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A TRANSVERSE STRUCTURE
FOR THE LIE-POISSON BRACKET

ON THE DUAL OF THE VIRASORO ALGEBRA

GLORIA MARI BEFFA

KdV equations can be described as Hamiltonian systems on the
dual of the Virasoro algebra with the canonical Lie-Poisson (also
called Berezin-Kirillov-Kostant) bracket. In this paper we give an
explicit transverse structure for this Poisson manifold along a finite
dimensional submanifold. The structure is linearizable and equivalent
to the Lie-Poisson structure on sl(2, R)*. This problem is closely
related to the classification of Hill's equations.

1. Introduction and main definitions. It was known since Lie's time
that if a manifold has a Poisson structure and the rank of the Poisson
tensor is constant around a point (that is, the point is regular), then
the manifold can be locally described at such a point as foliated into
leaves of maximum rank or symplectic leaves. If the Poisson manifold
is the dual of a Lie algebra with its Lie-Poisson bracket, then the sym-
plectic leaves coincide with the orbits under the coadjoint action of
the group. If the point is singular the local description can be achieved
by finding a section which is transversal to the orbit of the point and
which is endowed with a Poisson structure induced by the global Pois-
son bracket. This induced bracket, or transverse structure, was initially
introduced by A. Weinstein for finite dimensional Poisson manifolds
(see [20]) and it describes the relation between the symplectic struc-
tures on the different leaves as we cross them transversally to the orbit
of a singular point. Weinstein also proved that transverse structures
were unique in the following sense: if we have two sections transversal
to the orbit of a singular point with Poisson brackets induced on them
and with dimensions equal to the codimension of the orbit, then there
exists a Poisson isomorphism of the manifold, defined between two
neighbourhoods of the intersections with the orbit, which will clearly
preserve the two transverse structures.

The aim of this paper is to show the geometrical description of
the coadjoint orbits on the dual of the Virasoro algebra as we move
transversally through them and to use this description to find an ex-
plicit transverse structure for its Lie-Poisson bracket. Descriptions
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and classifications of the coadjoint orbits have been given by different
authors (see [8], [9], [17], or [21]). The problem is closely related to
finding normal forms for HilΓs equations as we will see later.

In §2 we try to find a suitable transversal section in which we will
define our structure. This direction might have a role in this work. In
the case of the Virasoro algebra (a Frechet manifold) there are no re-
sults on uniqueness of transverse structures available to us, so that, in
principle, the transverse structure we get might not have been canon-
ically chosen. We will show that it is enough to describe a transverse
structure for constant potentials of the form p = \ , for all integers
n (these are analogous to singular points in finite dimensions). An
orbit that does not contain such a potential will automatically possess
a trivial transverse structure (potentials on these orbits are analogous
to finite dimensional regular points). A direction transversal to an
orbit which goes through a potential of the form /? = y is given by
a 3-dimensional submanifold which is isomorphic to sl(2, R). In §3
we find a transverse structure along that section and we show how,
although it is nonlinear, it can be linearized along the submanifold
and therefore it is equivalent to the standard Lie-Poisson structure on
sl(2, R)*. We also discuss how this fact does not imply a uniqueness
result. The definition of transverse structure is also revised, to make
it easier to adapt to the infinite dimensional case.

In the last section we provide an expression for the Taylor expan-
sion of the transverse structure in terms of the even moments corre-
sponding to a certain moment functional. This linear functional is
defined as follows: the symplectic structure on the intersection of the
coadjoint orbits with the transverse section can be, in some sense, rep-
resented by a Jacobi matrix. There exists a Jacobi fraction (continued
fraction) associated to such a matrix and its corresponding partial de-
nominators can be described as orthogonal polynomials with respect
to certain discrete measure. The linear functional we are looking for
is given by integrating against that measure.

Finally we show how the transverse structure can also be expressed
in terms of the Fourier coefficients of a periodic solution of a nonho-
mogeneous equation whose homogeneous part is given by the coad-
joint action of the algebra on its dual.

This paper is part of the author's Ph.D. thesis at the University of
Minnesota. The author wishes to express her gratitude to J. F. Conn
for introducing her to Poisson Geometry and infinite dimensional Lie
algebras and for sharing with her his ideas about the subject. She
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would also like to thank D. Stanton, S. Angenent and especially Peter
Olver. This work benefited very much from her talks with them.

Central extensions: The Virasoro algebra and the Lie-Poisson struc-
ture on its dual.

Let G be a Lie group, g its associated Lie algebra and g* the dual
space of g. We define the Chevalley - Eilenberg complex associated to
a representation (V, p) for g, as the chain complex given by

with the coboundaries defined as

Sι(a)(ξιAξ2) = p(ξι)a(ξ2) - P(ζ2)a(ξι) - a([ξ{, ξ2]),

S2(β)(ζl Λξ2Λξ3)=Σ P^x)β(ξa2 Λ ίσ3) + £ β{ζaχ Λ [ ^ , & J ) ,
σeA3 σeA3

and where £ i, ξ2, £3 E g, [ , ] is the Lie bracket in the algebra, and
A$ is the space of cyclic permutations of {1, 2, 3} .

In particular, if (K, p) = (R, 0), the conditions above become

S2(β)(ξι Λ ξ2 Λ ζ3) =

We will denote by H2(g, (V, p)) = H2(g, V) the second cohomol-
ogy group associated to the Chevalley-Eilenberg complex.

Given a nontrivial 2-cocycle c e H2(g, R), define the Lie algebra
go = g θ R with Lie bracket

go is called a central extension for g .
Let S 1 be the unit circle and G be the group of diffeomorphisms of

S 1 , diff(iS1), with the composition o as the operation of the group.
We can naturally identify g with the space of vector fields of the
circle, vect^ 1 ) (for more information about infinite dimensional Lie
algebras see [14] and [16]). The Lie bracket on g is given by the usual
commutator

and the adjoint action of the group is carried out through a simple
change of variables in the vector field, Ad(φ)(ξ(θ)jg) = {φ'ζ)°Φ~ljQ -



46 GLORIA MARI BEFFA

On the other hand, g* can be identified with the space of 2-tensors
on Sι acting as

lp{θ)dθ®dθ,ξ{θ)^Ξ\= I πp(θ)ξ(θ)dθ,
\ oV/ Jo

and the coadjoint action of the group is then given by Ad(φ)(p{θ) dθ2)
= -jL ° Φ~ι dθ2, which is the usual change of variable for 2-tensors.

