DEC GROUPS FOR ARBITRARILY HIGH EXPONENTS

B. A. Sethuraman

For each prime p and each $n \geq 1(n \geq 2$ if $p=2)$, examples are constructed of a Galois extension K / F whose Galois group has exponent p^{n} and a central simple F-algebra A of exponent p which is split by K but is not in the Dec group of K / F.

1. Introduction. Let K / F be an abelian Galois extension of fields, and let $G=\mathscr{G}(K / F)$. Let $G=G_{1} \times G_{2} \times \cdots \times G_{k}$ be a direct sum decomposition of G into cyclic groups, with $G_{i}=\left\langle\sigma_{i}\right\rangle(i=1, \ldots, k)$. Let F_{i} be the fixed field of $G_{1} \times \cdots \times G_{i-1} \times G_{i+1} \times \cdots \times G_{k}(i=$ $1, \ldots, k)$. Thus, the F_{i} are cyclic Galois extensions of F, with Galois group isomorphic to G_{i}. The group $\operatorname{Dec}(K / F)$ is defined as the subgroup of $\operatorname{Br}(K / F)$ generated by the subgroups $\operatorname{Br}\left(F_{i} / F\right)(i=$ $1, \ldots, k)$. This group was introduced by Tignol ([T1]), where he shows that $\operatorname{Dec}(K / F)$ is independent of the choice of the direct sum decomposition of G. If p is a prime, we will write $p^{n} \operatorname{Br}(K / F)$ and $p^{n} \operatorname{Dec}(K / F)$ for the subgroups of $\operatorname{Br}(K / F)$ and $\operatorname{Dec}(K / F)$ consisting of all elements with exponent dividing p^{n}.

A key issue in several past constructions of division algebras has been the non-triviality of the factor group ${ }_{p} \operatorname{Br}(K / F) / p \operatorname{Dec}(K / F)$ for suitable abelian extensions K / F. For instance, the Amitsur-RowenTignol construction of an algebra of index 8 with involution with no quaternion subalgebra ([ART]) depends crucially on the existence of a triquadratic extension K / F for which ${ }_{2} \operatorname{Br}(K / F) \neq{ }_{2} \operatorname{Dec}(K / F)$. Similarly, the constructions of indecomposable algebras of exponent p by Tignol ([T2]) and Jacob ([J]) also depend on the existence of an (elementary) abelian extension K / F for which ${ }_{p} \operatorname{Br}(K / F) \neq{ }_{p} \operatorname{Dec}(K / F)$.

The extension fields K / F that occur in these examples above are all of exponent p, and it is an interesting question whether there exist abelian extensions K / F whose Galois groups have arbitrarily high (p power) exponents for which the factor group ${ }_{p} \operatorname{Br}(K / F) / p \operatorname{Dec}(K / F)$ is non-trivial. The purpose of this paper is to show that for each $n \geq 1(n \geq 2$ if $p=2)$, there exists an abelian extension K / F with Galois group $\mathbb{Z} / p^{n} \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$ (and thus, of exponent p^{n}) and an algebra $A \in{ }_{p} \operatorname{Br}(K / F)$ such that $A \notin{ }_{p} \operatorname{Dec}(K / F)$. (Note that if K / F is an
$\mathbb{Z} / 2 \times \mathbb{Z} / 2$ extension, then ${ }_{2} \operatorname{Br}(K / F)$ is always equal to ${ }_{2} \operatorname{Dec}(K / F)$, see [T3] for instance.)

Our field F will be the rational function field in 3 variables over a field F_{0} of characteristic 0 that contains sufficiently many roots of unity. (For instance, F_{0} may be algebraically closed.) Our algebras will in fact be generalizations of the example given by Tignol in [T2]. Moreover, we will prove that for A, K, and F as above, $A \otimes_{F} L \notin$ ${ }_{p} \operatorname{Dec}(K \cdot L / L)$ for any finite degree extension L / F with $p \nmid[L: F]$.

The special case $n=2$ (and p odd) of these computations was done in [Se1], where the result was used to construct non-elementary abelian crossed products of index p^{3} and exponent p^{2}.

We remark that using different techniques, Rowen and Tignol ([RT]) have shown that if the ground field is assumed to only contain a primitive p^{s} th root of unity but not a primitive p^{s+1} th root of unity for some $s \geq 1$, then examples of non-trivial factor groups

$$
{ }_{p} \operatorname{Br}(K / F) /{ }_{p} \operatorname{Dec}(K / F)
$$

exist for suitable abelian extensions K / F whose Galois groups have arbitrarily large (p-power) exponents. Using ultraproducts ([R]), their example can be extended to also cover the case where the ground field contains all primitive p^{i} th roots of unity $(i=1,2, \ldots)$.
2. p-adic valuations on rational function fields. Let p be a prime, which, for now, can be either odd or even. Let F_{0} be a field of characteristic 0 . The subfield \mathbb{Q} of F_{0} has a standard valuation $v: \mathbb{Q} \rightarrow \mathbb{Z}$ obtained by writing any non-zero element in \mathbb{Q} as $p^{n} a / b$, where n, a, and b are integers, and p is relatively prime to a and b, and defining $v\left(p^{n} a / b\right)=n$. We will refer to any valuation on F_{0} that extends this distinguished valuation on \mathbb{Q} as a p-adic valuation. Since the residue field of \mathbb{Q} under v is $\mathbb{Z} / p \mathbb{Z}$, the residue of F_{0} under any p-adic valuation is of characteristic p.

Now let $F=F_{0}\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ be the rational function field over F_{0} in k indeterminates $(k \geq 1)$, and let v be a fixed p-adic valuation on F_{0}. Then v admits an extension w to F defined as follows: for any polynomial $f \in F_{0}\left[x_{1}, x_{2}, \ldots, x_{k}\right], w(f)$ is the minimum of the values of the coefficients, and for f and g in $F_{0}\left[x_{1}, x_{2}, \ldots, x_{k}\right]$, $w(f / g)=w(f)-w(g)$. (It is easy to check that w is indeed a valuation on F.) It can be shown that the residues \bar{x}_{i} of the $x_{i}(i=1, \ldots, k)$ are algebraically independent over the residue \bar{F}_{0} of F_{0}; and that, moreover, \bar{F} is precisely the rational function field $\bar{F}_{0}\left(\overline{x_{1}}, \overline{x_{2}}, \ldots, \overline{x_{k}}\right)$. (It is also clear from the definition of w that
$\Gamma_{F}=\Gamma_{F_{0}}$.) We will refer to w as the standard extension of v to F. Also, we will abuse notation and continue to write x_{i} for the residues \bar{x}_{i}.

Remark 2.1. Furthermore, it can be shown that w is the unique extension of v to F with the property that the values of the x_{i} are 0 , and the residues of the x_{i} are algebraically independent over $\overline{F_{0}}$. (See [B, §10, Proposition 2].)

The following is well known, but we include a proof here for convenience.

Lemma 2.2. Let p be any prime, and let F be a field of characteristic 0 . Let v be a p-adic valuation on F. Let $K=F\left(f^{1 / p}\right)$, where $f \notin F^{* p}$, and $v(f)=0$. Assume that $f=f_{0}^{p}+\pi f_{1}+\delta$, where $v\left(f_{0}\right)=v\left(f_{1}\right)=0,0<v(\pi)<(p /(p-1)) v(p)$, and $v(\delta)>v(\pi)$. Assume, too, that $\overline{f_{1}} \notin \bar{F}^{p}$, and that there exists $\theta \in F^{*}$ such that $\theta^{p}=\pi$. Then v extends uniquely to K, and $\bar{K}=\bar{F}\left(\bar{f}_{1}^{1 / p}\right)$.

Proof. Let $r \in K^{*}$ satisfy $r^{p}=f$, and let $s=\left(r-f_{0}\right) / \theta$. Then $s+\left(f_{0} / \theta\right)=(r / \theta)$, so s satisfies

$$
\begin{equation*}
\left(s+\frac{f_{0}}{\theta}\right)^{p}=\frac{f_{0}^{p}+\pi f_{1}+\delta}{\theta^{p}} . \tag{1}
\end{equation*}
$$

Expanding the left-hand side of (1) and noting that $\theta^{p}=\pi$, we find

$$
\begin{equation*}
s^{p}+\sum_{i=1}^{p-1}\binom{p}{i} s^{i}\left(\frac{f_{0}}{\theta}\right)^{p-i}=f_{1}+\left(\frac{\delta}{\theta^{p}}\right) \tag{2}
\end{equation*}
$$

Now for $i=1, \ldots, p-1, v\left(\binom{p}{i}\right)=v(p)$, while $v\left(\theta^{p-i}\right) \leq v\left(\theta^{p-1}\right)$ $=v\left(\pi^{(p-1) / p}\right)<v(p) . \quad$ (The last inequality is because $v(\pi)<$ $(p /(p-1)) v(p)$.$) From this, as well as the fact that v\left(f_{0}\right)=0$, we find that each of the expressions $\binom{p}{i}\left(f_{0} / \theta\right)^{p-i}(i=1, \ldots, p-1)$ has positive value. It follows that for any extension w of v from F to K, if $w(s)<0$, then the left-hand side of (2) would have the same value as s^{p}. (Here we use the fact that if $w(a)<w(b)$, then $w(a+b)=w(a)$.$) Since this contradicts the fact that the$ value of the right-hand side of (2) is 0 (note that $v\left(f_{1}\right)=0$, while $v\left(\delta / \theta^{p}\right)>0$), we must have $w(s) \geq 0$. Similarly, if $w(s)>0$, then from $w(a+b) \geq \min (w(a), w(b))$, it follows that the left-hand side of (2) must have positive value. Hence $w(s)=0$. Taking the residues of each term in (2) and noting again that all terms except s^{p} and f_{1} have positive value, we find $\bar{s}^{p}=\bar{f}_{1}$. Thus $\bar{K} \supset \bar{F}\left(\bar{f}_{1}^{1 / p}\right)$.

