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DEC GROUPS FOR ARBITRARILY HIGH EXPONENTS

B. A. SETHURAMAN

For each prime p and each n > 1 (n > 2 if /? = 2) , examples
are constructed of a Galois extension K/F whose Galois group has
exponent pn and a central simple i7-algebra A of exponent p which
is split by K but is not in the Dec group of K/F .

1. Introduction. Let K/F be an abelian Galois extension of fields,
and let G = &(K/F). Let G = Gx x G2 x x Gk be a direct sum
decomposition of G into cyclic groups, with <?/ = (σ/) (/ = 1, . . . , k).
Let Fi be the fixed field of G\ x x G/_i x G7+1 x x G^ (/ =
1, . . . , fc). Thus, the Fi are cyclic Galois extensions of F, with
Galois group isomorphic to G, . The group Όcc(K/F) is defined as
the subgroup of Bτ(K/F) generated by the subgroups Bτ(Fj/F) (i =
1, . . . , k). This group was introduced by Tignol ([Tl]), where he
shows that Όcc(K/F) is independent of the choice of the direct sum
decomposition of G. If p is a prime, we will write pn Bτ(K/F) and

pnDec(K/F) for the subgroups of Bτ(K/F) and Όec(K/F) consisting
of all elements with exponent dividing pn .

A key issue in several past constructions of division algebras has
been the non-triviality of the factor group p Bτ(K/F)/p Όcc(K/F) for
suitable abelian extensions K/F. For instance, the Amitsur-Rowen-
Tignol construction of an algebra of index 8 with involution with no
quaternion subalgebra ([ART]) depends crucially on the existence of
a triquadratic extension K/F for which 2 Bτ(K/F) φ 2 Dec(K/F).
Similarly, the constructions of indecomposable algebras of exponent p
by Tignol ([T2]) and Jacob ([J]) also depend on the existence of an (el-
ementary) abelian extension K/F for which pBr(K/F)^pDec(K/F).

The extension fields K/F that occur in these examples above are
all of exponent p, and it is an interesting question whether there exist
abelian extensions K/F whose Galois groups have arbitrarily high (p-
power) exponents for which the factor group pBr(K/F)/pΌec(K/F)
is non-trivial. The purpose of this paper is to show that for each
n > 1 (n > 2 if p = 2), there exists an abelian extension K/F with
Galois group Z/pnZxZ/pZ (and thus, of exponent pn) and an algebra
A e p Bτ(K/F) such that A φ p Όec(K/F). (Note that if K/F is an

373



374 B. A. SETHURAMAN

Z/2 x Z/2 extension, then 2 Bτ(K/F) is always equal to 2 Όec(K/F),
see [T3] for instance.)

Our field F will be the rational function field in 3 variables over
a field FQ of characteristic 0 that contains sufficiently many roots of
unity. (For instance, FQ may be algebraically closed.) Our algebras
will in fact be generalizations of the example given by Tignol in [T2].
Moreover, we will prove that for A, K, and F as above, A ®F L £
p Όec(K L/L) for any finite degree extension L/F with p \ [L : F].

The special case n = 2 (and p odd) of these computations was
done in [Sel], where the result was used to construct non-elementary
abelian crossed products of index p3 and exponent p2.

We remark that using different techniques, Rowen and Tignol ([RT])
have shown that if the ground field is assumed to only contain a prim-
itive psth root of unity but not a primitive ps+ιth root of unity for
some s > 1, then examples of non-trivial factor groups

pBr(K/F)/pΌcc(K/F)

exist for suitable abelian extensions K/F whose Galois groups have
arbitrarily large (p-power) exponents. Using ultraproducts ([R]), their
example can be extended to also cover the case where the ground field
contains all primitive p*th roots of unity (/ = 1, 2, . . . ) .

2. p-adic valuations on rational function fields. Let p be a prime,
which, for now, can be either odd or even. Let FQ be a field of char-
acteristic 0. The subfield Q of FQ has a standard valuation v: Q —• Z
obtained by writing any non-zero element in Q as pna/b, where n,
a, and b are integers, and p is relatively prime to a and b, and
defining υ(pna/b) = n. We will refer to any valuation on FQ that ex-
tends this distinguished valuation on Q as a p-adic valuation. Since
the residue field of Q under v is Z/pZ, the residue of FQ under any
p-adic valuation is of characteristic p.

