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BRANCHED COVERINGS OF SURFACES
WITH AMPLE COTANGENT BUNDLE

MICHAEL J. SPURR

Let / : X —> Y be a branched covering of compact complex sur-
faces, where the ramification set in X consists of smooth curves meet-
ing with at most normal crossings and Y has ample cotangent bun-
dle. We further assume that / is locally of form (u,υ) —> (un ,vm).
We characterize ampleness of T*X . A class of examples of such X,
which are branched covers of degree two, is provided.

1. Introduction. An interesting problem in surface theory is the con-
struction and characterization of surfaces with ample cotangent bun-
dle. They are necessarily algebraic surfaces of general type. Natural
examples occur among the complete intersection surfaces of abelian
varieties. More subtle examples are those constructed by Hirzebruch
[6] using line-arrangements in the plane. The characterization of those
of Hirzebruch's line-arrangement surfaces with ample cotangent bun-
dle is due to Sommese [8]. In this article, we will give a characteriza-
tion of ampleness of the cotangent bundle of a class of surfaces which
branch cover another surface with ample cotangent bundle. We will
also construct certain branched coverings of explicit line-arrangement
surfaces; these constructions will again have ample cotangent bundle.

For any vector bundle E over a base manifold M, the projectiviza-
tion P(E) is a fiber bundle over M, with fiber Pq(E) over q e M
given by T?g(E) « (2?*\0)/C*. There is a tautological linebundle ξβ
over P(E) satisfying (i) ζE\F ^ « 0(1) P ^ V<? e M, and (ii) the pro-
jection pE: P(E) -» M gives /?^ (ξβ) ~ E. In the case that E = T*X
we will denote p£ = Pτ*x simply by p.

DEFINITION. The vector bundle E is ample if ζβ over ~P(E) is
ample.

In §2 we prove preliminary results along with:

THEOREM 1.1. Let X and Y be compact complex surfaces, with
Y having ample cotangent bundle. Let f: X -> Y be a branched
covering which can be locally represented with coordinate charts of
form f: (u, υ) —• (un, vm). Let f have ramification set \JBj in X
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consisting of smooth curves meeting in normal crossings. Let |J Ca be
the branch locus in Y. Then:

T*X is ample & Bj Bj< 0 Vj <= Cα . Ca < 0 Vα.

In §3 we give explicit examples of Theorem 1.1 which lie in a class
of degree 2 branched covers.

In what follows e{C) will denote the euler number of a curve C.

2. Ample cotangent bundles. Let f: X -+Y be a branched cover-
ing of compact complex surfaces, with T*Y ample and with rami-
fication set U Bj in X consisting of smooth curves meeting in nor-
mal crossings. Note that T*Y ample gives that the canonical bundle
Ky is ample [4], Hence Y is projective algebraic, which gives that
X is also projective algebraic [1], and in turn that P(T*X) is also
projective algebraic. Let / be locally represented with coordinate
charts of form / : (u,v)-> {un, υm). The differential /*: TX -> TY
induces a meromorphic mapping F: P(T*X) -» P(T*Y) given by
F(x, [w]) = (f(x), lf*(w)]), where [w] denotes the line in the tan-
gent bundle containing the tangent vector w . The indeterminacy set
I of F corresponds to [w] such that f*(w) = 0. Blowing up / to
resolve the indeterminacy of / (see [5], [10]) one gets Π(T*X) and
obtains b: Π(Γ*Z)^P(Γ*X) and Φ: Π(Γ*X) -> P(Γ*7) , holomor-
phic, with Fob = Φ on Π(Γ*Z)\&" 1(/). Let E = b~\l) be the
exceptional set over / in Π(T*X). We need to precisely describe the
indeterminacy set / . Before proceeding, we mention that, in the case
that / is locally of form (u, υ) —• (un , vm), over each curve Bj in
the ramification set in X there is a splitting of TX, due to Sommese
[8], [9], namely TX\B. « TBj © NB . In particular NB., the normal
bundle to Bj, is a subbundle of TX\B., and the pair if,, JV# gives
a curve Bj in P(Γ*X).

PROPOSITION 2.1. The indeterminacy set IofF:
w of form

where the Fa are fibers of p and the Bj are the curves in P(Γ*Z)
corresponding to the pairs Bj and NB for Bj in the ramification set
of X.

