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BRAIDED GROUPS OF HOPF ALGEBRAS
OBTAINED BY TWISTING

D . GUREVICH AND SHAHN M A U D

It is known that every quasitriangular Hopf algebra H can be con-
verted by a process of transmutation into a braided group B(H, H).
The latter is a certain braided-cocommutative Hopf algebra in the
braided monoidal category of //-modules. We use this transmutation
construction to relate two approaches to the quantization of enveloping
algebras.

Specifically, we compute B(H, H) in the case when H is the
quasitriangular Hopf algebra (quantum group) obtained by Drinfeld's
twisting construction on a cocommutative Hopf algebra H. In the
case when H is triangular we recover the S-Hopf algebra HF pre-
viously obtained as a deformation-quantization of H. Here Hf is a
Hopf algebra in a symmetric monoidal category. We thereby extend
the definition of HF to the braided case where H is strictly quasi-
triangular. We also compute its structure to lowest order in a quanti-
zation parameter h. In this way we show that B(Uq(g), Uq(g)) is
the quantization of a certain generalized Poisson bracket associated to
the Drinfeld-Jimbo solution of the classical Yang-Baxter equations.

1. Introduction. Hopf algebras in braided monoidal categories have
been introduced in [10] and [11] in the context of Tannaka-Krein re-
construction theorems. It is shown there that every quantum group
gives rise to a Hopf algebra in a braided category by a process of
transmutation. The category is that of representations of the quan-
tum group, and in this braided category the resulting Hopf algebra
is in a certain sense "braided-cocommutative", i.e. like a group alge-
bra. Hence such Hopf algebras in braided categories are called braided
groups. The process is called transmutation because it turns a quan-
tum group in the ordinary category of Hopf algebras into a group-like
object in a non-commutative category.

Hopf algebras in symmetric monoidal categories, on the other hand,
arise naturally in the deformation-quantization of triangular solutions
of the classical Yang-Baxter equations (CYBE) [6]. They have been
called S-Hopf algebras and are the enveloping algebras of S-Lie alge-
bras and S-groups. Hence we are led to consider if braided groups,
too, can arise as such deformation-quantization of some kind of Pois-
son structure. This is one motivation for the present paper. The
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answer generalizes the results of [6] to the braided case, as well as
clarifying those results.

This deformation-quantization in [6] is achieved by means of an
element F constructed by Drinfeld in [1]. Let g be a semisimple Lie
algebra with universal enveloping algebra g, and reA2g a triangular
solution oftheCYBE. The corresponding F lies in {U(g)®U(g))[[h]\
as a formal power-series in a parameter h. The S-Hopf algebra in [6]
is given on C(G) (functions on the Lie group of g) with a multipli-
cation deformed via F, and quantizing a certain Poisson bracket on
G. In terms of U(g) rather than C ( ( J ) , the S-Hopf algebra structure
U(g)F is given by [6]

(1) a Fb

AF = ^ ( A d ^ - d ) <g> A d F - ( 2 ) ) o Δ ,

(2) S(a ®b) = Σ AdF-(i)/r(2) (b) ® Ad^-w^o {a)

where F = ΣF{1) ® F{2) and F~ι = Σ ^ " ( 1 ) ® F " ( 2 ) . The map
S U(g)f®U(g)F -» U{g)F®U(g)F obeys the quantum Yang-Baxter
equations S12S23S12 = ^23^12^23 and -S2 = id. The Poisson bracket
in terms of U(g) (rather than C(G)) defines a coPoisson structure
on the vector space of U(g). It is the map δ: U(g) —> U(g) ® U(g)
defined by

(3) δa =

where r = γ^r^®r^ and Δα = Σ f l(i)® f l(2) in the Sweedler notation
[13]. In fact, these formulae (1) can be used quite generally and define
an S-Hopf algebra Hp for any pair (H, F) where H is a cocom-
mutative Hopf algebra and F obeys a cocycle condition. The map
Ap: Hp —• / / F ® / / F is an algebra homomorphism provided Hp ® -Hf
has the algebra structure (a ®b)(c®d) = α£(£ ® c)ί/. Here we mean
to first apply S to b ® c and then multiply the result on the left by α
and on the right by d. Thus HF is not an ordinary Hopf algebra.