Now let F = FQ(XI , x 2 > > */c) be the rational function field over
FQ in k indeterminates (k > 1), and let υ be a fixed p-adic valua-
tion on FQ . Then v admits an extension w to F defined as follows:
for any polynomial / e F0[xχ, x 2 , . . . , x^], w(f) is the minimum of
the values of the coefficients, and for / and g in FQ[X\ , x 2 , . . . , x^],
w(f/g) = w(f) - w(g). (It is easy to check that w is indeed
a valuation on F.) It can be shown that the residues xt of the
xx (i = 1, . . . , k) are algebraically independent over the residue FQ
of Fo and that, moreover, F is precisely the rational function field

Γ? ^2 > > ^ ) (It is also clear from the definition of w that
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ΓF = Γy .) We will refer to w as the standard extension of v to F.
Also, we will abuse notation and continue to write X; for the residues
Xi.

REMARK 2.1. Furthermore, it can be shown that w is the unique
extension of υ to F with the property that the values of the Xj are
0, and the residues of the jcf- are algebraically independent over F$.
(See [B, §10, Proposition 2].)

The following is well known, but we include a proof here for con-
venience.

LEMMA 2.2. Let p be any prime, and let F be afield of character-
istic 0. Let v be a p-adic valuation on F. Let K = F(fχlp), where
f £ F*p, and v(f) = 0. Assume that f = fξ + πfx + δ, where
v(fo) = v(fι) = 0,_0 <v{n) < (p/(p - l))v(p), and v(δ) > v(π).
Assume, too, that f\ £ Fp, and that there exists θ e F* such that
θp = π . Then v extends uniquely to K, and K = T(J\l/P) -

Proof Let r e K* satisfy rp = / , and let s = (r - fΌ)/θ. Then

s + C/ό/0) = ix/θ), so s satisfies

Expanding the left-hand side of (1) and noting that θp = π , we find

Now for / = 1, . . . , p - 1, v((?)) = v(p), while t;(0*-f) < v(θp-χ)
= ^(π^" 1)/^) < v(p). (The last inequality is because υ(π) <
(p/(P ~ 1))V(P) ) From this, as well as the fact that v(fo) = 0,
we find that each of the expressions (fyifo/ΘY"* (i = 1, . . . , p - 1)
has positive value. It follows that for any extension w of v from
F to K, if w(s) < 0, then the left-hand side of (2) would have
the same value as sp. (Here we use the fact that if w(a) < w(b),
then w(a + b) = w(a).) Since this contradicts the fact that the
value of the right-hand side of (2) is 0 (note that v(f\) = 0, while
υ(δ/θp) > 0), we must have w(s) > 0. Similarly, if w(s) > 0,
then from w(a + b) > min(tι;(α), w(b)), it follows that the left-hand
side of (2) must have positive value. Hence w(s) = 0. Taking the
residues of each term in (2) and noting again that all terms except sp

and /i have positive value, we find F = fx. Thus K D F{f\ ) .
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Since f\ ^ F , and since [K : F] = /?, we find by the funda-
mental inequality ([E, Corollary 17.5]) that w is unique, and Έ =

F(Tιl/P) Π

Now let Fq be a field of characteristic 0. We will assume that Fo

contains pιlpl for all / (/ = 1,2, . . . )- Let F be the rational function
field FQ(X\ , xι, y). For each n (n > 0), let

(3) Λ. = (*f"-yO(^"-yO-

Let Hn = F(φ\lp). Let ^ be the standard extension of any /?-adic
valuation on FQ to F. The manner in which v extends from F to
Hn will be crucial to our Dec results, and the rest of §2 is devoted to
this topic.

First, some notation. For p odd, and i = 1, 2, . . . , p - 1, let

(so each λ, is an integer). For j? odd, again, define gn(x,y) €
Z[x ,y ] (n = 0 , l , 2 , . . . ) by

p-\

(5) ^(^,^) = Σ A ' ( χ / ' " ) i ^") p " / '
ί = l

so

(χPn - yP"γ = χP"+l - yp"+ι +pgn(x, y).
N o w for p odd, define hn(x\, X2,y) & Ί\x\, x-ι, y] (n = 0 , 1 , 2 , . . . )
b y

(6) hn{xx,χ2,y) = (χ(-yp")pgn(χ2,y) + {xζ-yp")pgn(χι,y),

a n d f o r p = 2 , d e f i n e Λ n ( ^ i , x 2 , y ) e X{xι , x i , y ] { n = 0, 1 , 2 , . . . )
b y

(7) An(x!, χ 2 , y) = (x? + y 2 )2χ2

2 ^ 2 + (̂ 22 + y 2 )2χ\ y1.