Proof. In local coordinates let / : X —> Y be given by f(u9υ) =
(un, vm). Then note that the indeterminacy set in P(T*X) locally



BRANCHED COVERINGS 131

corresponds to the (non-zero) annihilators in ann(d(un), d(vm)) :=
{w e TX\d(un)(w) = 0 and d(vm)(w) = 0}. By analyzing the Ja-
cobian /* one sees that ann(d(un), d(vm)) = {w e TX\f*{w) = 0}.
Therefore locally / = {ann{d(un), d(vm))\0}/C*. If both n, m > 1
then / includes the whole fiber p~ι(0, 0) giving an Fa. If only one of
n, m is greater than 1, say n > 1 with m = 1, then the curve B\ cor-
responding to u = 0 is in the ramification set and ann(d(un), d(vm))
corresponds to the normal bundle of B\ via Sommese's splitting lem-
ma [8], [9], Thus B\ and Nβ determine B\. Similarly one obtains
the remaining Bj . D

Let ζ\ be the tautological bundle over P(Γ*X) and let ζι be the
tautological bundle over P(T*Y), as in the second paragraph of §1.
Then b*(ξχ) on Π(Γ*X) relates to Φ*(ξ2) in a key manner via the
following:

PROPOSITION 2.2. b*(ξ^1) + D = Φ * ^ 1 ) where D = ΣnaDa is
an effective divisor on T1(T*X) supported on the exceptional set E of
U(T*X).

Proof. /*: TX -> TY given by (x, w) -+ (f(x), f*(w)) induces
F: P(Γ*X) ^ P ( Γ * Γ ) which is given by (x, [w]) -> (/(JC) , [/*(w)]).
Here x E X, K; is a tangent vector at x , and [tί;] denotes the line
in the tangent bundle containing w . F has indeterminacy set / as
described in Proposition 2.1. Over P(T*X)\I, f induces the map-
ping /*: ζ~ι -• ξϊι given by (x, [w], ty) -• (f(x), [/*(^)], /*(n;)).
This in turn yields the globally defined holomorphic mapping over
Π(Γ*X) β: b*(ξϊι) - ξ;1 given by (p, tι;) -+ (f(p(b(p))),Φ(p),
f(w)) where p e Π(T*X),b(p) = [w], and ρ(b(p)) = x. Fur-
thermore Φ(p) = [/*(^)] if /*(ty) ^ 0 (i.e. off δ " 1 ^ ) ) - In turn,
β gives the mapping γ over Π(Γ*X) y: b*(ξ^1) -> Φ * ^ 1 ) given
by (p,w) —• (/?, Φ(p), f*{w)). There is vanishing of Λ(^) over
E = b~ι(I), giving Z>. D

We will prove Theorem 1.1 using the Nakai Criterion for ample-
ness [7]: the holomorphic line bundle ξ\ on the projective algebraic
manifold P(Γ*X) is ample if and only if for every subvariety Vn of
dimension n < dimP(Γ*X) one has that Jv c^(ξ\) > 0. For brevity

we define i f . ^ ^ / ^

Proof of Theorem 1.1. Assume that Ca Ca < 0 for each Ca in
the branch locus in Y. We show that Bj i?7 < 0 for all Bj in the
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ramification set. Let π*(Cα) = Σk nakBak . Then

Baj π*(Ca) = Baj 2 ^ nakBak

k

= najBaj Baj + Baj ] Γ Λαfc5αA: = deg(π|*JCα Ca

kφj

and hence

5 α J Baj = n-} deg(π\BJCa Cα - n-}Baj £ n α ^ < 0

giving the implication.
Assume next that Γ*X is ample. We show that Bj Bj < 0 for any

Bj in the ramification set in X. Now for any Bj in the ramification
set in X the splitting lemma of Sommese [8], [9] gives that TX\B. «

TBj Θ Λfe . For Bj the curve in P(Γ*X) determined by 5 y along

with NB , we have 0 > ζ~ι 5,- = N 5 . 5 7 = Bj . J?7.

Conversely, assume that 5 7 J?7 < 0 for each Bj in (J^/ We show
that T*X is ample. First note that since T*Y is ample we have that
e(f(Bj)) is negative; hence by Riemann-Hurwitz e(Bj) < e(f(Bj)) <
0. To prove ampleness of Γ*X (i.e. of ζ\) we show that ξ\ Vn > 0
for all subvarieties Vn in P(Γ*X) where ζ\ is the tautological bundle
over P(Γ*X). We handle the three cases n = 1, 2, 3 separately.