This construction represents one approach to quantization. On the
other hand, let us note that Drinfeld himself has used this same data
(H, F) quite differently to obtain a quantum group H or, more geir-
erally, a quasi-quantum group [3]. This represents a second (and more
familiar) approach to quantization along the lines pioneered in [2] and
[3]. The comultiplication of H is constructed by conjugating the Co-
multiplication of H by F G H Θ H. The multiplication of H is not
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changed. In the case H = U(g), this U(g) is thus a quantization of
U(g) as an ordinary (triangular) quantum group or Hopf algebra. It
quantizes the solution r (from which F is obtained) viewed as a Pois-
son bracket on C(G) in the sense of [2], In the form of a coPoisson
structure on U(g) it is

(4) δa = -[r,Aa].

This is in contrast to (3).
Since the process of transmutation converts any quantum group

into a braided group, and any triangular quantum group into one in
a symmetric monoidal category, we can hope that these two quantiza-
tions, U(g) and U(g)f, are connected by transmutation. In fact, we
will show this quite generally, B(H, H) = HF, where H is cocom-
mutative and B( , ) denotes the braided-group transmutation con-
struction of [10] and [11], albeit applied in the symmetric monoidal
(unbraided) case. This is the main result of §2. This also clarifies
the structure of HF itself. Note that the transmutation construction
B( , ) is a bifunctor, depending contravariantly in the first argument
and covariantly in the second [10] [11]. This is the reason behind the
notation.

Next, in §3, we generalize the results of §2 to the case where H is
viewed as a quasitriangular quasi-Hopf algebra ( i / , Φ , ^ ) [3]. F is
a cocycle with respect to this Φ andH is quasitriangular rather than
triangular. This means that B(H, H) is strictly braided in the sense
of [10] and [11] rather than an 5-Hopf algebra in the sense of [5]. We
therefore use the structure of B(H, H) and a suitable map a: H —•
B(H, H) to define on the vector space of H a generalization of Hp .
The resulting deformation explicitly involves Φ and we denote it by
HF φ.

These more general results of §3 are needed to deal with the impor-
tant case H = U(g, t), the quasitriangular quasi-Hopf algebra associ-
ated to a symmetric ad-invariant element t e g®g [3]. Its multiplica-
tion and comultiplication coincide with those of U(g). The necessary
Φ was obtained in [3] by solving the Knizhnik-Zamolodchikov equa-
tions, and H is isomorphic to the Drinfeld-Jimbo quantum group
Uq(g). Our results therefore give an interpretation of the braided
group B(Uq(g), Uq(g)) as a deformation-quantization of the form
U(g, 0 F , Φ We conclude the paper by computing its semiclassical
structure. This takes the form of a certain Poisson-type structure on
g generalizing the one in (3) above, to the case where r is strictly
quasitriangular.
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2. Hp obtained as a braided group B(H, H). We work throughout
this section and the next with H a Hopf algebra over a ring k. We
use the standard notations, including the Sweedler formal sum nota-
tion for the comultiplication [13], Ah = Σ)λ(i) ® h(2) The antipode
is denoted s: H -~+ H and the counit ε: H —• k. The axioms of a
quasitriangular structure 31 €H ®H are from [2]. They are such as
to ensure that the category H^ of 77-modules is a braided monoidal
or "quasitensor" category. Here if V, W are two ΛΓ-modules of a
quasitriangular Hopf algebra (H, 31), then the action ofheHon
the tensor product module V ® W, and the quasi-symmetry or braid-
ing isomorphisms *¥v,w V ®W -+W ®V are given by

(5) h>(υ ®w)

Ψv 9 w(v ®w) = Σ<9?M >w® 31^ > v

where > denotes the action of H. The functorial isomorphisms Ψ
play the role of "transposition" in the category. Finally, H is trian-
gular (rather than quasitriangular) if ^ 2 1 ^ = 1 ® 1 - In this case the
category HJ£ is an ordinary symmetric monoidal one. See [8, §7]
for a systematic treatment of these well-known facts. We note that
braided monoidal categories themselves were formally introduced into
category theory in [7].