REMARK 2.3. We will abuse notation and continue to write gn and
hn for the images of gn and /*„ in Z/pZ[x, y] and Z/pZ[x{ ,Xι,y]
(respectively).

The special case n = 1 (and /? odd) of the following was proved
in [T2, Lemma 3.7].
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PROPOSITION 2.4. For every prime p and for all n (n > 1), υ
extends uniquely from F to Hn, and Hn = F(ho(x\, xi,

Before proving Proposition 2.4, we need some further notation, as
well as some easy lemmas.

For p = 2, define en(x\ , *2 > y) £ %[xi, *i, y] (for n > 1) by

and ψn(x\ 9 *29 y) € Z[JCI ,xi,y\ (for n > 0) by

/Λ\ / \ / 2 i 2 \/ 2 i 2 \

For w G Z (n > 1), define an e Q by

ifn = l,
( 1 0 ) ^ ^ • i / p + i / p 2 + ... + i/p»-i9 i f / i > l .

Finally, for any A: G Q, abbreviate the phrase "terms of value at least
v(pk)" by [[/?fc]].

R E M A R K 2.5. Just as with gn and hn , we will abuse notation and
continue to write en for the image of en in Z/2Z[JCI ,Xi,y\

L E M M A 2.6. L^/ f,g,f\, and g\ be polynomials in ΊL\x\, x2, y ] .
ΓΛ^n, vv/ί/z respect to the restriction of υ to Q(x\ ,xi,y) (i.e., the
standard extension of the p-adic valuation on Q to Q{x\, xi, y)),

1. Iff=g + l\p]],andfι = gι+[\p]], then f+fι=g + gχ+[[p]]
and ffx = ggx + [[p]].

2. ( / + * ) * = / * + **
3. L ^ k > 1, fl«rf suppose

for some ciχ 9 , , / G Z. Define fχlp e Z[x\, xi, y] by

f ι / p = ^ 1 * 1 ^ 1

Proof. Note that the values of / , g, / i , and gi are non-negative.
(1) and (2) are now elementary. (3) follows from (2) along with the
fact that aP = a (mod p) for any α e Z. D
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LEMMA 2.7. With respect to the restriction of υ to Q(x\, xι, y),
1. For n > 1 a n d for all p , h n = hp

n_x + [[p]]f and for n > 2 and
/̂  0 . rr^n

2. For n>\ and p oddf φn = φPn_x -phn-X + [[p2]].
3. For n > 1 and p = 2, φn = ψn - 2en, and ψn = ψ£_x - 2hn-\ +

[[4]] (so φn = Ψl_x - 2(ΛΛ_! + eΛ) + [[4]]).

Proof. (1) follows from the definitions of /*« and en and Lemma
2.6. For instance, for p odd (and n > 1) we have

{xf _ y P y = {{xf _ / - y + [ W ] ) P = {xf> _ yP-y + m ι

Also,

Since similar relations hold for (x% — yp")p and gn{x\, y), we find

hn = (xf1-yt>n~ι/(gn-l(x2,y)y

+ (xfl -yt'Ύign-dxi, V))p + UP]]

«--.

The proof for p = 2 is similar. For (2), we have

-yp p"~'yp"')p-pgn-i{xi,y)]

'K*Γ'-

f ι - y p n ~ ι ) p
-p[(χfι-ypnι)pgn-ι(χ2,y)

+ (xf -y^Ygn-iixi, y)] + [\p2]]
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As for (3),

Φn = (χϊ -y2)(χ2 -y2)

= (x2 + y2 -2y2)(x2 +y2 -2y2)

= (x2 +y2 )(x2 +y2)-2y2 (x2 + x2 )

= ψn- 2en.

Also,

2" r ί +yr)

1 Λ Λ n — 1 Λ « - l Λ « - 1 A / I - 1 Λ A / I - 1 A « - 1

)2x2

2 y 2 + [x\ +y2 )2x2

x y2

D

L E M M A 2.8. For all p and for all k>0, ak+x < a2 + l/p.