It is known that H2(γect(Sι), R) = R and a generator is given by

/ft ft \ /»2ττ p27i

c is the so-called Gelfand-Fuks cocycle.
In the case when g = vect(5'1) and c is the Gelfand-Fuks cocycle,

the central extension g0 is called the Virasoro algebra.
c can be integrated to a cocycle in the group

B(9,Φ)= [
Jo

called BotVs cocycle. The group Go = diff(Sι) x R with operation

is the Lie group that has go as its corresponding Lie algebra. It is
called the Virasoro group. Finally, #Q can be viewed as

g* = {(p(θ) dθ2, s), p(θ) 2π-periodic function, s e R} = g* Θ R,

acting on go a s

where, for convenience, we have denoted p(θ) dθ ® dθ and
by p and ξ, as we will often do from now on.

Let <%* be an element of C°°(g*). Define the gradient of & to
be the element of g given by δpβ^(θ)jQ e g, where δpβ^(θ) is a
2π-periodic function such that

9e ε = 0

f2π

εh)= / h{θ)δp%?{θ)dθ,

for any 2π-ρeriodic function h.
This definition establishes a correspondence between elements of

C°°(g*) and elements of the Lie algebra. We can define the classical
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Lie-Poisson structure on g* as the one induced on g* by the Lie
bracket on g through the correspondence above, i.e.

for any %T, & e C°°(g*), and any a eg*.
If we denote by βf and & two elements of C°°{gl), their gra-

dients will have two partial components {δpβf, δtβ?). By definition,
the Lie-Poisson bracket on g£ is given by

= / π[δpβ?,δp&>]p(θ)dθ-
Jo

for all β?, 30 e C°°(go). Since the expression above does not depend
on the value of %? and & in the central direction, we can rewrite it
in the usual way

The KdV equation ut = 3uux - uxxx can be interpreted as a Hamil-
tonian system with respect to { , }o in the following sense:

Consider the evaluation operator 2# defined as 2f(p) — p(θ). That
is, 3f has Dirac's delta function as gradient (Dirac's delta function
does not give rise to a diίferentiable operator but it can be expressed
as a series of differential kernels, so we view it in such an approximate
way). If we consider the Hamiltonian operator β? defined as

= \ Γp2(θ)dθ,
2 Jo

it is straightforward to check that the KdV equation is equal to the
Hamiltonian system ut = {%*\ &}o(u), with central charge s = - 1
(for more information see [1], [2], [6] or [7]).

2. A transverse section to the orbits: Classification of Hill's equa-
tions. An explicit expression for the coadjoint action of the Virasoro
group on the dual of the Virasoro algebra can be found in Kirillov's
paper [8] and it is given by

(2.1) K*(φ)(p ,s)=[ τ^-1 o φ ι , s

where S(φ) denotes the Schwartz derivative of φ, S(φ) =
(φ'"φ' - \φia)jφa. One can obtain the coadjoint action of the Vi-
rasoro algebra on its dual by differentiating the expression (2.1)

(2.2) k*(ξ)(p, s) = (sC - 2pξf - p'ξ, 0).
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The central charge s remains invariant under the action, that is, g£
stratifies into a family of Poisson submanifolds with constant central
parameter. Each one of them is isomorphic to g* with Poisson struc-
ture given as in (1.1) and they are all geometrically equivalent, except
for the case s = 0. This is the usual change in the Poisson Geometry
of the dual of a Lie algebra, produced by a central extension. Let's fix
once and for all an adequate hyperplane inside g£ , namely s = - 1 .

Define the stabilizer of a point p to be the set of diffeomorphisms
of the circle that fix the point p under the coadjoint action, i.e.,

Stab(/?) = {φe diff{Sι) such that K*(φ)(p, -1) = (p, -1)} .

From (2.2) we deduce that the tangent of the stabilizer of p at the
identity element is given by the vector space

(2.3) Γid(Stab(/7))

= Iξjβ e vect(Sι) such that ζ"f + 2pξ'+p'ξ = θ | .

A classification of the stabilizers of potentials was given in [8], It was
shown there that the set of solutions of (2.3) has a structure of Lie
algebra which is isomorphic to sl(2, R), and that, furthermore, the
number of periodic solutions of (2.3) is either 1 or 3, i.e., Stab(p) is
either 1 or 3 dimensional. This dimension coincides with the codi-
mension of the coadjoint orbit.

Let g be a Lie algebra with Lie bracket [ , ] . If ad(£)(μ) = [ζ, μ]
is the usual adjoint action of the algebra, we define the Killing form of
g to be the bilinear form B(ξ, μ) = tr(ad£(adμ)), for any ζ, μ e g.

PROPOSITION 2.1. In the case of codimension 3, the coadjoint orbit

contains a point of the form ^- dθ2 for some integer n.

Proof. Assume that the codimension is three and let us consider
7]d(Stab(/?)) with its sl(2, Restructure. An expression for its Killing
form was given in [8] and it is equal to

We know that the Killing form of sl(2, R) takes positive, negative
and zero values; so does the Killing form of 7id(Stab(p)). If ξ is a
periodic function with simple zeros we obtain

ξξw+pξ2-^ξa = ~ξl2<0.
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If ξ has double zeros then I(ζ) = 0, so that I{ξ) > 0 implies that ζ
never vanishes.

For such a nonvanishing vector field ξ e 7id(Stab(/?)) choose φ to
be equal to

A dθ,φ(θ) = I
Jo

A = constant chosen so that φ(2π) = 2π.
It is immediate that Kά(φ)(ξ) = {φ'ζ)°φ~x = A (remember that we

denote by Ad(^) the coadjoint action of dit^S 1 )). It is straightfor-
ward to check that the constant A should be a solution of the equation
μ!" + 2K*(φ)(p)μf + [K*(φ)(p)]'μ = 0, and therefore K*(φ)(p) = px

is also constant. Since the number of periodic solutions of (2.3) is
preserved along the orbit, the equation μm + 2p\μ' = 0 must have
three independent periodic solutions. The only choice is p\ = \ for
some integer n and we are done. D

This last result entitles us to restrict the problem of finding a trans-

verse structure to the case p = \: if the orbit does not go through

Y for some n, the transverse section would be 1-dimensional and

the transverse structure trivial. In fact, the codimension of the or-

bit is constant around a point different from p = \ , and therefore

we can refer to them as regular potentials. Furthermore, if Or(/?)

goes through y for some n we can immediately obtain a transverse

structure at p translating from \ to p using the coadjoint action.