Next, we recall the construction of braided groups from [10] and
[11]. We use the form in [11]. Let (H, 31) be any quasitriangular
Hopf algebra. Let B denote the linear space of H viewed as an object
in H^ by the Hopf algebra adjoint action h>b = Σh^bsh^). We
put on B the same algebra structure and counit as H, and put a
modified comultiplication and antipode according to [11],

(6) Ab = 2 b{ι)s3lM ® 31^ > b{2),

sb = Σ<®{2)s(&w >b), beB.

The right-hand side is in terms of H. With this structure B =
B(H, H) becomes a Hopf algebra in the braided monoidal category
#«/# [11]. The axioms for this are just as for ordinary Hopf algέbras
except that all the structure maps are now morphisms in the category
(i.e. in our case /f-equivariant), and Δ: B —• B ® B is an algebra
homomorphism with respect to the braided tensor multiplication al-
gebra structure of B ® B. This is defined with Ψ#?Jg in the role of
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the usual transposition. Such notions are well known in the symmet-
ric monoidal case (see for example [12]) but work equally well when
Ψ 2 Φ id. Finally, B(H, H) is braided-cocommutative in a certain
sense [11], The construction of B(H, H) that we have described is
the diagonal case of a more general construction B( , ) [11] yielding
more general Hopf algebras in braided monoidal categories (such as
braided-quasitriangular ones).^

Our goal is to compute B(H, H) for certain quasitriangular Hopf
algebras H obtained by the twisting construction of Drinfeld [3]. We
now recall this in the special case that we need. For any Hopf algebra
H we say that an invertible F e H ® 77 is a "cocycle" if

(7) ((Δ ® id)F)Fl2 = ((id ® A)F)F23

where F23 = 1 ®F and Fn = F® 1 in H®H®H.

PROPOSITION 2.1 (cf. [3]). Let (H, 3?) be a quasitriangular Hopf
algebra and F^ a cocycle. Then there is a new quasitriangular Hopf
algebra (H, 31) defined by the same multiplication and counit and

Ah = F~ι(Ah)F, <<% = F^&F, sh = u{sh)u~ι, heH,

where u = Σ ^ ~ ( 1 ) ( ^ ' ( 2 ) ) and u~ι =

Proof. This can easily be proven by direct computation, but in fact
it is nothing other than a special case of Drinfeld's theory of twisting
of quasi-Hopf algebras [3]. For this reason we defer the proof to §3,
where it is a special case (Φ = 1) of Lemma 3.1 and Proposition
3.2. The notation used in defining u and u"1 is F = ΣF^ ® F^
and F~ι = ΣF'W ® F~(2K We will use such explicit notations
throughout.

LEMMA 2.2. In the setting of Proposition 2.1, the element u~x =
obeys

Au~ι =
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Proof. We compute

Here F' is another copy of F . The second and fourth equalities use
the cocycle condition (7).

We are interested in computing B = B(H, H) in terms of H.
For the remainder of the section we assume^ that the initial H is
cocommutatiye and 31 = 1 ® 1 .Jn this case, H is triangular because,
evidently, 31 = F^F obeys <922\3Z = 1 ® 1. In fact, Lemmas 2.4
and 2.5 hold more generally for any (H, 31). The other results hold
more generally only after including the quasitriangular structure of H
in the formulae. We focus on the simplest and most important case
when H is cocommutative.

In this case, H itself is a Hopf algebra in the category HJ[ by
the adjoint action, while B lives in the category -^ and not in
H^ . However, the process of twisting is such that these categories
are necessarily equivalent [3]. In our case, this simply comes out as

PROPOSITION 2.3. Let H be cocommutative and F a cocycle. Then
the symmetric monoidal category ^ # can be identified with the cate-
gory Hι^F of H-modules equipped with a deformed monoidal structure
and symmetry

>v®F F-<2>λ ( 2)F ( 2> > w ,

Ψ F , W(V ®FW) = Σ F~{l)F{2) >w®F F'WFW > v

where > denotes the relevant action of H.