Proof. Since αi < a2 < a2 + l/p, we may assume k > 2. Now
= 1 + l/p H h 1/p^ and 0:2 = 1 + l/p, so it is sufficient to

prove that l/p2 H h 1/p^ < l/p. Multiplying both sides by /?, we
need to prove that l/p -i h l/pk~ι < I. But this is clear, since

I/P + + I//**"1 = 1/P(1 + I/P + + I / / " 2 )

D

Proof of Proposition 2.4. We divide the proof according to whether
p is odd or whether p = 2.

Case 1 (CtaW /?). If n = I, this follows from Lemmas 2.7 and 2.2.
For, by Lemma 2.7, φ{ = φ? -pho + δ, for some (5 € l\x\ ,x2,y\
with v(J) > v(p2). By assumption, p 1 ^ e Fo. Clearly, -Λo φψP =
FQP{XP

X ,xv

2,y
v). Thus, by Lemma 2.2, v extends uniquely to H\,

In general, for n > 1, we have by Lemma 2.7,
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(11) Φn = φζ_ι-Phn.1+[\P

2]]

= (&,_, -Pl/phn-2y-pgθ(φn-l , Pi/Phn-2) + [[P2]]

= {φn-χ -p1/Phn-2)
P-paψnZ\hn-2 + [\p**+l/p]].

(For the last equality, note that

Pgθ(Φn-l , PXIPK-i) =

+ \2ΓP hn-2> Φn-l+ - •

Also, note that pι+ilp = p01*, and pι+1lp = pa2+VP. Finally, note that
since p > 3, 1 + 2/p < 2.)

Claim. For 2 < k < n - 1, if

Of Ό «ΛCK J L / ^ — 1 JL Z7~~ 1 J L / ? — 1 ΊΛ I ΓΓ»»

i J / ~*~ // -^ TJ k Cur UJ (ΐ)r fl / ^ - 11 77

for some akeF with α^ = 0w_i + [|>1/p]] ? then

for some α f c+1 e F with ak+ι = φn-{ + [[pι/p]].

Proof of claim. For, by Lemma 2.7, φj = φp

j_ι + [[p]] and hj

hj-i+[[p]] for all j > 1, so

ap-

[[pa>+υp]]

n-.2)O-V • • • {φn-k)^hn_k_x

(asα2+
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Expanding pgo(ak, p^φζzl''' Φ^llK-k-i) and considering the
first two terms of lowest value, we find

k % \ C i [\p°*+ι/p]].

Now 1 + ak/p = ak+ϊ. Also, 1 + (2ak/p) = ak+{ + α /̂/? >a2 + l/p
(as α^+1 > α2 and ak > 1 when k>2). Thus,

5* = fofc -/»

Now recalling that α λ = φn-\+[\PxlP]\, we find αf"1 = Φp

nZ\+[[Pί/p]]
Hence,

Since α^+j > 0:2, «A:+i + 1/P > a2 + 1/P Thus,

- A ' C i C ! #:ίΛ»-*-i + [[p

Take α f c + 1 = (afc -pa* l p<tζz\ --<tζ~_l

khn-k-ύ- Since afc =
[\pχlP]] and since l/p < ak/p (as fc > 2), α f c + 1 = </.„_! +
This proves the claim.

Proof of Case 1 (continued). We now use the claim above to induc-
tively reduce (11) until it yields

(12) φn = ap+pa-bh0 + δ,

for some a e F with υ(a) = 0, some b <E F with z?(ό) = 0
and ϊ e P , and some ί e f with v{δ) > an. Since paJp =
pi/p+i/p'+ +i/p" € fOj it will follow immediately from Lemma 2.2
that v extends uniquely from F to Hn , and Ή^ = T(h^p).

If n = 2, then (11) is already in the desired form, since φ\ € Fp .
Otherwise, we write (11) as
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with a2 = φn-ι -pχlphn_2 • By repeatedly applying the claim, we find

with Sn = af, -pa«φζl\ •••φp

ί~
ιho, for some anGF with an = φn.x +

[\pxlP]]. By Lemma 2.8, «„ < α2 + 1/P for all n > 3 ._Observing that
the residues of φn_x, ..., φ\ are all pth powers in F, we find that
φn is now in the form (12), and we are done.

Case 2 (p = 2). The basic steps for the p = 2 case are the same as
for the odd p case, the differences are only in the details.

If n = 1, then, by Lemma 2.7, φx = ψfi - 2(hQ + βι) + [[4]], so
by Lemma 2.2, v extends uniquely to Hi, and Ή\ = 7
But e\ is already a square in T, so Έ[ = F(V^o).