When p = \ , three independent solutions for equation (2.3) are
ζ\ = cos(n0), £2 = ύn{nθ), £3 = constant. Consider the linear
section

(2.4) Qn = \ (γ + acos(nθ) + bsin(nθ) + c)dθ2,

α, b, c e R , \c\, \a\, \b\ < δ \

for some fixed integer n and some small δ that we will fix later on.

PROPOSITION 2.2. Qn is transversal to the orbit of ^ at ^ .

Proof. Denote the orbit through p by Or(p) and define the anni-
hilator of Γid(Or(/?)) as the subset of g0 given by

Άά{Oτ{p))L = {ξeg0 such that (ξ, k*[y){p)) = 0 for all v e go}.
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It is easy to see that T^O^p))1 = kernel of k*(p), since

Jsι

Besides, the pairing

is nondegenerate, so that Qn has to necessarily be transversal to

Since the Virasoro algebra is a Frechet manifold, there are no gen-
eral inverse function theorems we could apply at this point to deduce
straightforwardly that Qn intersects all nearby orbits. This is an im-
portant condition on Qn if we wish to describe the Poisson structure
around \ . To avoid this problem we need a description of the in-
variants of the coadjoint orbits to later check that they are all locally
reached along Qn . The classification of the orbits has been studied
by several authors. Kirillov gave a classification of the stabilizers in
his paper [8]. Lazutkin and Pankratova provided a partial description
in [9]. Later on, Segal [17] pointed out a discrete invariant that was
missing in [9] and gave the complete set of invariants which we are
going to describe next.

First of all, we can identify g£ with the space of Hill's operators
associating to a tensor pdθ2 the equation

(2.5) £" + | £ = o.

If ^ is a solution of (2.5), it is straightforward to prove that its
Liouville-Green transform, μ = [(φ')ι^2ξ] o φ~ι, is a solution of

Moreover, this is the only transform which preserves Hill's equations.
In that sense we will view our manifold as the manifold of Hill's op-
erators and the coadjoint action as a change of variable in the corre-
sponding equation. Using this interpretation it is immediate to check
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that, if Fp is the Floquet matrix or monodromy associated to (2.5),
then RFpR~ι is the monodromy associated to (2.6) where

o λ
/1/2)(2*)eSL(2,R).

That is, the SL(2, R)-conjugation class of the monodromy matrix is
preserved along the coadjoint orbit. This is one of the invariants of
the orbit, in fact the only one that changes continuously. There exists
a second invariant which we can describe in the following way:

Consider u: R —• R2\{0} to be an immersion given by two inde-
pendent solutions of (2.5); we can assume that M(0) = (1,0) and
w'(0) = (0,1) . Let ύ: R -+ Sι be its radial projection and let np be
the number of complete turns that u makes in a period. np is an-
other invariant of the orbit, called a discrete invariant since it does not
change continuously (again we can easily check that np is invariant
using a Liouville-Green's transformation).

THEOREM 2.1. Let u\ and Uι be two orientation-preserving immer-
sions given as above by the solutions of two equations ζ" + ̂ ξ = 0 and
ζ" + %ζ = 0, respectively. If nPχ = nPi = m and FPχ = RFPiR~l for
some R e SL(2, R), then p\ is in the same orbit as p^ . That is, up to
a Liouville-Green transformation, each Hill's equation corresponds to
a different conjugacy class of the universal covering space of SL(2, R)
under the SL(2, R)-action.

Proof. 1st case. Assume that Fp = FPi= F.
Then U\ and ύι make the same number of turns in a period and

ύ\(2π) = #2(2π). Divide the interval [0, 2π] into several subintervals
[0, θχ]9 . . . , [θi9 ΘM], . . . , [0 w _i, θm], [θm, 2π], such that ύx cov-
ers a complete turn on Sλ at each subinterval, except for [θm, 2π].
Repeat the subdivision for #2- Then φ = ύ^ι o U\ is smooth and
well defined if we map each one of the ύ\-subintervals diίfeomorphi-
cally into the corresponding ά2-subinterval, that is, following in the
mapping a natural order.

Because of the condition FPχ = FPi = F, we get that φ(θ + 2π) =
φ(θ) + 2π, and therefore φ is a diffeomorphism of the circle with
u2 o φ = u\.

Finally, since ύs(θ) is the radial projection of us(0), s — 1,2,
we obtain that u\(θ) = f(θ)(ti2oφ)9 for some diίferentiable and
real-valued function / . Both u\ and Uι were given by solutions
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of HilΓs equations. Through a straight substitution in the equations
one can check that this condition imposes a unique possible choice,
/ = φ'-χl2 . Therefore, p\ = K*(φ)p2 and this case is proved.

2nd case.

FP2=RFPιR~ι.

We know that

(2.7) ύi(θ + 2π) = (FpuiΓ(θ), / = 1 , 2 .

Therefore

(R-ιu2Γ(θ + In) = (FpR-ιu2Γ(θ).

Denote the image of u as subset of R2 by Im(w). It is not hard
to check that R can be chosen so that Im(fii) and Im(R~ιU2)~
intersect at some point. In fact, we could use above -R instead
of R if they do not intersect (the sets Im(fii) Π Im(i?~1W2)^ and
Im(#i) Π Im(-i?~1W2)^ cannot be simultaneously void). By transla-
tion in the argument, we can make the initial values coincide. R~ιu2

and any translation of it is given by solutions of the same Hill's equa-
tion as u2. We can now obtain this case as a corollary of the previous
one. D

PROPOSITION 2.3. The space of Hill's equations, up to Green-Liou-
ville's transformations, is in one-to-one correspondence with the space
of SL(2, R) conjugation classes of the Universal covering space of
SL(2, R), with the point (Identity, n = 0) removed.

Proof. First of all notice that if a matrix M e SL(2, R) has two
different eigenvalues (that is, | trace(Af )| > 2), then its GL(2, R) and
SL(2, R) conjugation classes coincide. If trace(M) = ± 2 , then the
two different SL(2, R)-Jordan forms are ± ( * j) a n d ± ( J ~ | ) , and
if |trace(Af)| < 2, then both eigenvalues are imaginary and there
are also two different SL(2, R)-Jordan forms, namely ±(_£ b

a) and

± ( g - * ) , α , a > o .
Next, consider the potential

and consider its associated Hill's equation ζ" +pa βξ = 0. A funda-
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- ξ"+ pίl ξ=0

FIGURE 1

mental matrix of solutions for it is given by X = XiX\ where

χ _ ( cos(aθ0) isin(α6Ό)λ
1 \ —a sin(α^o) cos(α#o) / '

/ cosh(£(2π - θ0)) j sinh(£(2π - θ0)) \
V^sinh(^(2τr - θ0)) cosh(yS(2π - θ0)) ) P ψ '2 \β

2π -

The rotation number (in the above sense) of this equation is aθo/2π
plus an angle ωo with tan(ωo) < i and which is, in any case, less
than §. Next, we will show that, for different values of a, β and
ΘQ we obtain all possible SL(2, R)-Jordan forms, with all possible
rotation numbers, except for the case of no complete turns (rotation
number 0) and monodromy equals the identity.