Since $\overline{f_{1}} \notin \bar{F}^{p}$, and since $[K: F]=p$, we find by the fundamental inequality ([E, Corollary 17.5]) that w is unique, and $\bar{K}=$ $\bar{F}\left({\overline{f_{1}}}^{1 / p}\right)$.

Now let F_{0} be a field of characteristic 0 . We will assume that F_{0} contains $p^{1 / p^{i}}$ for all $i(i=1,2, \ldots)$. Let F be the rational function field $F_{0}\left(x_{1}, x_{2}, y\right)$. For each $n(n \geq 0)$, let

$$
\begin{equation*}
\phi_{n}=\left(x_{1}^{p^{n}}-y^{p^{n}}\right)\left(x_{2}^{p^{n}}-y^{p^{n}}\right) . \tag{3}
\end{equation*}
$$

Let $H_{n}=F\left(\phi_{n}^{1 / p}\right)$. Let v be the standard extension of any p-adic valuation on F_{0} to F. The manner in which v extends from F to H_{n} will be crucial to our Dec results, and the rest of $\S 2$ is devoted to this topic.

First, some notation. For p odd, and $i=1,2, \ldots, p-1$, let

$$
\begin{equation*}
\lambda_{i}=\frac{(-1)^{p-i}}{p}\binom{p}{i} \tag{4}
\end{equation*}
$$

(so each λ_{i} is an integer). For p odd, again, define $g_{n}(x, y) \in$ $\mathbb{Z}[x, y](n=0,1,2, \ldots)$ by

$$
\begin{equation*}
g_{n}(x, y)=\sum_{i=1}^{p-1} \lambda_{i}\left(x^{p^{n}}\right)^{i}\left(y^{p^{n}}\right)^{p-i} \tag{5}
\end{equation*}
$$

so

$$
\left(x^{p^{n}}-y^{p^{n}}\right)^{p}=x^{p^{n+1}}-y^{p^{n+1}}+p g_{n}(x, y) .
$$

Now for p odd, define $h_{n}\left(x_{1}, x_{2}, y\right) \in \mathbb{Z}\left[x_{1}, x_{2}, y\right](n=0,1,2, \ldots)$ by
(6) $h_{n}\left(x_{1}, x_{2}, y\right)=\left(x_{1}^{p^{n}}-y^{p^{n}}\right)^{p} g_{n}\left(x_{2}, y\right)+\left(x_{2}^{p^{n}}-y^{p^{n}}\right)^{p} g_{n}\left(x_{1}, y\right)$,
and for $p=2$, define $h_{n}\left(x_{1}, x_{2}, y\right) \in \mathbb{Z}\left[x_{1}, x_{2}, y\right](n=0,1,2, \ldots)$ by

$$
\begin{equation*}
h_{n}\left(x_{1}, x_{2}, y\right)=\left(x_{1}^{2^{n}}+y^{2^{n}}\right)^{2} x_{2}^{2^{n}} y^{2^{n}}+\left(x_{2}^{2^{n}}+y^{2^{n}}\right)^{2} x_{1}^{2^{n}} y^{2^{n}} . \tag{7}
\end{equation*}
$$

Remark 2.3. We will abuse notation and continue to write g_{n} and h_{n} for the images of g_{n} and h_{n} in $\mathbb{Z} / p \mathbb{Z}[x, y]$ and $\mathbb{Z} / p \mathbb{Z}\left[x_{1}, x_{2}, y\right]$ (respectively).

The special case $n=1$ (and p odd) of the following was proved in [T2, Lemma 3.7].

Proposition 2.4. For every prime p and for all $n(n \geq 1), v$ extends uniquely from F to H_{n}, and $\overline{H_{n}}=\bar{F}\left(h_{0}\left(x_{1}, x_{2}, y\right)^{1 / p}\right)$.

Before proving Proposition 2.4, we need some further notation, as well as some easy lemmas.

For $p=2$, define $e_{n}\left(x_{1}, x_{2}, y\right) \in \mathbb{Z}\left[x_{1}, x_{2}, y\right]$ (for $n \geq 1$) by

$$
\begin{equation*}
e_{n}\left(x_{1}, x_{2}, y\right)=y^{2^{n}}\left(x_{1}^{2^{n}}+x_{2}^{2^{n}}\right) \tag{8}
\end{equation*}
$$

and $\psi_{n}\left(x_{1}, x_{2}, y\right) \in \mathbb{Z}\left[x_{1}, x_{2}, y\right]$ (for $\left.n \geq 0\right)$ by

$$
\begin{equation*}
\psi_{n}\left(x_{1}, x_{2}, y\right)=\left(x_{1}^{2^{n}}+y^{2^{n}}\right)\left(x_{2}^{2^{n}}+y^{2^{n}}\right) \tag{9}
\end{equation*}
$$

For $n \in \mathbb{Z}(n \geq 1)$, define $\alpha_{n} \in \mathbb{Q}$ by

$$
\alpha_{n}= \begin{cases}1, & \text { if } n=1 \tag{10}\\ 1+1 / p+1 / p^{2}+\cdots+1 / p^{n-1}, & \text { if } n>1\end{cases}
$$

Finally, for any $k \in \mathbb{Q}$, abbreviate the phrase "terms of value at least $v\left(p^{k}\right)$ " by [$\left.\left[p^{k}\right]\right]$.

Remark 2.5. Just as with g_{n} and h_{n}, we will abuse notation and continue to write e_{n} for the image of e_{n} in $\mathbb{Z} / 2 \mathbb{Z}\left[x_{1}, x_{2}, y\right]$.

Lemma 2.6. Let f, g, f_{1}, and g_{1} be polynomials in $\mathbb{Z}\left[x_{1}, x_{2}, y\right]$. Then, with respect to the restriction of v to $\mathbb{Q}\left(x_{1}, x_{2}, y\right)$ (i.e., the standard extension of the p-adic valuation on \mathbb{Q} to $\left.\mathbb{Q}\left(x_{1}, x_{2}, y\right)\right)$,

1. If $f=g+[[p]]$, and $f_{1}=g_{1}+[[p]]$, then $f+f_{1}=g+g_{1}+[[p]]$ and $f f_{1}=g g_{1}+[[p]]$.
2. $(f+g)^{p}=f^{p}+g^{p}+[[p]]$.
3. Let $k \geq 1$, and suppose

$$
f=\sum c_{i_{1}, i_{2}, i_{3}}\left(x_{1}^{p^{k}}\right)^{i_{1}}\left(x_{2}^{p^{k}}\right)^{i_{2}}\left(x_{3}^{p^{k}}\right)^{i_{3}}
$$

for some $c_{i_{1}, i_{2}, i_{3}} \in \mathbb{Z}$. Define $f^{1 / p} \in \mathbb{Z}\left[x_{1}, x_{2}, y\right] b y$

$$
f^{1 / p}=\sum c_{i_{1}, i_{2}, i_{3}}\left(x_{1}^{p^{k-1}}\right)^{i_{1}}\left(x_{2}^{p^{k-1}}\right)^{i_{2}}\left(x_{3}^{p^{k-1}}\right)^{i_{3}}
$$

Then $f=\left(f^{1 / p}\right)^{p}+[[p]]$.
Proof. Note that the values of f, g, f_{1}, and g_{1} are non-negative. (1) and (2) are now elementary. (3) follows from (2) along with the fact that $a^{p} \equiv a(\bmod p)$ for any $a \in \mathbb{Z}$.

Lemma 2.7. With respect to the restriction of v to $\mathbb{Q}\left(x_{1}, x_{2}, y\right)$,

1. For $n \geq 1$ and for all $p, h_{n}=h_{n-1}^{p}+[[p]]$, and for $n \geq 2$ and $p=2, e_{n}=e_{n-1}^{2}+[[2]]$.
2. For $n \geq 1$ and p odd, $\phi_{n}=\phi_{n-1}^{p}-p h_{n-1}+\left[\left[p^{2}\right]\right]$.
3. For $n \geq 1$ and $p=2, \phi_{n}=\psi_{n}-2 e_{n}$, and $\psi_{n}=\psi_{n-1}^{2}-2 h_{n-1}+$ [[4]] $\left(\right.$ so $\left.\phi_{n}=\psi_{n-1}^{2}-2\left(h_{n-1}+e_{n}\right)+[[4]]\right)$.

