5) consider the next
block B(v,p)). Then i/° looks like < Xβt(pt) < Xβr(pr), {βt
being the smallest colour in the second block). As above, we conclude
that it is enough to consider τ such that Xβ (pt) = Xβ.(tj) for some

m - #B(u, Z1)) - #5(i/, Z2)) + 1 < j < m -

After considering parts of i/° and τ of degree pr, we consider parts
of degree /?r+i = - 1 +pr 9 etc. In finite number of steps we see that
either i/° < τ , or i/° = τ . Moreover, if u° = τ , then τ is of the form
(9.2), where for each / € [cs, cs+i - 1] the permutation w leaves the
interval

U 6 [ c , , c J + i - 1 ] ; <Pj = φi}

invariant.

Now let τ = i/°. Then the above property of τ implies

ε(w)K(β ^ + wδm) = e(w)ε(w)K(β // + ίT O).

Hence the term K(v°)(l ®eλ) appears with a non-zero coefficient. D

LEMMA 9.8. Let φ = axγι + + anγnL a\9 ... ,an e Z .
the set of vectors x(v)vA such that v e ^(Γ__) satisfies the difference
conditions D(A) and initial conditions I (A) and w(u) = φ is linearly
independent

Proof. By Lemmas 9.7 and 9.6 we have

x(u)vA s αtf(i/°)(l ® eA) +
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where aK(u°)(l ®eλ)φ0. Moreover, in the notation of Lemma 7.4
K(u°)(l ®e λ), K(κ)(l ®eλ)eA. Since by Lemma 4.6 v -> i/° is an
injection, the lemma follows by induction on order > . D

REMARK 9.9. Lemma 9.8 completes the proof of Theorem 9.1.

REMARK 9.10. Let L(A0) = S(s-)®C[Q] be the basic A^ module,
n>2, and consider its restriction to the subalgebra fli C g of the type

spanc Rx,

R\={ei-ej\iφ j, i, j = 2, . . . , n + 1}.

Let βi = Zα2 H hZα« be a root lattice of i?i and C[Qi] its group
algebra viewed as a subalgebra of C[Q]. Set

for / = 1, . . . , n. Then ^ is a gi-module. If we set h = yi H Yyn ,
then h LR\ and for / = 1,...,«

(9.3) WίSL(AU)βC[A(- l) ,A(-2), . . . ] ,

where ^(Λ^) is the fundamental Q\-module for a fundamental weight

Λ;., y = o , . . . , Λ - l .
Notice that

Vi = jcyf(-ϊ) J Γ 7 I ( - 1 ) ( 1 ® έ?°) G C ® ^ + ^

for i = 1 , . . . , « .
By Theorem 9.1 elements of the form

(9.4) v(u) = ε{v)pap

h-yx{v)vκ e Wx

such that v satisfies difference conditions and that p is large enough
so that v D uA (see Proposition 4.4) is a basis of Wt. Since

υ{u) = v(i/Λ+1 Uι/Λo) = = ^K,Λ0)

we may identify v(u) with an infinite sequence (i/?)Λ 9 > 0). For
such a sequence (or "long enough" coloured partition) consider a cor-
responding sequence of "colours"

β\ 9 βi> /?3> ••• 9 βj £ Γ ,

jff7 being the weight of jth part of ^,Λ O Clearly, for some j$ a
sequence (βj)j>j0 is periodic with period n:

• * 7n 9 9 Vl > 7n 9 9 Yl > -
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and (9.4) holds if and only if the length / = l(v) = i moan and
p = (/- i)/n. We will call such a sequence (βj) a path (corresponding
t o i/).

For each path (βj) there are many coloured partitions satisfying
difference conditions and having (βj) as a corresponding path. De-
note by v((βj)) the largest one (with respect to order < ) . For a path

β\ > 9 β(p-l)n+i 9 /?(/?-1)«+/+1 9 > βpn+i

v((βj)) has parts

χβι(jι),... » ^ . i ) 1 I + l O ' ( p - i ) » + ί ) » ^ M ' ••• > JΊ(- i )>

and if we set

H{βτ> Pr+l) = S π Λ Λ

then

(9.5) Jr = Uι-lΉ(βr9βr+ι).