In general, for n > 1, we have, by Lemma 2.7

= ψl_x - 2(h2

n_2 + [[2]] + el_x + [[2]]) + [[4]]

e2

n_i) + [[4]]

en.x)
2 + [[2]]) + [[4]]

2 + en-x)
2 + [[4]]

(13)

Claim. For 2 < A: < n - 1, let

Sk = a\- 2a*ψn_x • • • ψn_k+ι(hn_k + en_k+ι) + [[4]],

for some akeF with ak = ψn-.x + [[21/2]]. Then,

Sk = "l+l ~ 2 " t + 1 Ψn-\ • • • Ψn-k{K-k-\ + en-k) + [[4]] ,

for some ak+1 e F with ak+x = ψn-X + [[21/2]].
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Proof of Claim. We have

n

2-*_i + [[2]] + e2

n_k + [{!]]) + [[4]]

= a2 - {2«>'2γψU • • • ψi-M.k.x + e2

n_k)
+ [[21+2K/2)j] + [[4]]

= 4 - (2β*/2) V«2-2 ψl-kMn-k-\ + en-k)
2 + [[2]]) + [[4]]

= 4 - (2"*/Vn-2 Ψn-kiK-k-X + en-k))2 + [[4]]

= 4 + (2a^2ψn_2 • • • ψn.k{hn_k_x + en_k))2

- 2(2β*/V«-2 Ψn-kiK-k-x + en-k))2 + [[4]]

= 4 + (2V>n-2. . . ψn_k{hn_k_x + en_k))2 + [[4]]

= (ak + 2a«l2ψn_1 • • • ψn_k(hn^k.ι + en_k))2

- 2{2a*l2)akΨn_2 • • • ψn_k{hn.k.λ + en_k) + [[4]]

= (ak + 2a*l2ψn_2 • • • ψn_k{hn_k_x + en_k))2

• ψn-k(hn.k_ι + en_k) + [[4]]

= (ak + 2α*/V«-2 Ψn-kiK-k-i + en-k)Ϋ

- 2aM ψn_xψn_2 • • • ψn-k{hn-k-\ + en-k)

= 4+1 - 2°M Ψn-ί Ψn-2 • • • ψn-k(h-k-\ + «?»-*) + [I4]]»

where

β*+i = ak + 2akl2ψn_2 • • • ψn-.k{hn_k_x + en_k),

(so ak+ι = ψ,,^ + [[21/2]] + [[2^/2]] = ψn-, + [[21/2]]).

Proof of Case 2 {continued). We now use the claim above to induc-
tively reduce (13) until it yields

(14) φn = a2 + 2a»b(h0 + e1) + δ,

for some a € F with v(a) = 0, some b e F with v(b) = 0
and b G F 2 , and some δ e F with v(δ) > an. Since 2α»/2 =
21/2+i/22+-+1/2" € p0^ i t ^ n follow immediately from Lemma 2.2
that v extends uniquely from F to Hn, and Ή^ = T{y/ho

V
_

If n — 2, then (13) is already in the desired form, since ψ\ G F2.
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Otherwise, we write (13) as

with #2 = Ψn-\ +2ι/2(hn-2 + en-ι) By repeatedly applying the claim,
we find

ώ i = Si.+ [[4]],

with Sn = a%- (2an)ψn_ι ψ\(ho + e\), for some an eF with an =
Ψn-ι + [[21/2]]. By Lemma 2.8 (or by more direct means), an < 2
for all n > 3. Observing that the residues of ψn-\, . . . , ψ\ are all
squares in F , we find that φn is now in the form (15), and we are
done. D

3. The Dec results. Let FQ be a field of characteristic 0 containing
all primitive pιth roots of unity ω/ (/ = 1 , 2 , . . . ) , chosen so that
α^+ 1 = o)ι. (We will write ω for ω\.) If L D FQ is any field, and if
a and b are in L*, then, as in [D, Chapter 11], (a, b;pn, L, ωn)
will denote the algebra generated over L by two symbols a and β
subject to ap" = a, / ^ = Z>, and aβ = ωnaβ, and will be referred
to as a symbol algebra. Now let F — F§{x\, X2, y) be the rational
function field over FQ in the three indeterminates X\, X2 ? and y .
For each n > 1, define

Λ = (Λ:I , xf - y p , F, ω ) ® F {X2>xζ -y\P >F, ω).