Proof. (1) follows from the definitions of h_{n} and e_{n} and Lemma 2.6. For instance, for p odd (and $n \geq 1$) we have

$$
\left(x_{1}^{p^{n}}-y^{p^{n}}\right)^{p}=\left(\left(x_{1}^{p^{n-1}}-y^{p^{n-1}}\right)^{p}+[[p]]\right)^{p}=\left(x_{1}^{p^{n-1}}-y^{p^{n-1}}\right)^{p^{2}}+[[p]]
$$

Also,

$$
\begin{aligned}
g_{n}\left(x_{2}, y\right) & =\sum_{i=1}^{p-1} \lambda_{i}\left(x_{2}^{p^{n}}\right)^{i}\left(y^{p^{n}}\right)^{p-i} \\
& =\left(\sum_{i=1}^{p-1} \lambda_{i}\left(x_{2}^{p^{n-1}}\right)^{i}\left(y^{p^{n-1}}\right)^{p-i}\right)^{p}+[[p]] \\
& =\left(g_{n-1}\left(x_{2}, y\right)\right)^{p}+[[p]] .
\end{aligned}
$$

Since similar relations hold for $\left(x_{2}^{p^{n}}-y^{p^{n}}\right)^{p}$ and $g_{n}\left(x_{1}, y\right)$, we find

$$
\begin{aligned}
h_{n}= & \left(x_{1}^{p^{n-1}}-y^{p^{n-1}}\right)^{p^{2}}\left(g_{n-1}\left(x_{2}, y\right)\right)^{p} \\
& +\left(x_{2}^{p^{n-1}}-y^{p^{n-1}}\right)^{p^{2}}\left(g_{n-1}\left(x_{1}, y\right)\right)^{p}+[[p]] \\
= & \left(\left(x_{1}^{p^{n-1}}-y^{p^{n-1}}\right)^{p} g_{n-1}\left(x_{2}, y\right)\right. \\
& \left.\quad+\left(x_{2}^{p^{n-1}}-y^{p^{n-1}}\right)^{p} g_{n-1}\left(x_{1}, y\right)\right)^{p}+[[p]] \\
= & h_{n-1}^{p}+[[p]] .
\end{aligned}
$$

The proof for $p=2$ is similar. For (2), we have

$$
\begin{aligned}
\phi_{n}= & \left(x_{1}^{p^{n}}-y^{p^{n}}\right)\left(x_{2}^{p^{n}}-y^{p^{n}}\right) \\
= & {\left[\left(x_{1}^{p^{n-1}}-y^{p^{n-1}}\right)^{p}-p g_{n-1}\left(x_{1}, y\right)\right] } \\
& \cdot\left[\left(x_{2}^{p^{n-1}}-y^{p^{n-1}}\right)^{p}-p g_{n-1}\left(x_{2}, y\right)\right] \\
= & {\left[\left(x_{1}^{p^{n-1}}-y^{p^{n-1}}\right)\left(x_{2}^{p^{n-1}}-y^{p^{n-1}}\right)\right]^{p} } \\
& -p\left[\left(x_{1}^{p^{n-1}}-y^{p^{n-1}}\right)^{p} g_{n-1}\left(x_{2}, y\right)\right. \\
& \left.\quad+\left(x_{2}^{p^{n-1}}-y^{p^{n-1}}\right)^{p} g_{n-1}\left(x_{1}, y\right)\right]+\left[\left[p^{2}\right]\right] \\
= & \phi_{n-1}^{p}-p h_{n-1}+\left[\left[p^{2}\right]\right] .
\end{aligned}
$$

As for (3),

$$
\begin{aligned}
\phi_{n} & =\left(x_{1}^{2^{n}}-y^{2^{n}}\right)\left(x_{2}^{2^{n}}-y^{2^{n}}\right) \\
& =\left(x_{1}^{2^{n}}+y^{2^{n}}-2 y^{2^{n}}\right)\left(x_{2}^{2^{n}}+y^{2^{n}}-2 y^{2^{n}}\right) \\
& =\left(x_{1}^{2^{n}}+y^{2^{n}}\right)\left(x_{2}^{2^{n}}+y^{2^{n}}\right)-2 y^{2^{n}}\left(x_{1}^{2^{n}}+x_{2}^{2^{n}}\right) \\
& =\psi_{n}-2 e_{n} .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\psi_{n}= & \left(x_{1}^{2^{n}}+y^{2^{n}}\right)\left(x_{2}^{2^{n}}+y^{2^{n}}\right) \\
= & {\left[\left(x_{1}^{2^{n-1}}+y^{2^{n-1}}\right)^{2}-2 x_{1}^{2^{n-1}} y^{2^{n-1}}\right]\left[\left(x_{2}^{2^{n-1}}+y^{2^{n-1}}\right)^{2}-2 x_{2}^{2^{n-1}} y^{2^{n-1}}\right] } \\
= & {\left[\left(x_{1}^{2^{n-1}}+y^{2^{n-1}}\right)\left(x_{2}^{2^{n-1}}+y^{2^{n-1}}\right)\right]^{2} } \\
& -2\left[\left(x_{1}^{2^{n-1}}+y^{2^{n-1}}\right)^{2} x_{2}^{2^{n-1}} y^{2^{n-1}}+\left(x_{2}^{2^{n-1}}+y^{2^{n-1}}\right)^{2} x_{1}^{2^{n-1}} y^{2^{n-1}}\right]+[[4]] \\
= & \psi_{n-1}^{2}-2 h_{n-1}+[[4]] .
\end{aligned}
$$

Lemma 2.8. For all p and for all $k \geq 0, \alpha_{k+1}<\alpha_{2}+1 / p$.
Proof. Since $\alpha_{1}<\alpha_{2}<\alpha_{2}+1 / p$, we may assume $k>2$. Now $\alpha_{k+1}=1+1 / p+\cdots+1 / p^{k}$ and $\alpha_{2}=1+1 / p$, so it is sufficient to prove that $1 / p^{2}+\cdots+1 / p^{k}<1 / p$. Multiplying both sides by p, we need to prove that $1 / p+\cdots+1 / p^{k-1}<1$. But this is clear, since

$$
\begin{aligned}
1 / p+\cdots+1 / p^{k-1} & =1 / p\left(1+1 / p+\cdots+1 / p^{k-2}\right) \\
& <1 / p\left(1+1 / p+1 / p^{2}+\cdots\right) \\
& =1 /(p-1) \leq 1
\end{aligned}
$$

Proof of Proposition 2.4. We divide the proof according to whether p is odd or whether $p=2$.

Case $1($ Odd $p)$. If $n=1$, this follows from Lemmas 2.7 and 2.2. For, by Lemma 2.7, $\phi_{1}=\phi_{0}^{p}-p h_{0}+\delta$, for some $\delta \in \mathbb{Z}\left[x_{1}, x_{2}, y\right]$ with $v(\delta) \geq v\left(p^{2}\right)$. By assumption, $p^{1 / p} \in F_{0}$. Clearly, $-h_{0} \notin \bar{F}^{p}=$ ${\overline{F_{0}}}^{p}\left(x_{1}^{p}, x_{2}^{p}, y^{p}\right)$. Thus, by Lemma 2.2, v extends uniquely to H_{1}, and $\overline{H_{1}}=\bar{F}\left(\left(-h_{0}\right)^{1 / p}\right)=\bar{F}\left(h_{0}^{1 / p}\right)$.

In general, for $n>1$, we have by Lemma 2.7,

$$
\begin{align*}
\phi_{n} & =\phi_{n-1}^{p}-p h_{n-1}+\left[\left[p^{2}\right]\right] \tag{11}\\
& =\phi_{n-1}^{p}-p\left(h_{n-2}^{p}+[[p]]\right)+\left[\left[p^{2}\right]\right] \\
& =\phi_{n-1}^{p}-p h_{n-2}^{p}+\left[\left[p^{2}\right]\right] \\
& =\phi_{n-1}^{p}-\left(p^{1 / p} h_{n-2}\right)^{p}+\left[\left[p^{2}\right]\right] \\
& =\left(\phi_{n-1}-p^{1 / p} h_{n-2}\right)^{p}-p g_{0}\left(\phi_{n-1}, p^{1 / p} h_{n-2}\right)+\left[\left[p^{2}\right]\right] \\
& =\left(\phi_{n-1}-p^{1 / p} h_{n-2}\right)^{p}-p^{\alpha_{2}} \phi_{n-1}^{p-1} h_{n-2}+\left[\left[p^{\alpha_{2}+1 / p}\right]\right] .
\end{align*}
$$

(For the last equality, note that

$$
\begin{aligned}
p g_{0}\left(\phi_{n-1}, p^{1 / p} h_{n-2}\right)= & p\left(p^{1 / p}\right) h_{n-2} \phi_{n-1}^{p-1} \\
& +\binom{p}{2}\left(p^{1 / p} h_{n-2}\right)^{2} \phi_{n-1}^{p-2}+\cdots .
\end{aligned}
$$

Also, note that $p^{1+1 / p}=p^{\alpha_{2}}$, and $p^{1+2 / p}=p^{\alpha_{2}+1 / p}$. Finally, note that since $p \geq 3,1+2 / p<2$.)