Denote by (y?7 ) a path (of length / = np + i)

y/,. -., Ύ\, ? « , . . . , 7 i , . . . , y « , . . . , n

Denote by f)i = span c i? i . Then fyi-weight of the vector v(v((βj)))
G Wι equals

(9.6) j \

We also see that the degree of v(v((βj))) e W\ equals

By the way v{{βj)) is constructed (9.5), we see that

(9.7)
r>\

Formulas (9.6) and (9.7) are used in [DJKMO 1] to define the weight
and degree of path (βj).

Finally notice that for a given path (βj) the set of all coloured
partitions satisfying difference conditions and having (βj) as a corre-
sponding path may be obtained from v((βj)) and partitions

oo
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by adding ri\ boxes to the first part of v((βj))9 nι boxes to the
second part of v((βj))9 ... of the Young diagram of v((βj)). Since
by Theorem 9.1 v(u) e W\ form a basis, the above argument and
(9.3) imply that dimL(A'n_^ equals to the number of paths (βj)
such that the weight of (βj) given by formulas (9.6) and (9.7) equals
μ. This was proved in [DJKMO 1 and 2].

10. Basis of vacuum spaces of standard modules for Λ\ ] and A{

2 .

For the homogeneous Heisenberg subalgebra s set s + = s Π n + , and
denote by Ω(Λ) the vacuum space of a standard g-module L(A):

Ω(A) = {v e L(A); s+υ = (0)}.

Then we have the following linear isomorphism due to Lepowsky
and Wilson (cf. [LW], [LP1])

ί/(s_) Θ Ω(Λ) -» L(Λ), u <g> v -> u υ .

In this section we construct a basis of Ω(Λ) for Aψ standard
modules. This is a generalization of the construction given in [LP2]
for A^ standard modules. We include the ^4^ case as well: although
the proofs are (almost) the same to the original ones, they illuminate
similarities and differences of results in §§9 and 10.

Let L(A) be a standard g-module of level k.
For βl9...9βmeΓ set

(10.1) Z(βl9...9βm;ζi,...,ζm)
m m

7=1

Z(β\ , . . . , βm\

summed over all j \ , . . . , j m e Z . Clearly, for every permutation σ
we have

Z(βσ(l) , - , ^cτ(m) 7σ(l) > > Jσ(m)) = Z(βl > > ̂ m ί 7l > - ? Jw)

For a coloured partition

V = (βlUl), ~,βmUm))

set
Z(v) = Z(βl9...9βm 9 j Ϊ 9 . . . 9 j m ) .
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It is clear from Lemma 8.1 and (10.1) that

L(Λ) = TU{BJ) span{Z(/φΛ μ e

It is easy to see (cf. [LP1, Proposition 2.7]) that the action of the
Heisenberg subalgebra s commutes with each Z(u). In particular,
each Z{v) preserves Ω(Λ). Hence we have:

LEMMA 10.1.

Ω(Λ) = Tspan{Z(μ)vA; μ G^(Γ_)}.

In this section we prove the following two theorems:

THEOREM 10.2. Let g = sl(2, C) and Γ = {a}. The set of vectors

enaZ(μ)vA,

where n e Z, and {coloured) partition μ does not contain any partition
of the form

/(A) : ( α ( - l ) , . . . , α(-l)) of length k - A(α) + 1,

Z)'(Λ) : αC/i) < < oc{jk), 1^ - j k \ < 1,

is a basis of the vacuum space Ω(Λ) of the standard g-module L(Λ).