LEMMA 3.1. For each n > 1, 4̂W Λαs rn^jc p 2 αnrf exponent p.

Proof. This is very similar to the proof of Proposition 2 in [Se2], and

we only sketch the proof. The factor (xx, x[ -y\p, F, ω) is NSR

with respect to the Xi-adic valuation on F, with residue isomorphic to

<Fb(*2 > *) 5 where z = y1^. The factor (x2, xf - y p , ^0(^2 9z)9ω)

(i.e., defined over F$(x2, z)) is NSR with respect to the x\ -z adic

valuation (with residue isomorphic to FQ(X^P)) . It follows from [JW,

Theorem 5.15] that An has index p2. It is clear that exp(^4n) = p.

As for the final statement of the lemma, standard symbol algebra iden-

tities (e.g., [D, Chapter 11, pages 77-82]) along with the assumption
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about the roots of unity in FQ show that

An~(x(,x( -y;pn+1,F,ωn+ι)

( ( -y,Pn+1,F,ωn+ι)

Now write 0 n for (x( — y)(x\ -y) (this notation will be seen to be
consistent with that of §2), and write Kn for the field F(yχlP", φψ).
Then An € Bτ(Kn/F). Tignol ([T2, Theorem 1]) showed that when
p is odd, Ax <£ Όtc(Kx/F). We have

THEOREM 3.2. 1. For p odd and n > 1, or p = 2 and n > 2,

An <£Ώec(Kn/F).
2. More generally, for p odd, n > 1, and 0<l<n — l,orp = 2,

n > 2, and 0 < I < n - 2, let Fι = F{yx'Pι) (so i5} c Kn). Then,
An®FFι $ Όec(Kn/F[).

3. Further, let E be any finite extension of F, with p \ [E : F]. For
p odd, n> I, and 0 < / < w - 1 , or p = 2, n>2,and 0 < / < n-2,
let Eι = E(yχlp') (so Eι<zKn E). Then, An®FEi <£ Όec(KnΈ/Eι).

Proof of Theorem 3.2. It is clearly sufficient to prove (3). Moreover,
it is sufficient to prove (3) for the case I = n — \ (for p odd) and
/ = n - 2 (for p = 2). For, assume that for / < n - 1 and p odd, or
for I <n-2 and p = 2,

An ®FEι ~ (yx'Pl, bx pn~ι, E,, ωB_/) ® £ | (b2,φn;p, Eι, ω),

for some Z>i and Z>2 € £"/. Then, extending scalars to En_\ (for
p odd) and £n_2 (for p = 2), we find by standard symbol algebra
identities

An ®F En-\ ~ (yι/p" \bx\p, En_x, ω) ®£ <_ i (b2,φn;p, En_x, ω)

for /> odd, and

n _ 2 ~ (y 1 / p " ~ 2 , h ; p 2 , En-2, ω2) ® £ Ah,Φn',P, En-i, ω)
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for p = 2. Thus, we find that for p odd and / < n - 1, if

An ®F Eι e Όec(Kn . E/E{)

then
An ®F En-X G Όec(Kn E/En_x),

and for p = 2 and / < n - 2, if

then
^4n ® F ^w-2 G Dec(AΓw E/En-2).

We find it convenient at this point to divide the proof according to
whether p is odd or even.

Case 1 (p odd). Assume that

An ®F En—X ~ (y 'p , bx\ p , En—X, &>) ® En_x(b2, ^ j /?, En—X, co),

for some b\ and 62 G £ * _ ! . By Lemma 3.1 and standard symbol
algebra identities,

xf xζ J

Put z = yιlpH. Then, extending scalars further to £"„ = £"(z), and

noting that xf and xζ are pth powers, we find

(z 9 φn; p, En, ω) ~ (b, φn\ p, En, ω),

where we have written b for 62 Hence,

(z/b,φn;p,En, ω ) ~ 1,

so

(15) z/b = N(u)

for some w e En((φn)
ι/p), where JV denotes the norm from

En{{Φn)ιlp) to isw . We will prove that it is impossible to find b e En_\
and u_e En{{φn)

ιlp) such that (16) holds. _
If FQ denotes the algebraic closure of FQ , then 7o(x\ 9 x2iy) is

normal over FQ(X\ , x2, y) , so if E = F0(xx, x2, y)(ί) for some t e
E*, then it is standard that the degree of the minimum polynomial of
t over 7<){x\, x29y) divides the degree of the minimum polynomial
o f t o v e r F 0 ( x i 9 x 2 , y ) . H e n c e p\[E^{xx , x 2 , y ) : F\>{xx, x 2 , y)].
Thus, while showing that (15) cannot hold, we may assume that î o is
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algebraically closed. In particular, we may assume that FQ contains
pχlpl for all / (/ = 1, 2 , . . . ) , so we may apply the machinery of §2.