Claim. For $2 \leq k \leq n-1$, if

$$
S_{k}=a_{k}^{p}-p^{\alpha_{k}} \phi_{n-1}^{p-1} \phi_{n-2}^{p-1} \cdots \phi_{n-k+1}^{p-1} h_{n-k}+\left[\left[p^{\alpha_{2}+1 / p}\right]\right],
$$

for some $a_{k} \in F$ with $a_{k}=\phi_{n-1}+\left[\left[p^{1 / p}\right]\right]$, then

$$
S_{k}=a_{k+1}^{p}-p^{\alpha_{k+1}} \phi_{n-1}^{p-1} \phi_{n-2}^{p-2} \cdots \phi_{n-k}^{p-1} h_{n-k-1}+\left[\left[p^{\alpha_{2}+1 / p}\right]\right],
$$

for some $a_{k+1} \in F$ with $a_{k+1}=\phi_{n-1}+\left[\left[p^{1 / p}\right]\right]$.
Proof of claim. For, by Lemma 2.7, $\phi_{j}=\phi_{j-1}^{p}+[[p]]$ and $h_{j}=$ $h_{j-1}^{p}+[[p]]$ for all $j \geq 1$, so

$$
\begin{aligned}
& S_{k}=a_{k}^{p}-p^{\alpha_{k}}\left(\phi_{n-2}^{p}+[[p]]\right)^{p-1}\left(\phi_{n-3}^{p}+[[p]]\right)^{p-1} \\
& \cdots\left(\phi_{n-k}^{p}+[[p]]\right)^{p-1}\left(h_{n-k-1}^{p}+[[p]]\right)+\left[\left[p^{\alpha_{2}+1 / p}\right]\right] \\
& =a_{k}^{p}-p^{\alpha_{k}}\left(\phi_{n-2}^{p(p-1)}+[[p]]\right)\left(\phi_{n-3}^{p(p-1)}+[[p]]\right) \\
& \cdots\left(\phi_{n-k}^{p(p-1)}+[[p]]\right)\left(h_{n-k-1}^{p}+[[p]]\right)+\left[\left[p^{\alpha_{2}+1 / p}\right]\right] \\
& =a_{k}^{p}-p^{\alpha_{k}}\left(\phi_{n-2}\right)^{p(p-1)} \cdots\left(\phi_{n-k}\right)^{p(p-1)} h_{n-k-1}^{p} \\
& +\left[\left[p^{\alpha_{k}+1}\right]\right]+\left[\left[p^{\alpha_{2}+1 / p}\right]\right] \\
& =a_{k}^{p}-\left(p^{\alpha_{k} / p}\left(\phi_{n-2}\right)^{(p-1)} \cdots\left(\phi_{n-k}\right)^{(p-1)} h_{n-k-1}\right)^{p}+\left[\left[p^{\alpha_{2}+1 / p}\right]\right] \\
& \text { (as } \alpha_{2}+1 / p<\alpha_{k}+1 \text {) } \\
& =\left(a_{k}-p^{\alpha_{k} / p} \phi_{n-2}^{p-1} \cdots \phi_{n-k}^{p-1} h_{n-k-1}\right)^{p} \\
& -p g_{0}\left(a_{k}, p^{\alpha_{k} / p} \phi_{n-2}^{p-1} \cdots \phi_{n-k}^{p-1} h_{n-k-1}\right)+\left[\left[p^{\alpha_{2}+1 / p}\right]\right] .
\end{aligned}
$$

Expanding $p g_{0}\left(a_{k}, p^{\alpha_{k} / p} \phi_{n-2}^{p-1} \cdots \phi_{n-k}^{p-1} h_{n-k-1}\right)$ and considering the first two terms of lowest value, we find

$$
\begin{aligned}
S_{k}= & \left(a_{k}-p^{\alpha_{k} / p} \phi_{n-2}^{p-1} \cdots \phi_{n-k}^{p-1} h_{n-k-1}\right)^{p} \\
& -p^{1+\alpha_{k} / p} a_{k}^{p-1} \phi_{n-2}^{p-1} \cdots \phi_{n-k}^{p-1} h_{n-k-1}+\left[\left[p^{1+\left(2 \alpha_{k} / p\right)}\right]\right]+\left[\left[p^{\alpha_{2}+1 / p}\right]\right]
\end{aligned}
$$

Now $1+\alpha_{k} / p=\alpha_{k+1}$. Also, $1+\left(2 \alpha_{k} / p\right)=\alpha_{k+1}+\alpha_{k} / p>\alpha_{2}+1 / p$ (as $\alpha_{k+1}>\alpha_{2}$ and $\alpha_{k}>1$ when $k \geq 2$). Thus,

$$
\begin{aligned}
S_{k}= & \left(a_{k}-p^{\alpha_{k} / p} \phi_{N-2}^{p-1} \cdots \phi_{n-k}^{p-1} h_{n-k-1}\right)^{p} \\
& -p^{\alpha_{k+1}} a_{k}^{p-1} \phi_{n-2}^{p-1} \cdots \phi_{n-k}^{p-1} h_{n-k-1}+\left[\left[p^{\alpha_{2}+1 / p}\right]\right] .
\end{aligned}
$$

Now recalling that $a_{k}=\phi_{n-1}+\left[\left[p^{1 / p}\right]\right]$, we find $a_{k}^{p-1}=\phi_{n-1}^{p-1}+\left[\left[p^{1 / p}\right]\right]$. Hence,

$$
\begin{aligned}
S_{k}= & \left(a_{k}-p^{\alpha_{k} / p} \phi_{n-2}^{p-1} \cdots \phi_{n-k}^{p-1} h_{n-k-1}\right)^{p} \\
& -p^{\alpha_{k+1}} \phi_{n-1}^{p-1} \phi_{n-2}^{p-1} \cdots \phi_{n-k}^{p-1} h_{n-k-1}+\left[\left[p^{\alpha_{k+1}+1 / p}\right]\right]+\left[\left[p^{\alpha_{2}+1 / p}\right]\right] .
\end{aligned}
$$

Since $\alpha_{k+1}>\alpha_{2}, \alpha_{k+1}+1 / p>\alpha_{2}+1 / p$. Thus,

$$
\begin{aligned}
S_{k}= & \left(a_{k}-p^{\alpha_{k} / p} \phi_{n-2}^{p-1} \cdots \phi_{n-k}^{p-1} h_{n-k-1}\right)^{p} \\
& -p^{\alpha_{k+1}} \phi_{n-1}^{p-1} \phi_{n-2}^{p-1} \cdots \phi_{n-k}^{p-1} h_{n-k-1}+\left[\left[p^{\alpha_{2}+1 / p}\right]\right] .
\end{aligned}
$$

Take $a_{k+1}=\left(a_{k}-p^{\alpha_{k} / p} \phi_{n-2}^{p-1} \cdots \phi_{n-k}^{p-1} h_{n-k-1}\right)$. Since $a_{k}=\phi_{n-1}+$ [$\left.\left[p^{1 / p}\right]\right]$ and since $1 / p<\alpha_{k} / p($ as $k \geq 2), a_{k+1}=\phi_{n-1}+\left[\left[p^{1 / p}\right]\right]$. This proves the claim.

Proof of Case 1 (continued). We now use the claim above to inductively reduce (11) until it yields

$$
\begin{equation*}
\phi_{n}=a^{p}+p^{\alpha_{n}} b h_{0}+\delta \tag{12}
\end{equation*}
$$

for some $a \in F$ with $v(a)=0$, some $b \in F$ with $v(b)=0$ and $\bar{b} \in \bar{F}^{p}$, and some $\delta \in F$ with $v(\delta)>\alpha_{n}$. Since $p^{\alpha_{n} / p}=$ $p^{1 / p+1 / p^{2}+\cdots+1 / p^{n}} \in F_{0}$, it will follow immediately from Lemma 2.2 that v extends uniquely from F to H_{n}, and $\overline{H_{n}}=\bar{F}\left(h_{0}^{1 / p}\right)$.

If $n=2$, then (11) is already in the desired form, since $\overline{\phi_{1}} \in \bar{F}^{p}$. Otherwise, we write (11) as

$$
\phi_{n}=S_{2}+\left[\left[p^{\alpha_{2}+1 / p}\right]\right]
$$

with $a_{2}=\phi_{n-1}-p^{1 / p} h_{n-2}$. By repeatedly applying the claim, we find

$$
\phi_{n}=S_{n}+\left[\left[p^{\alpha_{2}+1 / p}\right]\right]
$$

with $S_{n}=a_{n}^{p}-p^{\alpha_{n}} \phi_{n-1}^{p-1} \cdots \phi_{1}^{p-1} h_{0}$, for some $a_{n} \in F$ with $a_{n}=\phi_{n-1}+$ [$\left.\left[p^{1 / p}\right]\right]$. By Lemma 2.8, $\alpha_{n}<\alpha_{2}+1 / p$ for all $n \geq 3$. Observing that the residues of $\phi_{n-1}, \ldots, \phi_{1}$ are all p th powers in \bar{F}, we find that ϕ_{n} is now in the form (12), and we are done.

Case $2(p=2)$. The basic steps for the $p=2$ case are the same as for the odd p case, the differences are only in the details.