THEOREM 10.3. Let g = s[(3, C) am/ Γ = {jff, a}, β < a. 77*έ> seί

eφZ(μ)υA,

where φ EQ and coloured partition μ does not contain any partition
of the form

/ ( A ) : A ( - l ) < < A ( - l ) , A 6 Γ , ί = fc

D(A): A(7i) < < βk+ιUk+\), A e Γ ,

71 = Λ+i o r 7i = — 1 + A+i, ^i > βk+ι,

D'(A) : (a) γ(ji) < < y{jk), Ui ~ΛI < 1, 7 ^ Γ

(b) β(j - \fa{j - l)bβ(j)c«ϋ)dβϋ + 1)',
j< -2, a, b,d,e>l, c > 0 ,

a + b + c = A:, c + βf + ^ = A:? έ + c + ^

(c) α(7 - \)aβ{j)bκ{j)cβ{j + l)da(j + I)*,



CONSTRUCTION OF STANDARD MODULES FOR A™ 177

is a basis of the vacuum space Ω(Λ) of the standard g-module L(A).
(Here γ(i)a denotes that the part γ(i) appears a times.)

REMARK 10.4. Notice that coloured partitions listed in Z>'(Λ) sat-
isfy the difference conditions D(A).

First we prove a spanning:
Clearly the definition (10.1) and Lemma 9.2 imply (cf. [LP2, Propo-

sition 6.4]):

LEMMA 10.5. If a coloured partition μ contains v e /(A), then

Z(μ)vA = 0.

Together with Lemma 6.2 we now recall [LPl, Lemma 3.1] (notice
a difference in the definition of E±(φ, £)) :

LEMMA 10.6. On a level k > 1 module L(A) we have

(i) E+(φ, ζ{)E-(ψ, ζ2) = (1 - ζι/ζ2)
{φ>ψ)kE-(Ψ, ζi)E+(φ, d ) ,

(ii) E+(φ, ζι)xΨ(ζ2) = (1 -Cι/ζ2)-{φ>ψ)xΨ(ζ2)E+(φ, Ci),
(iii) x9{ζx)E-{ψ, ζ2) = (1 - Ci/ζ2)-{φ>ψ)E-(ψ9 C2)x9(b).

By applying Lemma 10.6, the definition (10.1) and the relations

xγ(ζ)k = k\E-(-γ, ζ)E+(-γ, ζ)eγζ-k-',

xΛ(0r> ^(0 r« = o,

for A , . . . , βn e Γ, n + + rπ = λ: + 1, (see (6.2) and (6.3)), we
get (cf. [LP2, Theorem 5.8]):

L E M M A 10.7. (i) For βγ, . . . , βm e Γ, m > k, \<s<m-k + \,

βs= = βs+k-\ =y,we have

lim Z ( A , . . . , £ m ; ί i , . . . , ί m )

5-1

1=1 i=s+k

Z(β\ , . . . , ^ - i , ^ + ^ ? . . . , βm', ί l 5 . . . , G - l ? Cj+ik J ••• 5 Cm)-

( i i ) F o r β \ 9 . . . , βmeT, m>k+l, l<s<m-k,we have

l i m
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REMARK 10.8. Let a coloured partition μ contain a partition of the
form

γUi)< '<vUk)> L / i - Λ I < i , 7 ^ r .

Then Lemma 10.7 implies that

for some av e C[Q]. In the case of A[1^ standard modules this rela-
tion together with Lemma 10.5 implies that the set of vectors defined
in Theorem 10.2 is a spanning set of Ω(Λ) (cf. [LP2, Theorem 6.5]).

LEMMA 10.9. Let g = sl(3, C). Let a coloured partition μ contain
a partition of the form (a), (b) or (c) listed in Theorem 10.3. Then

(10.2)
v>μ

for some av e C[Q].

Proof. In the case when μ contains a partition of the form (a) the
statement follows from Lemma 10.7(i).