Proof. This is immediate since the twisting in Proposition 2.1 does
not change the algebra structure, so H = H as an algebra. Note
that there is still a tensor functor (id, c): #^# —• H^F = j}^ given
by the linear identity on objects and morphisms, but a non-trivial
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isomorphism of the tensor product of objects: cv^w: V®W = V®FW
as //-modules, given by the action of F.

LEMMA 2.4. Let Hp denote the vector space of H viewed in H^F

by equipping it with the action Ad of H

(8) A d Λ ( α ) = Σ h ) a s h ( 2 ) > a,heH.

We identify this Ad as an action of H also. We denote by Ad the
"quantum" adjoint action of H on itself

(9) Aάhψ) = Σh{l)bsh&, h9beH.

Then there is an isomorphism a: HF —> H of H-modules given by

a(a) =

Proof. We first compute, another useful form of a as

(10) a(a)

Here the second equality was from (7). This form (10) of a then
implies that a is invertible with a~ι(a) — Y^F^ausF^ , and

= a{Kάha)

as required.

LEMMA 2.5. The map a: Hp —• H in Lemma 2.4 is an algebra
homomorphism. Here H = H as an algebra and HF has the multi-
plication -F as shown in (1).
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Proof. We compute

a{a -F b) =

(1)

^ ^

as required. Here the second equality uses the definition of a from
Lemma 2.4, the third the fact that the adjoint action of H on H re-
spects its multiplication. The fourth equality is the cocycle condition.
We then evaluate the adjoint action for the action of F^2\\) and use
the antipode axioms.

LEMMA 2.6. Let H be cocommutative and F a cocycle. Then the
map a: HF —• B(H, H) in Lemma 2.4 is a coalgebra morphism.
Here B(H, H) coincides with H as an algebra and an H-module,
but equipped with the braided comultiplication A. Hp is equipped
with the comultiplication Ap as shown in (1).

Proof. We first compute the expression Aa(a) needed in (6) for
Aaa. Using a in the form (10) we have

Δα(α) =

~ι
(II

The second equality uses Lemma 2.2 and the third the cocycle con-
dition (7). Next, for Δ in (6) we use an equivalent expression Ab =
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[Π], now applied to (H,3>). Then

Δa(a) =

The third equality uses that H is cocommutative, and the fourth
uses the result for Aa(a) and the ensuing cancellations of F~ιF and
u~1u. The fifth uses cocommutativity of H again. The sixth, seventh
and ninth equalities are each a use of the cocycle condition (7) and
cocommutativity.

LEMMA 2.7. Let H be cocommutative and F a cocycle. Then the
antipode sp on Hp obtained via a from the antipode on B(H, H),
coincides with the antipode s on H.
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Proof. We compute Sp = a~ι os_oa from (6),

sF(a) = ΣF^^2\s Ad ~{ι

(1)

t ( ) )

^ 2 \ ^ = s(a)

as required. For the second equality we used Lemma 2.6. For the
third equality the definition of a and u. For the fourth equality we
use F^Fis computed from the cocycle condition and then cancel one
of the resulting F's using the antipode axiom. Note that s commutes
with Ad for H cocommutative. For the fifth equality we use cocom-
mutativity and the cocycle condition, and then cancel FF~ι. Finally,
we write out Ad and use cocommutativity and the antipode axioms to
obtain the result.

THEOREM 2.8. Let H be cocommutative and F a cocycle. Let Hp
denote H with the S-Hopf algebra structure as shown in (1), viewed
as an object in the category of H-modules by the adjoint action Ad of
H. In this category, there is an isomorphism of Hopf algebras

a: HF = B(H, H)

and S =

This shows that Drinfeld's quantization method, that turns a co-
commutative Hopf algebra and cocycle (H, F) into a triangular Hopf
algebra, is converted by transmutation into the corresponding S-Hopf
algebra in the approach of [6]. This also clarifies the structure of Hp .

COROLLARY 2.9. Let H be cocommutative and F a cocycle. Then
the multiplication •?: Hp ®F Hp —• Hp, comultiplicatίon Δp: HiΓ—>
Hp®FHp, antipode Sp: Hp —• Hp, counit Hp —• k and unit k —• Hp
are all morphisms in the category H^F. Moreover, Hp is cocommu-
tative in the sense

//oA f =AF.
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3. Generalization to F a quasi-cocycle. In this section we generalise
the results of §2 to the case when F does not obey the cocycle equation
but something weaker. This is needed to handle the familiar quantum
groups Uq{g) associated to a complex semisimple Lie algebra g. For
this setting we need the data (H, Φ, 3i, F) where H is a Hopf
algebra (typically, cocommutative) and at the same time (H, Φ, &)
is a quasitriangular quasi-Hopf algebra.