If $n=1$, then, by Lemma 2.7, $\phi_{1}=\psi_{0}^{2}-2\left(h_{0}+e_{1}\right)+[[4]]$, so by Lemma 2.2, v extends uniquely to H_{1}, and $\overline{H_{1}}=\bar{F}\left(\sqrt{\left(h_{0}+e_{1}\right)}\right)$. But e_{1} is already a square in \bar{F}, so $\overline{H_{1}}=\bar{F}\left(\sqrt{h_{0}}\right)$.

In general, for $n>1$, we have, by Lemma 2.7

$$
\begin{align*}
\phi_{n}= & \psi_{n-1}^{2}-2\left(h_{n-1}+e_{n}\right)+[[4]] \\
= & \psi_{n-1}^{2}-2\left(h_{n-2}^{2}+[[2]]+e_{n-1}^{2}+[[2]]\right)+[[4]] \\
= & \psi_{n-1}^{2}-2\left(h_{n-2}^{2}+e_{n-1}^{2}\right)+[[4]] \\
= & \psi_{n-1}^{2}-2\left(\left(h_{n-2}+e_{n-1}\right)^{2}+[[2]]\right)+[[4]] \\
= & \psi_{n-1}^{2}-2\left(h_{n-2}+e_{n-1}\right)^{2}+[[4]] \\
= & \psi_{n-1}^{2}+2\left(h_{n-2}+e_{n-1}\right)^{2}-4\left(h_{n-2}+e_{n-1}\right)^{2}+[[4]] \\
= & \psi_{n-1}^{2}+\left(2^{1 / 2}\left(h_{n-2}+e_{n-1}\right)\right)^{2}+[[4]] \\
= & \left(\psi_{n-1}+\left(2^{1 / 2}\left(h_{n-2}+e_{n-1}\right)\right)\right)^{2} \\
& -2(2)^{1 / 2} \psi_{n-1}\left(h_{n-2}+e_{n-1}\right)+[[4]] \\
= & \left(\psi_{n-1}+\left(2^{1 / 2}\left(h_{n-2}+e_{n-1}\right)\right)\right)^{2} \tag{13}\\
& -2^{\alpha} \psi_{n-1}\left(h_{n-2}+e_{n-1}\right)+[[4]] .
\end{align*}
$$

Claim. For $2 \leq k \leq n-1$, let

$$
S_{k}=a_{k}^{2}-2^{\alpha_{k}} \psi_{n-1} \cdots \psi_{n-k+1}\left(h_{n-k}+e_{n-k+1}\right)+[[4]]
$$

for some $a_{k} \in F$ with $a_{k}=\psi_{n-1}+\left[\left[2^{1 / 2}\right]\right]$. Then,

$$
S_{k}=a_{k+1}^{2}-2^{\alpha_{k}+1} \psi_{n-1} \cdots \psi_{n-k}\left(h_{n-k-1}+e_{n-k}\right)+[[4]]
$$

for some $a_{k+1} \in F$ with $a_{k+1}=\psi_{n-1}+\left[\left[2^{1 / 2}\right]\right]$.

Proof of Claim. We have

$$
\begin{aligned}
S_{k}= & a_{k}^{2}-\left(2^{\alpha_{k} / 2}\right)^{2}\left(\psi_{n-2}^{2}+[[2]]\right) \\
& \cdots\left(\psi_{n-k}^{2}+[[2]]\right)\left(h_{n-k-1}^{2}+[[2]]+e_{n-k}^{2}+[[2]]\right)+[[4]] \\
= & a_{k}^{2}-\left(2^{\alpha_{k} / 2}\right)^{2} \psi_{n-2}^{2} \cdots \psi_{n-k}^{2}\left(h_{n-k-1}^{2}+e_{n-k}^{2}\right) \\
& +\left[\left[2^{1+2\left(\alpha_{k} / 2\right)}\right]\right]+[[4]] \\
= & a_{k}^{2}-\left(2^{\alpha_{k} / 2}\right)^{2} \psi_{n-2}^{2} \cdots \psi_{n-k}^{2}\left(\left(h_{n-k-1}+e_{n-k}\right)^{2}+[[2]]\right)+[[4]] \\
= & a_{k}^{2}-\left(2^{\alpha_{k} / 2} \psi_{n-2} \cdots \psi_{n-k}\left(h_{n-k-1}+e_{n-k}\right)\right)^{2}+[[4]] \\
= & a_{k}^{2}+\left(2^{\alpha_{k} / 2} \psi_{n-2} \cdots \psi_{n-k}\left(h_{n-k-1}+e_{n-k}\right)\right)^{2} \\
& -2\left(2^{\alpha_{k} / 2} \psi_{n-2} \cdots \psi_{n-k}\left(h_{n-k-1}+e_{n-k}\right)\right)^{2}+[[4]] \\
= & a_{k}^{2}+\left(2^{\alpha_{k} / 2} \psi_{n-2} \cdots \psi_{n-k}\left(h_{n-k-1}+e_{n-k}\right)\right)^{2}+[[4]] \\
= & \left(a_{k}+2^{\alpha_{k} / 2} \psi_{n-2} \cdots \psi_{n-k}\left(h_{n-k-1}+e_{n-k}\right)\right)^{2} \\
& -2\left(2^{\alpha_{k} / 2}\right) a_{k} \psi_{n-2} \cdots \psi_{n-k}\left(h_{n-k-1}+e_{n-k}\right)+[[4]] \\
= & \left(a_{k}+2^{\alpha_{k} / 2} \psi_{n-2} \cdots \psi_{n-k}\left(h_{n-k-1}+e_{n-k}\right)\right)^{2} \\
& -2^{1+\alpha k / 2}\left(\psi_{n-1}+\left[\left[2^{1 / 2}\right]\right]\right) \psi_{n-2} \\
& \cdots \psi_{n-k}\left(h_{n-k-1}+e_{n-k}\right)+[[4]] \\
= & \left(a_{k}+2^{\alpha_{k} / 2} \psi_{n-2} \cdots \psi_{n-k}\left(h_{n-k-1}+e_{n-k}\right)\right)^{2} \\
& -2^{\alpha_{k+1}} \psi_{n-1} \psi_{n-2} \cdots \psi_{n-k}\left(h_{n-k-1}+e_{n-k}\right) \\
& +\left[\left[2^{\alpha_{k+1}+1 / 2}\right]\right]+[[4]] \\
= & a_{k+1}^{2}-2^{\alpha_{k+1}} \psi_{n-1} \psi_{n-2} \cdots \psi_{n-k}\left(h_{n-k-1}+e_{n-k}\right)+[[4]]
\end{aligned}
$$

where

$$
\begin{array}{r}
a_{k+1}=a_{k}+2^{\alpha_{k} / 2} \psi_{n-2} \cdots \psi_{n-k}\left(h_{n-k-1}+e_{n-k}\right), \\
\left(\text { so } a_{k+1}=\psi_{n-1}+\left[\left[2^{1 / 2}\right]\right]+\left[\left[2^{\alpha_{k} / 2}\right]\right]=\psi_{n-1}+\left[\left[2^{1 / 2}\right]\right]\right)
\end{array}
$$

Proof of Case 2 (continued). We now use the claim above to inductively reduce (13) until it yields

$$
\begin{equation*}
\phi_{n}=a^{2}+2^{\alpha_{n}} b\left(h_{0}+e_{1}\right)+\delta \tag{14}
\end{equation*}
$$

for some $a \in F$ with $v(a)=0$, some $b \in F$ with $v(b)=0$ and $\bar{b} \in \bar{F}^{2}$, and some $\delta \in F$ with $v(\delta)>\alpha_{n}$. Since $2^{\alpha_{n} / 2}=$ $2^{1 / 2+1 / 2^{2}+\cdots+1 / 2^{n}} \in F_{0}$, it will follow immediately from Lemma 2.2 that v extends uniquely from F to H_{n}, and $\overline{H_{n}}=\bar{F}\left(\sqrt{h_{0}+e_{1}}\right)=$ $\bar{F}\left(\sqrt{h_{0}}\right)$.

If $n=2$, then (13) is already in the desired form, since $\overline{\psi_{1}} \in \bar{F}^{2}$.