If θ0 = 2π, then

y I ^*K27ta) - sin(2ττα:)

~" \-o:sin(2πα) cos(2πα)

We can therefore cover the four possible Jordan forms correspond-
ing to complex conjugated eigenvalues by choosing different values of
a from the intervals [0, | ] , [|, j ] , [\, | ] and [|, 2], respectively.
Considering values ma with m being an integer m > 1, we would
obtain the same Jordan forms but the rotation number would be m-1.
The identity matrix is reached here whenever a is a nonzero whole
number. It is never reached for rotation number equals zero, since
the solution curve is in this case periodic and it should, at least, give
a complete turn around Sι.
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If 0O = π and a = 2, 4, . . . , then trace(X) = e2πP + e~2πP > 2.
Changing the values of β and a we will reach all possible values of
the trace and all rotation numbers. If #o = π a n d α = l , 3 , 5 , . . . ,
then trace(X) = -(e2πβ + e~2πβ) < - 2 and the same result holds.

Therefore, we are left with the classes which have Jordan forms
± ( J ί ) and ± ( o ~ { ) . If θ0 = α> α = 0, 2, 4, . . . and β = 0, we
obtain the classes with Jordan form (* }) (and - ( Q }) f°Γ the choices
α = l , 3 , 5 , . . . ) and all different rotation numbers.

Finally, consider 0O = § and a = 3, 7, . . . . Then,

/cosh(Y) }sinh(Y)\ /0 - I
V ^ i ( Y ) co3h(ψ))\« O

has a double eigenvalue whenever (f - ^ ) 2 s i n h 2 ( ^ ) = 4. Its eigen-

values would be ±1 = ±j(y - £) s i n h ( ^ ) depending on the sign of

(y - f) s i n h ( ^ ) . In this case, X will have Jordan form ±( J "}).

On the other hand,

lim (SL - I) sinh [ ^ 1 = ^ > 2

lim ( — - — ] sinh ( :

J-H-OO \β a) \

\ 2
and

From here it is obvious that this last case is also covered.
If we approximate paj by C°° periodic functions we will imme-

diately obtain the claim of the proposition. D

Using this geometrical description it is easy to prove the following
theorem.

THEOREM 2.2. The transverse section Qn (see (2.4)) intersects all

orbits nearby the one going through the potential \ dθ2.

Proof. It suffices to prove that the map Qn —> SL(2, R), which as-
sociates to each potential the monodromy of equation (2.5), is locally
surjective. If we expand the monodromy as a function of (α, b, c)
we obtain

Fp = Identity + π < ί j _ (

+ higher order terms,

which has maximal rank.
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f = 0

FIGURE 2

Assume that p = \ + c + a cos(nθ) + b sin(nθ) e Qn . We can also
calculate the Taylor expansion of A(p) in a, b and c up to second
order (see [10]). We are required to solve two ordinary second order
differential equations for each Taylor coefficient we want to find.

After some long calculations one gets

+ higher order terms in (a, b, c).

Let us have a closer look to the real function f(x, y, z) = x2+y2-z2.
Its level sets are given as in Figure 2. Recall that / is a nontrivial
Casimir element for the Lie-Poisson bracket of si (2, R)*.

Recall also that A(p) is constant along each orbit, in particular along
each intersection of the orbit with Qn . If there exists a transverse
structure for (go, { , }o) o n Qn , say { , }Q , one expects the Kirillov
leaves of { , }Q to be such an intersection. Since a function that is
constant along the symplectic leaves is a Casimir function, A(p) would
be a Casimir for { , }Q. Therefore, we can make a guess and claim
that (Qn, { , }Q) is locally isomorphic to sl(2, R)* with its canonical
Lie-Poisson structure. This is actually one of the main results in the
next section.

Theorem 2.2 partially proves a claim by Lazutkin and Pankratova
about normal forms of Hill's equations. In their paper ([9]) they claim
that any Hill's equation has normal form ξ"+(d+e cos(nθ))ξ = 0, for
some real numbers d and e. This normal form can be achieved under
a Liouville-Green transformation. From Theorem 2.2 any potential p
can be taken to the intersection of the leaf with Qn using the coadjoint
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action, as far as it belongs to an orbit close enough to Or(^-), for some
integer n. Besides c + a cos(nθ) + b sin(n0) = c + β cos(nθ + a) for
some α, β e R. The result follows. The methods used on ([9]) are
different from the ones in this paper.

3. A transverse structure for g£, { , }o.

3.1. Induced Poisson structures: Transverse structures and Dirac for-
malism. Transverse structures in infinite dimensions. In the finite di-
mensional case, transverse structures were introduced by A. Weinstein
[20] and they were proved to be unique. Some results have already
been proved in the infinite dimensional case, whenever the manifold
is modelled by a Hubert or Banach space (see [11]). That is not our
case either since vect^ 1) is a Frechet manifold (it is not only that the
Fourier series of an element has to converge, but all the series of its
derivatives). Therefore, we now encounter one of the obstacles in this
work: it is not clear how to induce a Poisson structure in this kind of
space.

The idea we will follow is to imitate the finite dimensional proce-
dure, covering any gap we find in some appropriate way. In particular,
we will find the analogue of Dirac's formula for transverse structures
in finite dimensions and we will check that it actually defines a Pois-
son structure on Qn which is induced by the Lie-Poisson structure
of the Virasoro algebra (for more information about induced Poisson
structures see for example [12], [18], or [13], or [20]).

DEFINITION. Let Lp = Qn nθr(/?). Assume (1) { , }o induces a
nondegenerate (symplectic) structure on Lp, for all p eQn.

(2) There exists a smooth (resp. analytic) Poisson structure on Qn ,
{ , }Q , that induces the same structure as { , }o on Lp .

{ , }Q is called a smooth (resp. analytic) transverse structure for
(SoΛ > }o) in the direction of Qn .