Let us recall from [3] that a quasitriangular quasi-Hopf algebra
means ( 7 7 , Δ , ε , s , α , / ? , Φ , &) where first of all H is a unital al-
gebra and Δ: H —• H ® H an algebra homomorphism such that

(11) (Δ<g>id)oΔ = Φ(( id®Δ)oΔ())φ- 1 .

The axioms for the counit ε are as usual. The associativity element
Φ e H<g>H® H is inyertible and obeys (id® ε ® id)Φ = 1 and the
pentagon cocycle condition

(12) (id ® id ® Δ)(Φ)(Δ ® id 0 id)(Φ)

1).

The invertible 3Z e H ®H still intertwines the comultiplication and
its opposite, but the other two axioms of a quasitriangular structure
are modified by Φ, see [3]. We will not need their exact form. Finally,
the antipode for a quasi-Hopf algebra consists of elements a, β e H
and s: H -+ H obeying

(13) 5>Λ(1))αΛ(2) = e(λ)α, Σh{x)βsh{2) = e(h)β

(14)

and determined uniquely up to a transformation a*-+ ua, β \-+ βu~ι,
sh H+ u(sh)u~ι, for any invertible ueH [3].

Note that if H is also a Hopf algebra (with the same Δ) then (11)
implies that Φ is ad-invariant in the sense

(15) ]Γ Φwh{ι)

h(2)φ{2) ® ^ ( 3 ) φ ( 3 ) , VΛ G H.

Likewise, if // is cocommutative, it must be that 31 is ad-invariant
in the sense

(16) Σ«#(1)Λ(i) ®^ ( 2 ) Λ(2) = Σfy i )^ ( 1 ) ® Λ (2)^ ( 2 )

? VA G/ί.
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LEMMA 3.1. Let H be a Hopf algebra and Φ an ad-invariant
cocycle in the sense of (12) (15). We also suppose that Φ and
^φ(i)(5φP))φ(3) are invertible. Then (H,Φ) is a quasi-Hopf algebra
with the same Δ, s and a = c " 1 , β = 1, where c =

3 )) is central

Proof. The only part we need to check is the antipode. Using ad-
invariance of Φ it is easy to see that c = ^φf^f.yφP'jφt 3 ), d =
X)(5>Φ~(1))Φ~(2^Φ~(3) are central. From this it follows that we can
take a = c~ι, β = 1 and 5 to satisfy three of the four axioms of a
quasi-Hopf algebra. A result in [3, Prop. 1.3] then implies that the
fourth is also satisfied and c = d. This last step can also be computed
directly from (12).

We suppose now that we are in the situation of the preceding lemma.
If F obeys the Φ-cocycle condition

(17) Φ((A®id)F)Fl2 = ((id®A)F)F23

then H defined by twisting by F is a Hopf algebra because Φ = 1
[3]. If M makes (H, Φ) quasitriangular then H is quasitriangular.

PROPOSITION 3.2. If H is a Hopf algebra and (H, Φ, &) a qua-
sitriangular quasi-Hopf algebra, and F obeys the Φ-cocycle condition,
then the quasitriangular Hopf algebra H has the same multiplication
and couniu and

~ι(A{ ) ) F # = F - ^ F s = u(s( ))u~ιΔ = F~ι(A{ ))F, . # = F-^F, s = u(s( ))u

where u = Σ ^ ~ ( 1 ) ( ^ " ( 2 ) ) and u~ι = c~ι

Proof We use the antipode for the quasi-Hopf algebra (H, Φ) from
Lemma 3.1. After twisting using the formulae in [3] we have s =

5 ? & = c~ι Σ(sF{l))F{2) and /? = Σ ^ " ( 1 ) ( ^ " ( 2 ) ) and άβ = βά=ί
as Φ = 1 in the antipode axioms applied to H. We then make the
transformation by u to a = β = 1 and S = w(*S( ))w~ι and at the
same time conclude the formula for u~ι.