Now let μ contain a partition τ of the form (b): let μ = μ' U τ ,

τ = β(j - l)*αC/ - l)bfiU)c"U)dfiU + 1)' >
7 < - 2 , a,b,d,e>l, c > 0 ,

α + δ + c = fc, c + ̂  + ̂  = ^ ? b + c + d <kt

First notice that our assumptions imply that d < a and that the
number of parts of τ of colour β is > k, say α + c + e = k + r.
Clearly, 0 < r = a-d < a. Let s be the number of parts τ of colour
α, i.e. s = b + d. Notice that r + s = a + b.

Define a sequence of coloured partitions

τ> < τ r + i < < τa = τ

by

τr = /?(; - l)'αC/ - l)s'β(j)c+d

τ r + i =

τ Γ + l =

; - l)bβU)c<*U)dβU
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Notice that we keep constant the number of parts of a given colour,
as well as the number of parts of a given degree. Define an "upper
triangular matrix" of partitions of length k + 1

TPP < τ p p + \ < ••• < τ p q < • • • . p = r , . . . , a , p < q < a ,

by

τpp =
τaa = β(j-l)aa(j-l)bβ(j)caU),

τp,p+i =

for p = r, ..., a - 1 and for i — 0, . . . , a - p such that c + 1 -

/ > 0. Notice that, whenever τpq (p < q) is defined, we have for

p = r,... , a-I and q=p,..., a

τq =

Let
μq = μ'Uτq, q = r, ... ,

Then
μ r < μ r + i < - < μ a = μ

and for p = r,... , α — 1, p <q < α, we have

μq = τpq U ^' U βU)a-p-la(j)d-a+

Notice that τ p p e I>(Λ) for p € {r, . . . , a - 1} (and τaa £ Z>(Λ))
Hence by applying Lemma 10.7(ii) we have for p = r, ... , a - 1

a-p

and
a-p

Π n ^ W -7(ιi Λ-4-V r 7(ΊA =

ί=0

for some cK9cu eC, and

/ c + 1 +/Λ ίa + b - p

= { P + i )[ i .
_ (c+ 1 +p)!(α + b-p)\ ίc+ \\
~ {p + ΐ)\{a + b-p-ΐ)\{c+\)\\ i ) '

cPg = 0 for p > q.
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Notice that calculating the determinant of a submatrix of (cpq) re-
duces to calculating the determinant of the corresponding submatrix
of the matrix ( ( ^ ) ) . Hence one can easily see (by induction on c
and d) that

det(7C+1Y) >0,
\\Q ~ P J J p=r,...,a-l;q=r+l,...,a

and

(10.4) det(cO T) l,= r,...> β-i; ί S ! Γ +i,...> β φ 0.

By using Gauss elimination procedure for the set of relations (10.3)
we get

+ cZ(βa) = ])Γ dvZ(v)

for some c, dv G C. Now (10.4) implies c Φ 0. Since μr D τr D
β(j)c+dβϋ + 1)*, by using Lemma 10.7(i) we get (10.2).

In the case when μ contains a partition of the form (c) the proof
is similar. D

REMARK 10.10. In the case of Aψ standard modules Lemmas 10.5,
10.7(ii) and 10.9 imply (by induction) that the set of vectors defined
in Theorem 10.3 is a spanning set of Ω(Λ).

In the rest of this section we prove the linear independence:
Assume that k > 2. Set (cf. [LP2, §7])

A = span{yθ') γ e Γ, j < 0, j = 0 mod/:},

3 = span{yC/);yeΓ, j<09 j

Then

S(s-) ^ C/(s_) ^ S(A) ® S(A),

Define an algebra homomorphism

by mapping

j<0, γeΓ.

Extend this map to

S(s-)®C[P]->S(A)®C[P],

v ® e& »-> Ψ ® ̂ ^ .



CONSTRUCTION OF STANDARD MODULES FOR A™ 181

In particular, for Schur functions we have

= K(μ)eS(A)®C[P].