THEOREM 3.1 [20] (Induced Poisson structures in finite dimensions).
Let M be a finite dimensional Poisson manifold with Poisson tensor
P. Let Q be an immersed submanifold of M. Assume that, for all
xeQ,

(a) P(x)(Tx(Q)±)nTx(Q) =

(b) Ker(P(x))nTx(Q)± = 0.

Then Q canonically inherits a Poisson structure from M, which we
will denote by PQ .
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We will make some comments on how the induced Poisson structure
is found.

Using (a) and (b) it is not hard to show that

Tx(M) = Tx(Q)®P(x)(Tx(Q)±)

which provides itself a smooth projection π: TX(M) -> TX(Q) when-
ever x e Q. The induced Poisson structure is then defined as

In other words, given a Hamiltonian function a G TX{Q)* we
can find an extension of it, π*(α) = ά G TX(M)*. The vector field
P(x)(ά) G TX(M) has a component on TX(Q). Such a component is
the value of PQ{X)(OL) , and it is found taking away from P(x)(ά) a
linear combination of elements in P(x)(Tx(Q)±).

In local coordinates the idea is as follows:
Let {z\, . . . , z2s} be independent defining functions for Q near

x. That is, Q = {x e M: zx(x) = z2(x) = ••• = zls(x) = 0 } .
Denote by C(y) = {Cij{y)) the matrix Ctj(y) = {z;, zj){y)9 with
/, j = 1, . . . , 2s and y G Q. This matrix has smooth (resp. analytic)
entries and it is nonsingular. Let C~ι(y) = (Cij(y)) be its inverse
matrix, which also has smooth (resp. analytic) entries. Let / be a
smooth function on Q and / be any extension of / to ¥ . Due
to the invertibility of C one can easily show that there exist unique
smooth functions {gi(y)}jίι defined on a neighbourhood of x such
that, if

2s

then PQ(f)(y) G Ty(Q) for all y e Q in a neighbourhood of x.
Imposing the tangency condition on PQ{/) we can uniquely solve for
gi in terms of the entries of C~ι.

The final expression for PQ is

2s

(3.1) {/, g}Q(y) = {/, g}(y) 4- £ { / , z/}(y)C^'(y){z7 , g}(y),

for all y G Q around x. This formula is referred as Dirac's formula
for induced structures.

PQ immediately induces a structure on Q whose symplectic leaves
coincide with the intersection of Q and the symplectic leaves of P.
Notice that, in order to find an expression for PQ , we need not only
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nondegeneracy of the bracket along the coadjoint orbits but also to
invert it locally.

PROPOSITION 3.1. For δ small enough, { , }Q(P) is nondegenerate
{symplectic) on Tp{Qn)

L, for all p e Qn, and locally invertible when
considered as a linear operator from I2 to I2 (δ as in (2.4)). Coor-
dinates can be chosen such that { , }o and its inverse are represented
by infinite matrices with analytic entries.

Proof. Consider Fourier coefficients as coordinates for the dual of
the Virasoro algebra, εm: g£ —• R defined as

1 ί2π

em(p) = — / eimθp(θ) dθ, for any integer m,
2π Jo

Qn is locally defined as the zero set of {εm}mφ±n^.
In order to prove the proposition, we need to check that the lin-

ear operator C: I2 —> I2, represented by the infinite matrix C(p) =
({εm, ekh(p))m,kϊ±n,o>is invertible for any peQn.

Assume that p = \ + c + acos(nθ) + bsin(nθ) G QW) so that

*o(p) = τ + c> *n(P) = j(a + bi), e-n(p) = \(a-bi) (i2 = -1).
Straightforwardly, one can show that

(3.2) {ε_k, εk}0(p) = ^

(2Λ: - ft)

{£m, βfc}o(p) = 0, otherwise.

To invert the matrix above is equivalent to solve for {ym}t^-oo
the system

(3.3)

for all k, and for some B = {b^} given. Let us assume that {%} and
are elements of I2. We can rescale so that system (3.3) becomes

(3.4) γ-kk(2e0(p) - k2) + γ-{n+k)(2k + n)ε-n(p)

+ γn-k(2k - ή)εn{p) = bk,

for any integer k.



TRANSVERSE STRUCTURE 59

Observe that the system (3.4) can be divided into a finite number
of autonomous subsystems. Each one of them involves only the y's
whose subindices belong either to the set {k = sn + r, s = 1,2, ...}
for a fixed integer r φ 0, -n < r < n or to the set {k = In,
s = 2, 3 , . . . } . There are a finite number of subsystems so that it is
enough to prove that each one can be solved in I2. The reasoning is
the same for any one of them. We will prove it here only for the system
given by the subindices {k = sn, s = 2, 3, ...} . For simplicity call
γ_sn = γs since no confusion is possible from now on.

We can rewrite the system to solve as A(p)γ = b, where A(p) is
given by the infinite tridiagonal matrix (Jacobi matrix)

(s - l)(2εQ(p) - [[s - \]nf) [2s - l ] ε _ » 0

[25 - l ] ε » s(2εo(p) - [sn]2) [2s + \]ε_n(p)

0 [2s + l]εn(p) (s + l)(2eo(p) - [[s + l]n]2)

Observe that A{\) is a diagonal matrix with nonvanishing diago-

nal entries. Therefore, A(*γ) is an invertible matrix and its inverse

is a diagonal matrix with diagonal entries 2_
1 ^ , s = 2, 3, . . . .

Although A(γ) does not take I2 into I2, its inverse does.
Observe also that, if we define the matrix D(p) through the relation

A(p) = A{\) + D(p), to solve the system A(p)γ = b is equivalent to
solve for γ in

where ^(^-)~ 1 is the inverse matrix of A{\). The matrix
is given by the tridiagonal matrix

: : \
(s-\)(2ε^p)-[[s-\]nf) [2s-l]ε_n(p) Q

(\-{s-\)2)(s-l)n2 (l-(s-\)2)(s-\)n2

[2j-l]g» s(2£()(p)-[sn]2) [2s+l]ε_n(p)
s(l-s2)n2 s(l-s2)n2 s(l-s2)n2

[s+l](2εo(p)-[[s+l]n]2)

: i \ l
The infinite dimensional operator A{\)~lD{p): I1 —• I2 repre-

sented by this matrix is clearly bounded with norm bounded by |<5|
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(δ as in (2.4)). We can apply standard theorems on invertibility of
linear operators on Hubert spaces that are perturbations of the iden-
tity to obtain that, for δ small enough, the matrix / + A(γ)~ιD(p)
is invertible, for any p e Qn .

The matrix / + A(γ)D(p) has analytic entries in βo > £n and ε_π .