Now write χ for h$(x\, Xi, z), where ho is as in §2. As with the
polynomial ho, we will abuse notation and continue to write χ for
the residue of ho under appropriate /?-adic valuations. Observe that
over En, </>„ = (xj7 - zpΆ)(x^ — zpn), which, after renaming variables
is indeed the same as the "</>w" of §2.

We first need an easy lemma:

LEMMA 3.3. Let p be a prime, and let (F, v) be a valued field.
Let K be a finite dimensional separable extension of F such that
p \ [K : F]. Then for some extension of υ to K, p \ [K : F].

Proof. Let vf (1 < / < s) be the extensions of υ to K, and let
denote the residues of # with respect to the valuations t>;. Let i^
denote the henselization of F with respect to υ, and let Kf^ denote
the henselization of K with respect to v, (1 < / < s). Then (by
[E, Theorem 17.17]) [JSΓ : F ] = Σ / = i [ ^ I A ^ i ^ ] Ί 0 i f ^ t j ^ : ^ 1 ,
then p t [Kih : FΛ] for some /. Now Kifh = (Λ:)/ and Fh = F,
so by Ostrowski's theorem ([O, Satz 4], see also [E, Theorem 20.21]),

Z ) ; : F] I [JS:,.f A : f A ] . Hence, for this i, p f [(Γ), : F ] .

Proof of Theorem 3.2 (continued). Now let L = ^0(^1, ^2 ? ^) and
let υ be the standard extension of any /?-adic valuation on Fo to L
(so Γ = ?o(xi, JC2, z)) Let L t = F0(x\, ^2 > * p ) > and let vjLi denote
the restriction of v to L\. Choose an extension w of V£i to En_\

such that ^ t \β^Λ : ZT] (Since [£r t_i : L ^ = [£ : F], the lemma

above shows that such a choice is possible.) By Proposition 2.4 υ

extends uniquely from L to L(φ\jp), with residue ~L(χχlp). Since

/? t [£w_i : T\], while [1/(0^) : T[] = p2, it follows easily that wt ()
extends uniquely from En_\ to En(φιJp), with residue En(χχlp).

Now, continue to write w for the (unique) extension of w to
En(ΦnP) and consider the relation (15). Since v(z) = 0, we get
w(b) + w(N(u)) = 0. Since Γ ^ = ΓE (^/P ), there is a c e En_γ such
that w(c) = w(w). Then, fcJV(«) = bcpN(u/c), and w(u/c) = 0,
w(bcp) = w(&) +/7 w(w) = tt;(6) + w(N(u)) = 0, and of course,
bcp E J?w_i. Hence, we may assume in (15) that w(b) = w(u) = 0.

Now let σ be a generator of 2?(En(φl/p)/En), so
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Hence, N(u) — u σ(u) σp~ι(u), where σ is the induced automor-
phism of Ί^(χχlP)l~E^ ( i ^ , σ(x) = ~σ(x) for all x e Ί^(χχ/p)). Since
the extension ~En{χχlp)l'En is purely inseparable, σ is just the iden-
tity, so find N(u) = W . Thus, reducing the relation z = bN(u) mod-
ulo the maximal ideal of the valuation ring of w, we find z = bW,
where b e En_\, and ΰ G ~E~n(χχlp). We will show that such a relation
is impossible.

Let En-\ — ~L\(Θ), so that 1,0,.. ., θs~x form a basis for En-\/L\9

with s = [En_\ : Έ[]. Since /? \ s, it follows easily that En_\ =
~L[{βP), and 1,0*,.. . , 0(J~1)* also form a basis of S^/ZT. Like-
wise^ 1,0,.^., θs~ι, as well as 1,0*,.. ., θ^s~1^, are both bases
of Έ~n(χχlP)/Z(χιlP). Now let

\fb = Z?o + M p + + Vi0 ( ί ~ 1 ) l ? ,

where the b\ G Li (/ = 0, 1, . . . , s - 1). Similarly, let

ΰ = UQ + u\θ H h us-\θs~x,

where the w, e L{χγlp) (/ = 0, 1, . . . , s - 1). Substituting the expres-
sions above for 1/6 and Ϊ7 in zjb — W and comparing like terms,
we find

(16) zbo = u?o,

where of course, boeTΪ and UQ G ~L(χι/p). The impossibility of (16)
above is just the impossibility of [T2, (23)], and follows immediately
from the proof given there. However, for the sake of completeness,
we will reprove this result here. Our proof will be different from that
in [T2]; instead, it will be similar in spirit to the proof below of a
corresponding result for p = 2.