Now recall that by using the full subalgebra of level k we have (see
§9)

L(Λ) = U(Q{IC))(\ ® eλ) c S(β.) ® C[P],

vA = 1 ® eλ,

) • • χβmUm)vA = xβχ{kh) • • Xβm{kjm){\®ek).

Moreover, we have:

LEMMA 10.11.

Z(v)vA^ Σ ε(w)K(b;μ + wδm)(l®eλ),

where

μ = (kjx,..., kjm)•

Proof. Clearly (7.2) implies

(10.5)

m

where

J E * , ^ , ζk) = exp

For a Laurent series

write

Pk(A(ζu...,ζm))= Σ "Jr jJΪ ' * &
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Then we have

Z(βϊ9...,βm9ζt ,...,

(The last equality follows from (10.5) and Lemma 7.1.) By comparing
the coefficients on both sides and using (7.1) the lemma follows. D

The proof of Lemma 9.7 together with Lemma 10.11 imply:

LEMMA 10.12. Let v satisfy the difference conditions JD(Λ). Con-
sider u° as a coloured partition. Then there exists an integer a φ 0
such that

Z(v)vA = aK(v°){l®eλ) + Σ bκK{κ){\®eλ)

for some bκ e C.

Denote by %(A) the set of all coloured partitions v = (β\(ji)> ••• >
βmϋm)) such that

(i) jr<—l — (λ9βr) for all r — 1, . . . , m and all parts of v are
mutually different.

(ii) v does not contain any partition of length k of the form

for j < - l , γeΓ.

PROPOSITION 10.13. (i) The family

{eψK(v)(l®eλ);ψekQ, u

is a basis of S(A) <g> eλC[Q].
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(ii) If v is a coloured partition, v φ %(A), then

K{v){\®eλ) = Σ aμK{μ){\®eλ)
ve'g'(A), μ>v

for some aμ e C[kQ].

Proof, (i) For β = yι e Γ define elements s{j] e 5(s_) by

(10.6) Π (ζ7l-ζ7l)E-(-β,ζι)---E-(-β,ζm)
\<r<s<m

summed over all μ € Zm . Also denote by «^(ί) the set of all partitions

such that every part of τ ^ occurs in τ ^ at most k — 1 times. Then
by [LP2, Proposition 7.6] the family

is a basis of 5(^4).
Now fix μeQ. Then the set of vectors

where τ& e 3S^ for / = 1 , . . . , n, is a basis of 5(3) ® ̂ A + ^. Let
^ = r\Ύ\ + - - + rnyn For fixed τ ^ , ... , τ ^ let integers p\, ... , pn

be such that

/(τ(/)) + Pi = rz modk , 0 <pi <k.

Notice that for τ « = (/?0Ί), . . . 5 jff(Λ)) we have

where Pi zeros are added. Write

(10.8) σW

where gt = {yt, λ). Set v = »/(») u U i/M. Then (cf. (7.3))

(10.9) K(v){\®eλ) =
ί = l
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where e E {±1} and ψ = μ - φ E kQ. Obviously v E
Conversely, for v e ^ ( Λ ) , v = i/1) u U v^ , the partition σ ^

defined by (10.8) has at most k - 1 parts equal /?(0), and hence v
and ^ uniquely determine a basis element of the form (10.7).

(ii) For β = y, E Γ define elements λ£f) E S(s_) by
m

(lo.io)

summed over all v e Z m .
Then (10.6) and (10.10) imply

= Π (i-ίr/cr
\<r<s<m

summed over all σ E Zm. Hence for a partition σ

for some α̂ Z>̂  E C. The proof of [LP2, Proposition 7.5] shows (notice

that our order < is slightly different) that for a φ.

τ{ϊ)
h

μ>σ

for some aμeC, and hence for σ

μ>σ

for some aμeC.
Now assume v = v^ u U J/ W ) ^ ^ ( A ) . Define σ(z) by (10.8).