Therefore, A(p)~ι = [/ + A{\)~xD{p)]-χA{\)~1 also has analytic

entries and the result of the proposition is now proved. D

Denote by (ClJ(p)) = C~ι the inverse matrix of C as in Proposi-
tion 3.1.

LEMMA 3.1. Let p = (α, b, c) = (eo(p), εn(p), ε-n(p)) e Qn, and
let C~2n2n(p) be the entry in place {-In, 2ή) of C " 1 .

Then, ^[C~2n2n is a real analytic function of (εo(p), (εn(p)ε-n(p))).
That is, it depends only on c and the ratio a2 + b2.

Proof. This lemma is a corollary of §3.2, Theorem 3.7, in which we
give an explicit Taylor expansion for it. A shorter proof can be given
but we will avoid it. D

THEOREM 3.2. A transverse structure for the dual of the Virasoro
algebra at the point \ dθ2 is given locally by an antisymmetric tensor,
{ , }Q, defined as

n , x

? ε-n}Q(p) =

1 Γ C~2n2n(n)l

{en , e-n}Q(p) = ̂ 7 [-2/ιβo(p) + n3 - 9n2εn(p)ε-n(pΓ 2 π z j .

The structure is analytic in {εo, εn, β_w}, linearizable and equivalent
to the Lie-Poisson structure on sl(2, R)*.

Proof. Notice that we are actually copying the formula in coordi-
nates given by Theorem 3.1. Define { , }Q as

, βj}o(p).

Applying commutation relations (3.2), the formula above gives the
expression in the statement of the theorem. This expression is found
following formally the finite dimensional reasoning in Theorem 3.1.
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On the other hand, since this is only a formal approach we will have
to check straightforwardly that PQ defines a Poisson structure on Qn

and that the intersections of Qn with the symplectic leaves are sym-
plectic with respect to both structures. Notice also that (a) and (b) on
Theorem 3.1 are also true here due to the nondegeneracy of { , }o
along the leaves. Nevertheless, one cannot get the splitting of the tan-
gent space into a direct sum as it happened in the finite dimensional
case.

Leibniz's rule is obvious from the definition. To check Jacobi's
identity for { , }Q reduces to prove that

(3.5) {ε0, {en , £-«}β} + iεn , {fi-Λ , eo}Q}

+ {β-n, {to, ZnJQJQ = 0,

on Qn . Substituting we reduce (3.5) to

(3.6) {e0AtnS-n)C-2n2n}Q(P) = 0.

As a result of Lemma 3.1, (εnβ-n)C~2n2n restricted to Qn is ac-
tually a function of the ratio {εn(p)ε-n(p)). Applying Leibniz's rule
and the definition of { , }Q one gets that εo commutes with the ratio
along <2, and therefore (3.6) holds.

The last part is to check that P is symplectic on the intersections
of Qn with the symplectic leaves, Lp. As it happened in the finite
dimensional case, that is a consequence of property (a) in Theorem
3.1, since the intersection P(p)(Tp(Qn)

±) n Tp(Qn) is equal to the
kernel of P along Lp , and in this case it vanishes.

Finally, we apply the following result by J. Conn [4] (see [5] for the
smooth case): if a Lie algebra g is semisimple (as sl(2, R) is), then
any analytic Poisson structure on g*, which is a perturbation of the
Lie-Poisson structure by a tensor of order at least 2 that vanishes at
the origin, is linearizable.

It is now obvious that PQ is linearizable and equivalent to the Lie-
Poisson structure on sl(2, R)*. D

One comment on the linearization. Notice that by being linearizable
we mean linearizable as structure on Qn, not as a structure induced
by #Q . That is, this result does not imply that a canonical transverse
structure for the Lie-Poisson structure on the dual of the Virasoro
algebra is the Lie-Poisson structure on sl(2, R)*, since no uniqueness
result has been proved yet. What the result really means is that we can
find coordinates (only) on Qn such that { , }Q on those coordinates
is linear. In order to prove uniqueness we would need to extend that
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change of coordinates to gfi obtaining in this way an automorphism
of the Lie-Poisson structure on g£. We will comment more about
uniqueness at the end of the section.

3.2. The explicit expression for { , }Q . In this section we will
give an explicit expression for the Taylor expansion of the function
C-2n2n(p).

Recall that our function is the entry in place (~2n, 2ή) of the
matrix (Ckm(p)), inverse of (Ckm(p)) = ({εk, εm}o(p))k,mί±n,o If
again we set the system of equations Cγ = em > where γ = {γk} and
e2n is a vector that has all its components equal to zero except for 1
in place In, then γ_2n = C~2n2n(p) . Again, if for simplicity we write
γk instead of γ__nk, we get the recurrence relation

(3.7) k(2ε0 - (kn)2)γk + (2k - l)enyk-i + (2k + l)ε-nyk+i = 0,

for any k > 2, and

where β = ψ .

P R O P O S I T I O N 3.2. For any k>2,

Fk(εnε-n, εo)γ2 = Hk(εnε-n, εo)β - δkγk

where Fk 9 Hk satisfy the recurrence relation

(1) GM = XGk - k { k m k n ) 2 γ M k __ ι)n)2 _ Y)

Gk-i ^

with

* (2k-\)ε-nX

and initial conditions

1
* i = 0 , F2=\, H2 = 0, H3 =

OT, = —

Proof. The proof of this proposition is by induction on k. D

The solutions of the recurrence relation (1) can be interpreted as
orthogonal polynomials in X as we will show next.
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A. Jacobί fractions and orthogonal polynomials: Definitions and
some results.

DEFINITIONS, (a) Let {an} and {bn} be arbitrary sequences of
complex numbers and write

Co = bo, C\ = bo + T-, C2 = b0 +

n = O0 + jf- .

1 h+
''-(an/bn)

Cn is called the nth approximant of the continued fraction associated
to the sequences {an}, {bn} . We will denote Cn as

(b) A continued fraction of the form

\x -cx \x- c2 \x - cι

is called a Jacobί type continued fraction {J-fraction).

(c) If C is a continued fraction and Cn = An/Bn, then An and
Bn are called nth partial numerator and nth partial denominator,
respectively.

Note. If An and Bn are the partial numerators and denominators
for a /-fraction

A l λ \
\x -cx \x- cn

it is very simple to prove that they satisfy the recurrence relations

Bn{x) = {x - cn)Bn-X{x) - λnBn-2{x), / ι = 1, 2 , 3 , . . . ,

B_1(x) = 0, Bo(x) = \,

An{x) = (x- cn)An_ι(x) - λttAn-2(x), n = l,2, ... ,

A.1(x) = l, A0(x) = 0.