Otherwise, we write (13) as

$$
\phi_{n}=S_{2}+[[4]],
$$

with $a_{2}=\psi_{n-1}+2^{1 / 2}\left(h_{n-2}+e_{n-1}\right)$. By repeatedly applying the claim, we find

$$
\phi_{n}=S_{n}+[[4]],
$$

with $S_{n}=a_{n}^{2}-\left(2^{\alpha_{n}}\right) \psi_{n-1} \cdots \psi_{1}\left(h_{0}+e_{1}\right)$, for some $a_{n} \in F$ with $a_{n}=$ $\psi_{n-1}+\left[\left[2^{1 / 2}\right]\right]$. By Lemma 2.8 (or by more direct means), $\alpha_{n}<2$ for all $n \geq 3$. Observing that the residues of $\psi_{n-1}, \ldots, \psi_{1}$ are all squares in \bar{F}, we find that ϕ_{n} is now in the form (15), and we are done.
3. The Dec results. Let F_{0} be a field of characteristic 0 containing all primitive p^{i} th roots of unity $\omega_{i}(i=1,2, \ldots)$, chosen so that $\omega_{i+1}^{p}=\omega_{i}$. (We will write ω for ω_{1}.) If $L \supseteq F_{0}$ is any field, and if a and b are in L^{*}, then, as in [D, Chapter 11], $\left(a, b ; p^{n}, L, \omega_{n}\right)$ will denote the algebra generated over L by two symbols α and β subject to $\alpha^{p^{n}}=a, \beta^{p^{n}}=b$, and $\alpha \beta=\omega_{n} \alpha \beta$, and will be referred to as a symbol algebra. Now let $F=F_{0}\left(x_{1}, x_{2}, y\right)$ be the rational function field over F_{0} in the three indeterminates x_{1}, x_{2}, and y. For each $n \geq 1$, define

$$
A_{n}=\left(x_{1}, x_{1}^{p^{n}}-y ; p, F, \omega\right) \otimes_{F}\left(x_{2}, x_{2}^{p^{n}}-y ; p, F, \omega\right) .
$$

Lemma 3.1. For each $n \geq 1, A_{n}$ has index p^{2} and exponent p. Further,

$$
A_{n} \sim\left(y, \frac{\left(x_{1}^{p^{n}}-y\right)\left(x_{2}^{p^{n}}-y\right)}{x_{1}^{p^{n}} x_{2}^{p^{n}}} ; p^{n+1}, F, \omega_{n+1}\right)
$$

Proof. This is very similar to the proof of Proposition 2 in [Se2], and we only sketch the proof. The factor $\left(x_{1}, x_{1}^{p^{n}}-y ; p, F, \omega\right)$ is NSR with respect to the x_{1}-adic valuation on F, with residue isomorphic to $F_{0}\left(x_{2}, z\right)$, where $z=y^{1 / p}$. The factor $\left(x_{2}, x_{2}^{p^{n}}-y ; p, F_{0}\left(x_{2}, z\right), \omega\right)$ (i.e., defined over $F_{0}\left(x_{2}, z\right)$) is NSR with respect to the $x_{2}^{p^{n-1}}-z$ adic valuation (with residue isomorphic to $F_{0}\left(x_{2}^{1 / p}\right)$). It follows from [JW, Theorem 5.15] that A_{n} has index p^{2}. It is clear that $\exp \left(A_{n}\right)=p$. As for the final statement of the lemma, standard symbol algebra identities (e.g., [D, Chapter 11, pages 77-82]) along with the assumption
about the roots of unity in F_{0} show that

$$
\begin{aligned}
A_{n} \sim & \left(x_{1}^{p^{n}}, x_{1}^{p^{n}}-y ; p^{n+1}, F, \omega_{n+1}\right) \\
& \otimes_{F}\left(x_{2}^{p^{n}}, x_{2}^{p^{n}}-y ; p^{n+1}, F, \omega_{n+1}\right) \\
\sim & \left(-y, \frac{x_{1}^{p^{n}}-y}{x_{1}^{p^{n}}} ; p^{n+1}, F, \omega_{n+1}\right) \\
& \otimes_{F}\left(-y, \frac{x_{2}^{p^{n}}-y}{x_{2}^{p^{n}}} ; p^{n+1}, F, \omega_{n+1}\right) \\
\sim & \left(y, \frac{\left(x_{1}^{p^{n}}-y\right)\left(x_{2}^{p^{n}}-y\right)}{x_{1}^{p^{n}} x_{2}^{p^{n}}} ; p^{n+1}, F, \omega_{n+1}\right) .
\end{aligned}
$$

Now write ϕ_{n} for $\left(x_{1}^{p^{n}}-y\right)\left(x_{2}^{p^{n}}-y\right)$ (this notation will be seen to be consistent with that of $\S 2$), and write K_{n} for the field $F\left(y^{1 / p^{n}}, \phi_{n}^{1 / p}\right)$. Then $A_{n} \in \operatorname{Br}\left(K_{n} / F\right)$. Tignol ([T2, Theorem 1]) showed that when p is odd, $A_{1} \notin \operatorname{Dec}\left(K_{1} / F\right)$. We have

Theorem 3.2. 1. For p odd and $n \geq 1$, or $p=2$ and $n \geq 2$, $A_{n} \notin \operatorname{Dec}\left(K_{n} / F\right)$.
2. More generally, for p odd, $n \geq 1$, and $0 \leq l \leq n-1$, or $p=2$, $n \geq 2$, and $0 \leq l \leq n-2$, let $F_{l}=F\left(y^{1 / p^{l}}\right)\left(\right.$ so $\left.F_{l} \subset K_{n}\right)$. Then, $A_{n} \otimes_{F} F_{l} \notin \operatorname{Dec}\left(K_{n} / F_{l}\right)$.
3. Further, let E be any finite extension of F, with $p \nmid[E: F]$. For p odd, $n \geq 1$, and $0 \leq l \leq n-1$, or $p=2, n \geq 2$, and $0 \leq l \leq n-2$, let $E_{l}=E\left(y^{1 / p^{l}}\right)\left(\right.$ so $\left.E_{l} \subset K_{n} \cdot E\right)$. Then, $A_{n} \otimes_{F} E_{l} \notin \operatorname{Dec}\left(K_{n} \cdot E / E_{l}\right)$.

Proof of Theorem 3.2. It is clearly sufficient to prove (3). Moreover, it is sufficient to prove (3) for the case $l=n-1$ (for p odd) and $l=n-2$ (for $p=2$). For, assume that for $l<n-1$ and p odd, or for $l<n-2$ and $p=2$,

$$
A_{n} \otimes_{F} E_{l} \sim\left(y^{1 / p^{l}}, b_{1} ; p^{n-l}, E_{l}, \omega_{n-l}\right) \otimes_{E_{l}}\left(b_{2}, \phi_{n} ; p, E_{l}, \omega\right),
$$

for some b_{1} and $b_{2} \in E_{l}^{*}$. Then, extending scalars to E_{n-1} (for p odd) and E_{n-2} (for $p=2$), we find by standard symbol algebra identities

$$
A_{n} \otimes_{F} E_{n-1} \sim\left(y^{1 / p^{n-1}}, b_{1} ; p, E_{n-1}, \omega\right) \otimes_{E_{n-1}}\left(b_{2}, \phi_{n} ; p, E_{n-1}, \omega\right)
$$

for p odd, and
$A_{n} \otimes_{F} E_{n-2} \sim\left(y^{1 / p^{n-2}}, b_{1} ; p^{2}, E_{n-2}, \omega_{2}\right) \otimes_{E_{n-2}}\left(b_{2}, \phi_{n} ; p, E_{n-2}, \omega\right)$
for $p=2$. Thus, we find that for p odd and $l<n-1$, if

$$
A_{n} \otimes_{F} E_{l} \in \operatorname{Dec}\left(K_{n} \cdot E / E_{l}\right)
$$

then

$$
A_{n} \otimes_{F} E_{n-1} \in \operatorname{Dec}\left(K_{n} \cdot E / E_{n-1}\right)
$$

and for $p=2$ and $l<n-2$, if

$$
A_{n} \otimes_{F} E_{l} \in \operatorname{Dec}\left(K_{n} \cdot E / E_{l}\right)
$$

then

$$
A_{n} \otimes_{F} E_{n-2} \in \operatorname{Dec}\left(K_{n} \cdot E / E_{n-2}\right)
$$

We find it convenient at this point to divide the proof according to whether p is odd or even.

Case 1 (p odd). Assume that
$A_{n} \otimes_{F} E_{n-1} \sim\left(y^{1 / p^{n-1}}, b_{1} ; p, E_{n-1}, \omega\right) \otimes E_{n-1}\left(b_{2}, \phi_{n} ; p, E_{n-1}, \omega\right)$, for some b_{1} and $b_{2} \in E_{n-1}^{*}$. By Lemma 3.1 and standard symbol algebra identities,

$$
A_{n} \otimes_{F} E_{n-1} \sim\left(y^{1 / p^{n-1}}, \frac{\phi_{n}}{x_{1}^{p^{n}} x_{2}^{p^{n}}} ; p^{2}, E_{n-1}, \omega_{2}\right)
$$

Put $z=y^{1 / p^{n}}$. Then, extending scalars further to $E_{n}=E(z)$, and noting that $x_{1}^{p^{n}}$ and $x_{2}^{p^{n}}$ are p th powers, we find

$$
\left(z, \phi_{n} ; p, E_{n}, \omega\right) \sim\left(b, \phi_{n} ; p, E_{n}, \omega\right)
$$

where we have written b for b_{2}. Hence,

$$
\left(z / b, \phi_{n} ; p, E_{n}, \omega\right) \sim 1
$$

SO

$$
\begin{equation*}
z / b=N(u) \tag{15}
\end{equation*}
$$

for some $u \in E_{n}\left(\left(\phi_{n}\right)^{1 / p}\right)$, where N denotes the norm from $E_{n}\left(\left(\phi_{n}\right)^{1 / p}\right)$ to E_{n}. We will prove that it is impossible to find $b \in E_{n-1}$ and $u \in E_{n}\left(\left(\phi_{n}\right)^{1 / p}\right)$ such that (16) holds.