(1) /ί = 1. Let Vn = C be an effective irreducible curve in
P(Γ*X). We show that C fj"1 < 0. This is accomplished in three
sub-cases:

Case (li). Suppose that p'ι(\JBj) ~fi C. Let C7 be the proper
transform of C in Π(T*X). By Proposition 2.2, Φ * ^ 1 ) = b*(ξ^x)+
D where D = Σa naDa is an effective divisor. So

C ξ~ι = C ; ^ ( ί f 1 ) - C ( Φ * ^ 1 ) - D)

= deg(Φ|cOΦ(C) ξjλ - C D< 0.

The last inequality follows since: Φ(C') is a curve in P(Γ*7) , ^2 is
ample (which gives that Φ(C) -ί^"1 < 0), and D| c/ is effective on C
as C7 is not contained in D.

Case (lii). Suppose that C is a fiber of p (and therefore C = P 1 ) .
Then C ξ f 1 = - 1 < 0 , since ξ i | c O(l)
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Case (liii). Suppose C is contained in p~ι(\JBj) but is not a fiber
of p. Then p(C) = Bj for some j . For u: ηC —• C the normal-
ization of C, one has that p o v\ ηC —• /?(C). One has the vector
bundle maps:

and

0 - v*p*Tp(C) -> i/V(ΓJr | , ( C ) ) - v*p*Np(C) - 0.

Hence one of the sequences of sheaves (2.1) or (2.2) below must be
valid.

(2.1) 0 - i/ ί f 1 - v*p*Tp(C) -> Z! - 0,

(2.2) 0 - i/ f̂1 - v*p*Np(C) -+Z2-+0,

where Zi and Z2 are sheaves with finite support on ί/C. By letting
Mi = ιs*p*Tp(C) and Af2 = v*ρ*Np(C) we rewrite (2.1) and (2.2)
as:

(2.3) 0 -> i/^f1 -^ M| -> Zz -> 0.

By utilizing the long exact sequence associated to (2.3), along with
Riemann-Roch, one concludes that:

Now d(Γ/?(C)) /?(C) = e(p(C)) = ^(5y) < 0. We have that

J = p(C) /7(C) = Bj .Bj<0

by hypothesis. Therefore in all cases ξ^1 C < 0. So & C > 0 and
Case 1 is proven.

Case (2) n = 2. Vn = 5 is an effective irreducible surface in
). Let Σ be the proper transform of S in U(T*X).

Case (2i) Φ(Σ) is 2 dimensional.

= Σ . Φ * ^ " 1 ) . ( Φ * ^ " 1 ) - / ) ) - Σ Z). ( Φ * ^ " 1 ) - D )
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So

(2.4) S ξ^ = Deg(Φ\Σ)Φ(Σ) (ξ2i)2

- Σ Φ*^-1) D - Σ D (Φ*^- 1) - D).

Since Φ(Σ) is 2 dimensional and & is ample, one has that

Deg(Φ|Σ)Φ(Σ) (ξ2"
1)2 = Deg(Φ|Σ)Φ(Σ). (ζ2)

2 > 0.

In order to conclude that S ξ2 > 0 we show that (a) Σ Φ*^ 1 ) - ! ) < 0
and that (b) Σ. D ( Φ * ^ 1 ) - D) < 0.

(a) Observe that Σ cuts out an effective divisor on D, namely Σ D,
which we denote by Δ =: £ Ma^a • Hence

Σ Φ*(£2-') D = A Φ*^-1) =: Σ mΩ(deg(Φ|Δii))Φ(Δα) ξ? < 0
a

since ξi is ample and Φ(Δα) is either a curve or a point.
(b) With Δ = Σ D =: Σ maΔQ as in (a) we have that

(2.5) Σ.Z>.(Φ*(^- 1)-Z))=Δ.(Φ*^ 2- 1)- JD) = Δ.(^(ίΓ 1 ) )

Now for each component Δ« of Δ there are three possibilities: b(Aa)
is a point, b(Aa) = 5 7 for some j (where Bj denotes the curve in
Ί*(T*X) corresponding to the curve Bj and the normal bundle Nβ),
or finally b(Aa) « P1 is a fiber of P(T*X). If b{Aa) is a point,
then b(Aa) ξ-1 = 0. If 6(Δα) = £, for some 7, then b(Aa) -ξ~ι =
Bj ξ~ι = J?; NBj = Bj Bj < 0, by hypothesis. If b(Aa) » P1

is a fiber of P{T*X), then έ(Δα) if 1 = P1 O(-l) = - 1 . We
conclude that for all a b(Aa) ξ^x < 0 and hence from (2.5) that
Σ D.{Φ*(ξ2i)-D)<0.