Write c for I/bo and u for UQ, SO we need to show that
there do not exist c e ~L\ (= ΪFoCx i, *2 > zP)) and u e ~L(χx/p)
(= Fo(.xi, X2, z){χχlp)) such that z/c — up. By considering the z-
adic valuation on Έ[, it is easy to see that for any c^Lγ zjc φ Up .
Now assume that zjc — up for some c e Li* and some u G L(χχlp).
Then Z{{z/c)χlp) c X(/1 / / ?), so we find ^((z/c)1/*) = I ^ 1 / * ) . Thus,
there exist /] G Lp (/ = 0, 1, . . . , p - 1) such that

(17) Z (
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Since 1, z, . . . , zp~ι form a basis for L/L\, we may write

ho{χ\ > X2 > z) = Σ * ίZ l" f o r ** G L l >
/=0

where the values of the e\ may be derived from the definition of
in (6). Then, (17) takes the form

/ ι=0

Now c G Σ7, and Έp cΈ\. Hence, comparing the coefficients of zi

in (18), we find c'e,- = fx (i = 0, 1, . . . , p - 1). In particular, we
find e\ep-ι = f\fp-ι/cp. Since / i , ^ ~ i , and cp eTp, this shows

_i G Z p . Now from (6), it is easy to see that

= - [(x? - z^xf"1 + ( 4 - zp)x\~x\,

Multiplying out, we find x2x
p

2'
1 + x2x[~ι 6 F = ϊ ^ ( x f , jcf

Since /? > 2 (so xχx%~ι + x2x\~ι φ 0), this is clearly impossible.

Case 2 (p = 2). Assume that

An ®F En.2 - (y^2"'2, bι 2 2 , £ w _ 2 , ω2)

, φn\ 2, jE'rt_2? - 1 ) ,

for some Z?i and b2 e E*_2. Then, letting z = y1/2" and En = J?(z),
we find, exactly as in the p odd case, that z/b = N(u) for some
& G £ r*_2 and w e En(y/φ^)9 where iV denotes the norm from
En(\/Φn) to £ „ . Letting χ = Λo(^i^2 ? ^ ) ? assuming Fo is alge-
braically closed, and considering the standard extension of any 2-adic
valuation on FQ to FQ(X\ , x2, . . . , z), we find, just as in the p odd
case that for some b0 e TQ(X\ , ^2, z4) and w0 ^ ?o(*i ? ^2, z){y/D >

(19) z60 = 4

We will show that (19) is impossible.
Write L for the field JFo(*i ? xi > z)> L\ for the field "FQ{X\ , x2, z 2),

and L 2 for the field To(x\, χ2, z4) Assume that (19) holds for some
bo e L2 and UQ G L(y/χ). By considering the z-adic valuation on L
and noting that bo e L2, it is easy to see that zbo φ L2. Hence,
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zbo = WQ , then L(y/χ) = L(y/zbo). From this, as well as the defini-
tion of ho in (7), it follows that

z{{x\ + z2)x2 + (x\ + z2)x{) = /0

2 + rfzbo,

for some fo and f\ e L. Since 1 and z form a basis for L as an
L\ vector space, and since f^,/2, (x2 + z2)x2 + (x2 + z2)xχ, and b0

are all in L\, we find

(x2 + z2)x2

We write this as

( 2 0 )

Now f2eL2 = L]{z2). Thus f2 = g2 + g2z2 for some £ 0 and
#1 e L\. Substituting this in (20), we find

Now xf x2 + ^ 2 χ i ' χ 2 + ^ i , and b0 (note!) are all in L2 . Moreover,
L\c L2. Since 1 and z 2 form a basis of Li as an L2 vector space,
we find on viewing (21) as an equation in L\ that

and

Dividing, we find X\X2 = (go/g\)2 for some ^o and gi e L\. But
is clearly not a square in L\, and we are done. D
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