PROPOSITION 3.3. In the situation of Proposition 3.2, let HFφ de-

note H as an H-module by the adjoint action of H. Here H coincides
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with H as an algebra. Then the map a: HF φ —• H defined by

a(a) =

is an intertwiner, where H acts on H by the adjoint action of H.

Proof. The proof in Lemma 2.4 that the first expression for a is an
intertwiner goes through here without change. The computation that
it equals the second expression is similar to that for Lemma 2.4, but
with i 7 now a Φ-cocycle.

COROLLARY 3.4. The morphism a in Proposition 3.3 induces on
HF φ a Hopf algebra structure in the braided monoidal category of
H-modules, where a(HFjφ) = B(H, H).

To see what the implied structure looks like explicitly, we compute
the multiplication on HFφ from the corollary, at least in the cocom-
mutative case.

PROPOSITION 3.5. Let H be a cocommutative Hopf algebra, Φ an
ad-invariant cocycle in the sense of '(12) (15) and F a Φ-cocycle in the
sense of(\Ί). The multiplication on HFφ implied by Corollary 3.4
takes the form

a . F φ b = c~ι

Proof Let us first note that the element X = Σφ{ι) ® 0?Φ (2))Φ (3)

in H ® H is ad-invariant in the sense of (16), as follows from ad-
invariance of Φ . Then the cocycle condition for Φ in (12), after
applying (id ® id <g> )(id ® id ® s ® id) to both sides implies

(18)
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We now proceed to compute

a(a)a(b) = c-

(Ad
Γ (2)

(2)Γ

{l)r

(2)Γ

) φ - , ^

= a (c~ι

as required. For the third equality we used ad-invariance of Φ under
F^ , followed by the definitions of X' (another copy of X) and Ad.
For the fourth equality we used the Φ-cocycle condition for F, and
(18) above for the fifth equality. For the sixth equality we used ad-
invariance of X under X^^i) (relying on cocommutativity of 77),
and then cancelling. For the seventh equality we expanded AcLα)

r (2)

and used ad-invariance of Φ~W under F^K For the eighth equality
we likewise expanded AcLw and used ad-invariance of X.

r (i)

Thus the multiplication in HFΦ differs from the simpler form for
Hf in the preceding section by the inclusion of the element Φ. This
is needed in order to maintain associativity of the multiplication in
our braided situation. It is clear that similar modifications for the
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comultiplication etc. are also needed, but that apart from including
Φ , the formulae are similar to those in §2.

4. Semiclassical limit of B{Uq{g), Uq{g)). The quantum groups
Uq{g) are isomorphic to H where H = U(g) in the setting of §3,
and Φ, &, F are given in [3]. 31 is given by & = ehtl2 where
t is the split casimir. Hence B(Uq(g), Uq{g)) = U(g)FiΦ where
U(g)F,Φ is defined by a in Corollary 3.4. This means that the
braided groups of the Drinfeld-Jimbo quantum groups can be under-
stood as deformation-quantizations of U(g) in the form U(g)Fίφ.
We conclude the paper with a brief look at their semiclassical struc-
ture, i.e., we compute their cocommutator δ to lowest order in the
quantization parameter h.

LEMMA 4.1. Let Uq(g) be a quasitriangular Hopf algebra coinciding
with U(g) to O(h). Let & = 1 Θ 1 + hr + O(h2), where reg®g.
Let U(g)ffφ denote the braided Hopf algebra structure implied by
Corollary 3.4, with comultiplication AFφ. Then

h~ι(AFίφ - τ o Δ ^ φ ) = h~ι(A- τoΔ)

O(h)

where τ is the usual twist map and { , } denotes anticommutator.