If $\overline{F_{0}}$ denotes the algebraic closure of F_{0}, then $\overline{F_{0}}\left(x_{1}, x_{2}, y\right)$ is normal over $F_{0}\left(x_{1}, x_{2}, y\right)$, so if $E=F_{0}\left(x_{1}, x_{2}, y\right)(t)$ for some $t \in$ E^{*}, then it is standard that the degree of the minimum polynomial of t over $\overline{F_{0}}\left(x_{1}, x_{2}, y\right)$ divides the degree of the minimum polynomial of t over $F_{0}\left(x_{1}, x_{2}, y\right)$. Hence $p \nmid\left[E \cdot \overline{F_{0}}\left(x_{1}, x_{2}, y\right): \overline{F_{0}}\left(x_{1}, x_{2}, y\right)\right]$. Thus, while showing that (15) cannot hold, we may assume that F_{0} is
algebraically closed. In particular, we may assume that F_{0} contains $p^{1 / p^{i}}$ for all $i(i=1,2, \ldots)$, so we may apply the machinery of $\S 2$.

Now write χ for $h_{0}\left(x_{1}, x_{2}, z\right)$, where h_{0} is as in $\S 2$. As with the polynomial h_{0}, we will abuse notation and continue to write χ for the residue of h_{0} under appropriate p-adic valuations. Observe that over $E_{n}, \phi_{n}=\left(x_{1}^{p^{n}}-z^{p^{n}}\right)\left(x_{2}^{p^{n}}-z^{p^{n}}\right)$, which, after renaming variables is indeed the same as the " ϕ_{n} " of $\S 2$.

We first need an easy lemma:
Lemma 3.3. Let p be a prime, and let (F, v) be a valued field. Let K be a finite dimensional separable extension of F such that $p \nmid[K: F]$. Then for some extension of v to $K, p \nmid[\bar{K}: \bar{F}]$.

Proof. Let $v_{i}(1 \leq i \leq s)$ be the extensions of v to K, and let $(\bar{K})_{i}$ denote the residues of K with respect to the valuations v_{i}. Let F_{h} denote the henselization of F with respect to v, and let $K_{i, h}$ denote the henselization of K with respect to $v_{i}(1 \leq i \leq s)$. Then (by [E, Theorem 17.17]) $[K: F]=\sum_{i=1}^{s}\left[K_{i, h}: F_{h}\right]$, so if $p \nmid[K: F]$, then $p \nmid\left[K_{i, h}: F_{h}\right]$ for some i. Now $\overline{K_{i, h}}=(\bar{K})_{i}$ and $\overline{F_{h}}=\bar{F}$, so by Ostrowski's theorem ([O, Satz 4], see also [E, Theorem 20.21]), $\left[(\bar{K})_{i}: \bar{F}\right] \mid\left[K_{i, h}: F_{h}\right]$. Hence, for this $i, p \nmid\left[(\bar{K})_{i}: \bar{F}\right]$.

Proof of Theorem 3.2 (continued). Now let $L=F_{0}\left(x_{1}, x_{2}, z\right)$ and let v be the standard extension of any p-adic valuation on F_{0} to L (so $\bar{L}=\overline{F_{0}}\left(x_{1}, x_{2}, z\right)$). Let $L_{1}=F_{0}\left(x_{1}, x_{2}, z^{p}\right)$, and let $v_{L_{1}}$ denote the restriction of v to L_{1}. Choose an extension w of $v_{L_{1}}$ to E_{n-1} such that $p \nmid\left[\overline{E_{n-1}}: \overline{L_{1}}\right]$. (Since $\left[E_{n-1}: L_{1}\right]=[E: F]$, the lemma above shows that such a choice is possible.) By Proposition $2.4 v$ extends uniquely from L to $L\left(\phi_{n}^{1 / p}\right)$, with residue $\bar{L}\left(\chi^{1 / p}\right)$. Since $\left.p \nmid \overline{E_{n-1}}: \overline{L_{1}}\right]$, while $\left[L\left(\phi_{n}^{1 / p}\right): \overline{L_{1}}\right]=p^{2}$, it follows easily that w extends uniquely from E_{n-1} to $E_{n}\left(\phi_{n}^{1 / p}\right)$, with residue $\overline{E_{n}}\left(\chi^{1 / p}\right)$.

Now, continue to write w for the (unique) extension of w to $E_{n}\left(\phi_{n}^{1 / p}\right)$ and consider the relation (15). Since $v(z)=0$, we get $w(b)+w(N(u))=0$. Since $\Gamma_{E_{n-1}}=\Gamma_{E_{n}\left(\phi_{n}^{1 / p}\right)}$, there is a $c \in E_{n-1}$ such that $w(c)=w(u)$. Then, $b N(u)=b c^{p} N(u / c)$, and $w(u / c)=0$, $w\left(b c^{p}\right)=w(b)+p \cdot w(u)=w(b)+w(N(u))=0$, and of course, $b c^{p} \in E_{n-1}$. Hence, we may assume in (15) that $w(b)=w(u)=0$.
Now let σ be a generator of $\mathscr{G}\left(E_{n}\left(\phi_{n}^{1 / p}\right) / E_{n}\right)$, so

$$
N(u)=u \cdot \sigma(u) \cdots \sigma^{p-1}(u) .
$$

Hence, $\overline{N(u)}=\bar{u} \cdot \bar{\sigma}(\bar{u}) \cdots \bar{\sigma}^{p-1}(\bar{u})$, where $\bar{\sigma}$ is the induced automorphism of $\overline{E_{n}}\left(\chi^{1 / p}\right) / \overline{E_{n}}$ (i.e., $\bar{\sigma}(\bar{x})=\overline{\sigma(x)}$ for all $\left.\bar{x} \in \overline{E_{n}}\left(\chi^{1 / p}\right)\right)$. Since the extension $\overline{E_{n}}\left(\chi^{1 / p}\right) / \overline{E_{n}}$ is purely inseparable, $\bar{\sigma}$ is just the identity, so find $N(u)=\bar{u}^{p}$. Thus, reducing the relation $z=b N(u) \bmod -$ ulo the maximal ideal of the valuation ring of w, we find $z=\bar{b} \bar{u}^{p}$, where $\bar{b} \in \overline{E_{n-1}}$, and $\bar{u} \in \overline{E_{n}}\left(\chi^{1 / p}\right)$. We will show that such a relation is impossible.

Let $\overline{E_{n-1}}=\overline{L_{1}}(\theta)$, so that $1, \theta, \ldots, \theta^{s-1}$ form a basis for $\overline{E_{n-1}} / \overline{L_{1}}$, with $s=\left[\overline{E_{n-1}}: \overline{L_{1}}\right]$. Since $p \nmid s$, it follows easily that $\overline{E_{n-1}}=$ $\overline{L_{1}}\left(\theta^{p}\right)$, and $1, \theta^{p}, \ldots, \theta^{(s-1) p}$ also form a basis of $\overline{E_{n_{1}}} / \overline{L_{1}}$. Likewise, $1, \theta, \ldots, \theta^{s-1}$, as well as $1, \theta^{p}, \ldots, \theta^{(s-1) p}$, are both bases of $\overline{E_{n}}\left(\chi^{1 / p}\right) / \bar{L}\left(\chi^{1 / p}\right)$. Now let

$$
1 / \bar{b}=b_{0}+b_{1} \theta^{p}+\cdots+b_{s-1} \theta^{(s-1) p}
$$

where the $b_{i} \in \overline{L_{1}}(i=0,1, \ldots, s-1)$. Similarly, let

$$
\bar{u}=u_{0}+u_{1} \theta+\cdots+u_{s-1} \theta^{s-1}
$$

where the $u_{i} \in \bar{L}\left(\chi^{1 / p}\right)(i=0,1, \ldots, s-1)$. Substituting the expressions above for $1 / \bar{b}$ and \bar{u} in $z / \bar{b}=\bar{u}^{p}$ and comparing like terms, we find

$$
\begin{equation*}
z b_{0}=u_{0}^{p} \tag{16}
\end{equation*}
$$

where of course, $b_{0} \in \overline{L_{1}}$ and $u_{0} \in \bar{L}\left(\chi^{1 / p}\right)$. The impossibility of (16) above is just the impossibility of [$\mathbf{T} 2,(23)]$, and follows immediately from the proof given there. However, for the sake of completeness, we will reprove this result here. Our proof will be different from that in [T2]; instead, it will be similar in spirit to the proof below of a corresponding result for $p=2$.