Then for some / E {1, . . . ,«} σ = σ̂ 'J either has /?,- < A: parts of
the form β(0) and (β(j\) 5 . . . 5 ^0*5)) ^ <%k, or it has A > /: parts
of the form β(0).

In the first case by using (10.11), (10.9) and Lemma 3.3 we see
that the statement (ii) holds. In the second case we may erase in σ
k parts of the form β(0) and

where ε E {±1}, l{μ) = /(î ) - k, and the statement (ii) follows as
well. D

Let 0 = sl(2, C). Notice that if v does not contain any partition
of the form D'(K), then v satisfies the difference conditions Z)(Λ).
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LEMMA 10.14. Let g = sl(2, C). Suppose that v does not contain
any partition in I (A) U D'(Λ). Then v° e %{A).

Proof. Let

v = (a(j\), . . . , α(Λ)), j\<--<js,

Now recall Lemma 4.5: Since 1/ does not contain partitions of the
form D'(Λ), for a y-block B{y, 7) of z/ we have #5(1/, j) < k - 1.
By (vi) we have an interval

and by (vii) b\ < bj for i > j . Since we have only one colour a, and
all parts of i/° are mutually different, we have that 6/ < α, for / > j .
Now consider two adjacent intervals

Assumption b{ = a}• - 1 implies (Lemma 4.5(Hi)) / = j + 1 and
#([flι» ^/]u[^y J ̂ /]) = ^ > which is impossible since v does not contain
any partition of the form D'(A).

Hence i/° does not contain any interval of k elements, and i/° e
(cf. Lemma 9.6). D

LEMMA 10.15. Let g = sl(3, C). Suppose that v does not contain
any partition in I (A) U D(Λ) U Z>;(Λ). ΓA^n i/°e? f e(A).

. Let

and let i/° contain parts

j » ( 0 , ie[r9t]9 # [ r , t ] > k .

By Lemma 4.5 there exists a 7-block B{y 9 j)

{Pi;βUi)eB(",J)} = [rut]9 r<rx.

If #[r{, t] = k, then z/ contains a partition β(-j)k, which is of
the form (a).

Let r < r i . Then the part /f(ri - 1) = #?(/^) appears in i/°.
Let β{r\) = βm(Pm)' First notice that q < m: otherwise we would
have a part £ m +i(/Wi) of i/°, where jffm+1(jpm+i) = α(ri - 1) or
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pm+ι > r - 1, both of these impossible because of Lemma 4.5(i), (ii).
Hence q < m.

Because of Lemma 4.5(vii) and (ii) we have that either v contains
two blocks B{y, j + 1), B[y, j + 2) and q = m + 1 - 2k, or v
contains a block B{y, j + 1) and q = m+l—k. In the first case all
colours of parts in B{y, j + 1) are α, and

#[rx, ί] + #5(ι/, 7 + 1) = k,

Now it is clear that these three blocks form a partition which is
either listed in (b), or it contains a partition listed in (a).

In the second case (j + l)-block B{y, j + 1) contains at least one
part β(-j - 1), and again

If all the parts of B(y, j+l) have colour β, then clearly v contains
a partition listed in (a). If there is at least one part in B{v, j + 1)
with colour a, we repeat the above argument for B(ι/9 j+l) instead
of B{y, j), and see that either v contains a partition of the form (a)
or (b), or it contains a third block B{y ,7 + 2) which contains at least
one part β(-j - 2), and

where [r2, #Ί - 1] = {Pi β(ji) e B(y, 7 + 1)}.
Now it is clear that these three blocks contain a partition which is

either in (a), D(A) or in (b).
The proof that v contains τ of the form (a), D(A) or (c) in the

case when i/° contains parts

is similar. D

The Proof of Theorems 10.2 and 10.3. The set of vectors defined in
Theorems 10.2 and 10.3 are spanning sets (Remarks 10.8 and 10.10).
The linear independence follows from Lemmas 4.6, 10.12, 10.14 and
10.15 and Proposition 10.13. D
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