Notice the similarities between these expressions and the recurrence
problem (1).

(d) Let {μn} be a sequence of complex numbers and let J ? be
a complex-valued linear function defined on the vector space of all
polynomials by the rule

n) = μn, n = 0, 1 , 2 , . . . .
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Jz? is called moment functional determined by the formal moment
sequence {μn}. μn is called the moment of order n.

(e) A moment functional £? is called positive-definite if <S?(π{x)) >
0 for every polynomial π(x) that is not identically zero and is non-
negative for all real x.

(f) Let Jϊ? be a moment functional with moment sequence {μn}.
Define

We will say that £f is quasi-definite whenever An Φ 0 for all 0 < n.
(g) A sequence {Pn(x)} is called an Orthogonal Polynomial Se-

quence (OPS) with respect to a moment functional 3* provided that,
for all nonnegative integers m and n

(i) Pn(x) is a polynomial of degree n,
(ii) ^ ( P m ( x ) P n ( x ) ) = 0 for all m φ n,

(iii)

It is not hard to notice that OPS are uniquely determined up to the
product by a nonvanishing constant. The next theorem shows how
partial denominators for a /-fraction can be interpreted as OPS with
respect to a certain moment functional.

FAVARD'S THEOREM. Let {cn} and {λn} be arbitrary sequences of
complex numbers and let {Pn(x)} be defined by the recurrence formula

(3.8) Pn{x) = (x -

Then, there is a unique moment functional £? such that

J5?(l) = λι, 5?(Pm(x)Pn(x)) = 0

for m φ n y m , n = 0 , 1 , 2 , . . . .

3? is quasi-definite and {Pn(x)} are the corresponding monic OPS
if and only if λn Φ 0, while S* is positive-definite if and only if cn are
real and λn>0 (n > 1).

Consider the OPS {Pn{x)} with recurrence formula as in Favard's
theorem, and define Pnl\x) to be a monic polynomial of degree n
which satisfies the recurrence

^ ^ \ ^ π = 1, 2, 3, . . . ,
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The polynomials Phι\x) are called the monίc numerator polynomials
(or associated polynomials) corresponding to Pn(x).

It is now clear to us that partial denominators and numerators of a
/-fraction, Bk and Ak+{, are respectively OPS and associated poly-
nomials with respect to a certain moment functional that is a positive-
definite if and only if the partial fractions have all real coefficients and
the numerators λk are all positive. Observe that Ak are not actually
monic unless λ\ = 1. To be correct, the associated polynomials are
λ\ιAk+x, 0<k.

DEFINITION. A moment functional is called symmetric if all of its
moments of odd order are zero. This is equivalent to cn = 0, n>\,
in the corresponding recurrence formula.

We can easily recognize the recurrence in problem (1) as corre-
sponding to a symmetric problem, a fact that will be crucial for our
final result.

Next we will give some definitions and quote without proof some of
the results in the theory of OPS, Jacobi fractions and representation
theory that will be more relevant in the resolution of our problem.

THEOREM 3.3. Let <S? be a positive-definite moment functional and

let μo = oS^l). Let ψn be defined as

{ 0 ifx < xnλ,

Λn\ + - + Anp ifxnp <x <xn,p+ι (1 <P <n),

μo if* > *nn ,
where xn\ < xn2 < < xnn are the zeros of Pn{x) (OPS correspond-
ing to Jϊ?), and An\, . . . , Ann are positive numbers given by the Gauss
quadrature formula

= μk = Y^Anix
k

ni, k = 0 , 1 , ... , In - 1 .
ι = l

Then there is a subsequence in {ψn} that converges on (—oo, +oo) to
a distribution function ψ which has an infinite spectrum and such that

r+oor+oo

k)= / xkdψ(x).

ψ is called a natural representative of J ? .
From now on we will consider S* to be positive-definite, and the

associated data {xnm} , {Anm}, {μn}, μ, μn defined as in the The-
orem 3.3.
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THEOREM 3.4. Let Pn{x) and λ\PnX\x) be the partial denominators
and numerators of a J-fraction as above, with cn real numbers and
λn > 0, n > 1. Let S? be their associated moment functional Then
we have that

& Ank

nk Λoo X-t

Moreover, A^ can be expressed as

From Theorems 3.3 and 3.4 one can deduce the main result we will
use later on, namely

COROLLARY 3.1. In the conditions and notations of Theorems 5.2
and 5.3, there exists a subsequence {ψn } in {ψn} such that

nAX) J-o

_ ^ - * _ / dψ(t)
11Π1

whenever x is not in the closure of the spectrum of ψ.

Next we will give a result describing the spectrum of distributions
corresponding to symmetric problems. For broader information see
Chihara [3] or Szegό [18]. Our notation and most of the results are
stated as in Chihara's book.

THEOREM 3.5. If a system is symmetric and \mιn-^+00λn = 0 the
set of limit points of the spectrum of ψ reduces to 0, and therefore
the measure associated to J ? is discrete with 0 as the only possible
accumulation point.

Finally, we will quote a theorem that will be useful to actually com-
pute the coefficients of a Taylor expansion for C~~2n2n(ε).

THEOREM 3.6. With reference to the recurrence formula (3.9) the
following are valid for n>\:

(a) Jΐ?(P%(x)) = λ\λ2 λn+χ, provided that we define λγ = μ0.
(b) Jΐ?(π(x)Pn(x)) = 0 for any polynomial π(x) of degree m <n,

while &{π{x)Pn{x)) φθ ifm = n.
(c) Ϊ
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Now we are in condition to find a Taylor expansion for C~2n2n(ε).

B. Taylor expansion for C~2n2n(e). Recall the recurrence problem

(1)

(2k - l ) 2

with initial conditions

. , - . , . , - . , . . , - . , ~>- 2{γ_(2n)2)

We can now assert that Fk+2(X), k > - 1 , as in Proposition 3.2,
are the set of monic orthogonal polynomials with respect to certain
measure dψγ(X) and λ^xHk+2 the associated polynomials.