Write c for $1 / b_{0}$ and u for u_{0}, so we need to show that there do not exist $c \in \overline{L_{1}}\left(=\overline{F_{0}}\left(x_{1}, x_{2}, z^{p}\right)\right)$ and $u \in \bar{L}\left(\chi^{1 / p}\right)$ $\left(=\overline{F_{0}}\left(x_{1}, x_{2}, z\right)\left(\chi^{1 / p}\right)\right)$ such that $z / c=u^{p}$. By considering the z adic valuation on $\overline{L_{1}}$, it is easy to see that for any $c \in{\overline{L_{1}}}^{*} \quad z / c \notin \bar{L}^{* p}$. Now assume that $z / c=u^{p}$ for some $c \in \bar{L}_{1}{ }^{*}$ and some $u \in \bar{L}\left(\chi^{1 / p}\right)$. Then $\bar{L}\left((z / c)^{1 / p}\right) \subset \bar{L}\left(\chi^{1 / p}\right)$, so we find $\bar{L}\left((z / c)^{1 / p}\right)=\bar{L}\left(\chi^{1 / p}\right)$. Thus, there exist $f_{i} \in \bar{L}^{p}(i=0,1, \ldots, p-1)$ such that

$$
\begin{equation*}
\chi\left(=h_{0}\left(x_{1}, x_{2}, z\right)\right)=\sum_{i=1}^{p-1} f_{i}(z / c)^{i} \tag{17}
\end{equation*}
$$

Since $1, z, \ldots, z^{p-1}$ form a basis for $L / \overline{L_{1}}$, we may write

$$
h_{0}\left(x_{1}, x_{2}, z\right)=\sum_{i=0}^{p-1} e_{i} z^{i} \quad \text { for } e_{i} \in \overline{L_{1}},
$$

where the values of the e_{i} may be derived from the definition of h_{0} in (6). Then, (17) takes the form

$$
\begin{equation*}
c^{p-1}\left(\sum_{i=0}^{p-1} e_{i} z^{i}\right)=\sum_{i=0}^{p-1} c^{p-1-i} f_{i} z^{i} . \tag{18}
\end{equation*}
$$

Now $c \in \overline{L_{1}}$, and $\bar{L}^{p} \subset \overline{L_{1}}$. Hence, comparing the coefficients of z^{i} in (18), we find $c^{i} e_{i}=f_{i}(i=0,1, \ldots, p-1)$. In particular, we find $e_{1} e_{p-1}=f_{1} f_{p-1} / c^{p}$. Since f_{1}, f_{p-1}, and $c^{p} \in \bar{L}^{p}$, this shows $e_{1} e_{p-1} \in \bar{L}^{p}$. Now from (6), it is easy to see that

$$
\begin{aligned}
e_{1} & =-\left[\left(x_{1}^{p}-z^{p}\right) x_{2}^{p-1}+\left(x_{2}^{p}-z^{p}\right) x_{1}^{p-1}\right], \\
e_{p-1} & =\left[\left(x_{1}^{p}-z^{p}\right) x_{2}+\left(x_{2}^{p}-z^{p}\right) x_{1}\right] .
\end{aligned}
$$

Multiplying out, we find $x_{2} x_{2}^{p-1}+x_{2} x_{1}^{p-1} \in \bar{L}^{p}=\bar{F}_{0}^{p}\left(x_{1}^{p}, x_{2}^{p}, z^{p}\right)$. Since $p>2$ (so $x_{1} x_{2}^{p-1}+x_{2} x_{1}^{p-1} \neq 0$), this is clearly impossible.

Case $2(p=2)$. Assume that

$$
\begin{aligned}
A_{n} \otimes_{F} E_{n-2} \sim & \left(y^{1 / 2^{n-2}}, b_{1} ; 2^{2}, E_{n-2}, \omega_{2}\right) \\
& \otimes E_{n-2}\left(b_{2}, \phi_{n} ; 2, E_{n-2},-1\right),
\end{aligned}
$$

for some b_{1} and $b_{2} \in E_{n-2}^{*}$. Then, letting $z=y^{1 / 2^{n}}$ and $E_{n}=E(z)$, we find, exactly as in the p odd case, that $z / b=N(u)$ for some $b \in E_{n-2}^{*}$ and $u \in E_{n}\left(\sqrt{\phi_{n}}\right)$, where N denotes the norm from $E_{n}\left(\sqrt{\phi_{n}}\right)$ to E_{n}. Letting $\chi=h_{0}\left(x_{1}, x_{2}, z\right)$, assuming F_{0} is algebraically closed, and considering the standard extension of any 2 -adic valuation on F_{0} to $F_{0}\left(x_{1}, x_{2}, \ldots, z\right)$, we find, just as in the p odd case that for some $b_{0} \in \overline{F_{0}}\left(x_{1}, x_{2}, z^{4}\right)$ and $u_{0} \in \overline{F_{0}}\left(x_{1}, x_{2}, z\right)(\sqrt{\chi})$,

$$
\begin{equation*}
z b_{0}=u_{0}^{2} . \tag{19}
\end{equation*}
$$

We will show that (19) is impossible.
Write L for the field $\overline{F_{0}}\left(x_{1}, x_{2}, z\right), L_{1}$ for the field $\overline{F_{0}}\left(x_{1}, x_{2}, z^{2}\right)$, and L_{2} for the field $\overline{F_{0}}\left(x_{1}, x_{2}, z^{4}\right)$. Assume that (19) holds for some $b_{0} \in L_{2}$ and $u_{0} \in L(\sqrt{\chi})$. By considering the z-adic valuation on L and noting that $b_{0} \in L_{2}$, it is easy to see that $z b_{0} \notin L^{2}$. Hence,
$z b_{0}=u_{0}^{2}$, then $L(\sqrt{\chi})=L\left(\sqrt{z b_{0}}\right)$. From this, as well as the definition of h_{0} in (7), it follows that

$$
z\left(\left(x_{1}^{2}+z^{2}\right) x_{2}+\left(x_{2}^{2}+z^{2}\right) x_{1}\right)=f_{0}^{2}+f_{1}^{2} z b_{0}
$$

for some f_{0} and $f_{1} \in L$. Since 1 and z form a basis for L as an L_{1} vector space, and since $f_{0}^{2}, f_{1}^{2},\left(x_{1}^{2}+z^{2}\right) x_{2}+\left(x_{2}^{2}+z^{2}\right) x_{1}$, and b_{0} are all in L_{1}, we find

$$
\left(x_{1}^{2}+z^{2}\right) x_{2}+\left(x_{2}^{2}+z^{2}\right) x_{1}=f_{1}^{2} b_{0}
$$

We write this as

$$
\begin{equation*}
\frac{x_{1}^{2} x_{2}+x_{2}^{2} x_{1}}{b_{0}}+\frac{z^{2}\left(x_{2}+x_{1}\right)}{b_{0}}=f_{1}^{2} \tag{20}
\end{equation*}
$$

Now $f_{1}^{2} \in L^{2}=L_{1}^{2}\left(z^{2}\right)$. Thus $f_{1}^{2}=g_{0}^{2}+g_{1}^{2} z^{2}$ for some g_{0} and $g_{1} \in L_{1}$. Substituting this in (20), we find

$$
\begin{equation*}
\frac{x_{1}^{2} x_{2}+x_{2}^{2} x_{1}}{b_{0}}+\frac{z^{2}\left(x_{2}+x_{1}\right)}{b_{0}}=g_{0}^{2}+g_{1}^{2} z^{2} \tag{21}
\end{equation*}
$$

Now $x_{1}^{2} x_{2}+x_{2}^{2} x_{1}, x_{2}+x_{1}$, and b_{0} (note!) are all in L_{2}. Moreover, $L_{1}^{2} \subset L_{2}$. Since 1 and z^{2} form a basis of L_{1} as an L_{2} vector space, we find on viewing (21) as an equation in L_{1} that

$$
\frac{x_{1}^{2} x_{2}+x_{2}^{2} x_{1}}{b_{0}}=g_{0}^{2}
$$

and

$$
\frac{x_{2}+x_{1}}{b_{0}}=g_{1}^{2}
$$

Dividing, we find $x_{1} x_{2}=\left(g_{0} / g_{1}\right)^{2}$ for some g_{0} and $g_{1} \in L_{1}$. But $x_{1} x_{2}$ is clearly not a square in L_{1}, and we are done.

References

[ART] S. A. Amitsur, L. H. Rowen and J.-P. Tignol, Division algebras of degree 4 and 8 with involution, Israel J. Math., 33 (1979), 133-148.
[B] N. Bourbaki, Algèbre Commutative, Chapitre VI, Hermann, Paris, 1961.
[D] P. K, Draxl, Skew fields, London Math. Soc. Lecture Note Series, Vol. 81, Cambridge Univ. Press, Cambridge, 1983.
[E] O. Endler, Valuation Theory, Springer-Verlag, New York, 1972.
[J] B. Jacob, Indecomposable division algebras of prime exponent, J. Reine Angew. Math., 413 (1991), 181-197.
[JW] B. Jacob and A. Wadsworth, Division algebras over henselian fields, J. Algebra, 128 (1990), 126-179.
[O] A. Ostrowski, Untersuchungen zur arithmetischen Theorie der Körper, Math. Z., (1934), 269-404.
[R] L. H. Rowen, private communication.
[RT] L. H. Rowen and J.-P. Tignol, in preparation.
[Se1] B. A. Sethuraman, Constructions of valued division algebras with applications to indecomposability and elementary abelian crossed products, Doctoral Dissertation, University of California, San Diego, 1991.
[Se2] _, Indecomposable division algebras, Proc. Amer. Math. Soc., 114 (1992), 661-665.
[T1] J.-P. Tignol, Produits croisés abéliens, J. Algebra, 70 (1980), 420-436.
[T2] _, Algèbres indécomposables d'exposant premier, Adv. in Math., 65 (1987), 205-228.
[T3] , Central simple algebras with involution, in Ring Theory, Proceedings of the 1978 Antwerp Conference, F. Van Oystaeyen, ed., Marcel Dekker, New York, (1979), 279-285.

Received February 10, 1992.
California State University, Northridge
Northridge, CA 91330