Proof. We write the map a = l+hA+O(h2) and Δ = A+hD+O(h2),
say. Hence Δ^ y φ = A - h(A ® id)Δ - ft(id <g) A) A + HAoA + hD + 0{h2).
Since Δ is cocommutative, the first result follows. It says that the
semiclassical structure can be computed in B(Uq(g), Uq(g)) as well
as in U(g)Ffφ. Next, to compute the cocommutator we note that
any braided group obtained by transmutation of a quantum group is
necessarily braided-cocommutative in the sense [11]

(19)

where Ab = Σfyi) <8> b^) and Q = ^ 2 i ^ In our case, this im-
mediately gives the linearized form shown. Here we used that the
isomorphism Uq(g) = U(g) is also 1 + O(K) and that the quantum
adjoint action differs from the usual one by order h.

This is the semiclassical structure of the braided group
β(Uq(g), Uq(g)) or U(g)Fyφ defined through it. Since the necessary
quantum groups are obtained by quantizing a solution of the classical
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Yang-Baxter equation, we are motivated to verify the structure of δ
directly in this context.

PROPOSITION 4.2. Let r be a solution of the classical Yang-Baxter
equations, with r = r_ + r+ where r_ is antisymmetric and r+ is
symmetric and ad-invariant On the vector space of U(g) we define a
cobracket

δb = - 5 > _ ( D , bw] ® [rJQ, b(2)] + Σ[r+^ , b(ι)] ® {r+(2), b(2)}

where { , } denotes anticommutator. This δ is antisymmetric and
a coderivation in each output. If r+ = 0 it also obeys the coJacobi
identity, so that in this case δ is a coPoisson structure.

Proof. Note that J > + ( 1 ) , bw] ® K ( 2 ) , b{2)} = - £ K ( 1 ) , b{ι)} ®
6(2)] by ad-invariance of r+ (in the same sense as (16)), so that

δ is manifestly antisymmetric. That it is a coderivation is equally easy.
That it obeys the coJacobi identity requires a detailed computation
and holds in general only if r+ = 0.

We have not explicitly discussed the axioms of a coPoisson struc-
ture. However, they are just so that the dual space is a Poisson bracket
algebra by dualizing δ . See also [2]. If r+ = 0 then we are in the set-
ting of the Introduction and §2, and δ is indeed a coPoisson structure.
But if r+ φ 0 we are in the setting of §3 with an associativity cocycle
Φ. Hence it is not surprising in this case that δ does not generally
obey the usual coJacobi identity. It should be viewed as some kind of
generalized coPoisson structure. Likewise, in a topological context we
have,

COROLLARY 4.3. Let r e g® g be a solution of the CYBE on com-
plex semisimple g, the Lie algebra of G. We suppose that r — r_ + r+
where r_ is antisymmetric and r+ is symmetric and ad-invariant
Then C(G) has the antisymmetric bracket structure

{a, b} = - ^ a d * _ ( 1 ) ( α ) a d ; _ ( 2 ) ( δ ) + ^ a d ; + ( 1 ) ( α ) ( L ; + ( 2 ) +R;+(2))(b).

It is a derivation in each input and if r+ = 0, is a Poisson bracket

Proof. This can be proven by formally dualizing the previous propo-
sition or, since the result is in a slightly different context of Lie groups,
directly. Li denotes the action of a Lie algebra element ζ e g by
extension as a left-invariant vector field, and H* as a right-invariant
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vector field. The induced adjoint action is ad* = L* — R*. The case
r+ = 0 was observed in [6].

The actual deformation-quantization of C(G) corresponding to
this "generalized Poisson bracket" is given by the dual of the con-
structions above. Let A = C(G)q denote the quantum group of
function algebra type dual to Uq(g). These can be constructed as
matrix quantum groups [4]. There is a braided group construction
B(A, A) for such dual quantum groups given in [10]. The general-
ized Poisson bracket above is nothing other than the lowest-order of
aώ - b-_a for the multiplication in B(A, A). Some examples, in-
cluding BSL(2) = B(SLq(2), SL^(2)) were given in [9].

This generalized Poisson bracket in Corollary 4.3 is a precise gen-
eralization of the Poisson bracket on C{G) for r triangular [6], to
the quasitriangular case. We note that whereas the Poisson bracket on
C(G) is highly degenerate in the triangular case, the presense of r+

and the anticommutator makes it rather less degenerate in the strictly
quasitriangular case. An axiomatic framework for this generalized
Poisson structure is one direction for further work.
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