We also know that the associated moment functional is symmetric
(since cn = 0 in the recurrence). On the other hand

, = (2/c-l) 2 „
k+x k(k - \){(kn)2 - Y)(((k - \)n)2 - Y)

whenever k —> +oo,

so we can apply Theorem 3.5 to deduce that the measure associated
to these orthogonal polynomials is absolutely discrete with zero as
the only limit point of the spectrum of the natural representative ψ.
Summarizing, one gets that, if we denote by S^(ψ) the spectrum of
Ψ,

S(ψ) = {zk, -zk, k > 0\zk —• 0 as k -• +00}

and {am} are the weights of the corresponding measure, then 3? is
defined as

zZam, m>0.
k=0

Next, notice that Favard's theorem actually obtains a whole family
of moment functionals associated to a fixed set of polynomials, one for
each choice of λ\, ({Pn(x)} are independent of λ\ given the initial
condition P-\(x) = 0). Due to the shift in the indices that we have,
fix the value

2 1
3

so that the pair (Hk, Fk) can be viewed as the fcth partial numerator
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and denominator of the continued /-fraction

Jx'W'W""'
Therefore, λ^ιHkJr2 are the associated polynomials with respect to
problem (1). Now we can easily obtain a first expression for C~2n2n(ε).

If we apply Corollary 3.1 we obtain

Hk{X) C-2n2«(ε) f+™ dψ(t)

Fk(x) β

- Γ T ^ + Σ J T ^ . AΓ-(..«..)..
m=0 m=0

Observe that am and z m depend on 7 = 2εo for all m.
We do not have much information about either the weights of the

measure or the zeros of the polynomials. Even though this expression
does not seem to be easy to compute we will give another expansion
with coefficients that can be found following an easy algorithm.

MAIN THEOREM 3.7.

k=\

where μ^ are the moments corresponding to 3*. Moreover, there exists
an algorithm to obtain the moments up to any desired order.

Proof. Applying the result of Theorem 3.4 one gets

k k

A Hk(xkm)
Fk{X) ^ ^

where Akm and xkm are analogous to the ones in Theorem 3.4. If
we Taylor-expand the expressions as a function of ^ we obtain

Substituting above

k
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On the other hand, if ψ^ is given as in Theorem 3.3, Jz% is the
associated functional and μf is the corresponding 1-moment, then

k

μf = £jc(xl) = ] Γ Akmx!

km ,
m=3

and therefore

A priori we know that the sequence converges to an analytic function
on εn , E-n , εo ί therefore, we can take limits without any problem
and deduce the result of the theorem. Notice that ^f is symmetric
and that property implies μ2k+\ = 0 for /: > 0. That is the reason to
have only even powers of X = l/(εnε-n)

1/2 in the series above.
To finish with the proof of the theorem, we will give the algorithm

to find the moments, avoiding the inconvenience of not having infor-
mation about the explicit form of dψy.

From Theorem 3.6(a), we can deduce
r+oo i

i

r

L
+oo

2(Y-(2nψ) •

12(Y - (2nψ)(Y - (3nψ)'
In order to find μ4, notice that F4 = XF$ - λ4F2 = X2 - λ4, so

X2 = F4+λ4 and therefore X4 = F} +λ\ + 2λ4F4. Applying Theorem
3.6(b), we get zero when integrating the last term of the sum, so that

/»+oo z +oo /*+oo

μ4= X4 dψγ(X) = / Fi (X) dψγ(X) + λj dψγ(X)
J — OO J — OO J— CXD

= A3A4A5 + λjμQ.

In this way we can always obtain μ2k in terms of μ2/, / < k,
and the integral of the square of Pk(X) which value we know from
Theorem 3.6(a). Repeating this process we can give the expression
for moments up to any order we wish. This algorithm is not very fast
since it requires us to solve for the orthogonal polynomials in the first
place. For example, we obtain

μ6 = λiλ4λ5λ6 + (λ4 + λ5)
2λ2,

μ8 = λ3λ4λ5λ6λΊ + (λ4 + λ5+ λβ)
2μ4

- 2λ4λ6(λ4 + λ5 + λ6)μ2

D



70 GLORIA MARί BEFFA

The author has a faster algorithm and a short computer program to
calculate the moments. It involves Favard's path's theory (see Vien-
not's notes [19]), but we will not give further details in this paper.

Notice that, with very few adjustments, we can follow the exact
same reasoning to find a Taylor expansion for any entry of the inverse
matrix C~ι. That is, this is a general technique to find entries for the
inverse of an infinite Jacobi matrix.

C. Another interpretation for a transverse structure. Let us look at the
function C~2n2n(p) from another point of view. The next theorem
will show us how to express transverse structures in terms of the solu-
tions of some nonhomogeneous ordinary differential equations. The
corresponding homogeneous equation is always given by the coadjoint
action along Qn.

THEOREM 3.8. Consider the differential equation

(3.9) ξ'» + Ipξ' +p'ξ = 2 cos(2>70),

with p eQn.

There exists a periodic solution o/(3.9), ξ, whose Taylor expansion
is given by ξ = Σt=-oo yke~m, with γ2n = C~2n2n{p).

Proof. Assume ζ = ΣjbΓL^ yke~ikθ If w e make a simple sub-
stitution we can observe that the action of the differential operator
- ( ^ 3 + 2/?^ + ^ ) on ξ is equivalent to the one of the matrix C on

γ, where γ = {%} e I2. This is true since

2pξ'+p'ξ

k——oo

+ γk-n(2k-n)εn(p)]e-ikθ.

Notice at this point that the matrix C is antisymmetric. Therefore,
we can solve the equation Cγ = b, with b having entries all 0's except
for the entry in place -2n, and obtain that j2n = C~2n2n(p).

But, on the other hand, to solve Cγ = b is equivalent to solving the
differential equation (3.9), in the sense that the solution of Cγ = b
would correspond to the Fourier coefficients of a solution of (3.9). We
are done with the proof. D

Notice that we can follow the same strategy in order to find any
entry of the inverse matrix for C. That is, Ckl would be given by the
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Ith Fourier coefficient of a periodic solution of the equation

From Proposition 3.1 we know that such a solution exists.
Finally one comment on the uniqueness problem. If we try to prove

uniqueness in the same way that it is done in the finite dimensional
case, we would have to try to connect two different transverse sections
using the flow of a time-dependent Hamiltonian vector field. This
flow would be defined on a neighbourhood of the intersection with
the symplectic leaves and would automatically preserve the induced
transverse structures. The existence of such a flow would automati-
cally imply uniqueness.

In finite dimensions such a Hamiltonian vector field can always be
found. In infinite dimensions we can connect two transverse sections
Qx and Q2 with a family of transverse sections Qt with 1 < ί < 2.
We can possibly fix the variation on the time so that the equations
for the Hamiltonian operator are involutive. Nevertheless, that fact
would not imply its integrability. This kind of integrability problem
in infinite dimensions is quite complicated and not many results are
available.
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