Now (2.4) along with (a) and (b) gives that S ζ2 > 0.

Case (2ii) Φ(Σ) is not 2 dimensional. This implies that S is con-
tained in p~ι(Bj) for some Bj in the ramification set (Ĵ Jfc Then
S = p~x{Bj) = P(T*X\Bj). Therefore:

ξ2-S = deg(T*X\Bj) := deg(det(Γ*X|5.)) as in [3]

= deg(Kx\Bj)

= (Kg - Bj) Bj by adjunction

= KB. Bj - Bj Bj = -e(Bj) - Bj Bj > 0.
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The last inequality follows from the hypothesis that Bj Bj < 0 along
with a first remark of the proof (that T*Y ample implies e{Bj) < 0).

Case (3) n = 3. Vn = P(T*X). We have that

(2.6) - P(T*X) ξ\ = P ( Γ I ) tf f V = Π(Γ*X) ( ^ f 1 ) ) 3

= Π(Γ*X) (έ*^-1))2 . (Φ*^-1) - D)

= U{T*X)

The last equality follows since b(Da) is one dimensional by Proposi-
tion 2.1. Furthermore:

(2.7) ; ^

= U(T*X). (Φ*^- 1) - D).

= Π ( Γ I ) . ( Φ * ^ 1 ) ) (&*(

= U(T*X) ( Φ * ^ 1 ) ) ( Φ * ^ 1 ) - D)

-D (b*(ξ^ι)) Φ*(ξ^)

= Π(T*X) ( Φ * ^ 1 ) ) 3 - D • ( Φ * ^ 1 ) )

We next show that the above term is negative by analyzing each sum-
mand. First

U(T*X) (Φ*^- 1)) 3 = (degΦ)Φ(Π(Γ*Z)) O^1)3

since & is ample. Next, for each irreducible component Da of D
one has that

Da (Φ*(£2-
!))2 = (degΦbJΦ(A*) (ζϊ1)2

= (degΦ\D)Φ(Da).(ζ2)
2>0
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with positivity depending on the dimension of Φ(Da), since ξι is
ample. Therefore

-D (Φ*^"1))2 = - £ naDa (Φ*^-1))2 < 0

since na > 0. Finally, by Proposition 2.3 below, we have that D

(ft ^Γ1)) Φ * ^ " 1 ) > ° g i v i n s fey ( 2 7 ) t h a t Π ( Γ * * ) (δ tfΓ1))2

Φ * ^ 1 ) < 0. By (2.6) one concludes that P(Γ*X) <̂ 3 > 0. This
finishes Case 3 and proves the converse, that ζ\ is ample.

This completes the proof of Theorem 1.1. D

PROPOSITION 2.3. In the setting of Theorem 1.1,

Proof. Let D = Σ naDa with na > 0 Vα. For each Da there
are three possibilities: b(Da) in F(T*X) is either a point, a fiber
of /? (say Fa « P 1 ) , or 5 7 for some j . If &(£>Q:) is a point then
Z)α (b*(ξϊ1)) Φ * ^ " 1 ) = 0 as b*(ξϊι) is then trivial on Da.

If 6(2)α) is a fiber F α then on Da b*(ξ^1) « ft*(O(-l)) » fr*(-pa)
where /7α is a point on Fa. Letting Ga be the (effective) divisor cut
out by b*(pa) on Da, one has that

Da (^({f 1)) - Φ * ^ " 1 ) = - G α - Φ * ^ " 1 ) = -Φ(Gα) ί2"
1 > 0

since 2̂ is ample.
Finally if b(Da) = 5 7 for some j , then on Da one has that

Z?*^"1) w b*p*(NB). Furthermore, since 5 7 is a Riemann surface
with Bj Bj < 0 then C\(NB) = ci(Σit ""Pyit) where the p ^ are points
on Bj. Letting Dajk be the divisor cut out on Da by b*p*(pjjc) we
have that

since ξι is ample.

Hence D . (ft ^f1)) Φ*^ 1 ) = Σ α ^ α (^(ίf1))' Φ*^ 1 ) > °
as claimed. D
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3. Examples. We provide in Example 3.1 a construction of such
an X as in Theorem 1.1. Then we expand Example 3.1 into a class
of similar examples in Examples 3.2 and 3.3. These are all degree 2
branched covers of a surface Y with ample T* Y. Good background
references for this section are [6], [8], and [2]. We recall that given
any n > 2 and any arrangement Λ of k lines in complex protective
2 space P 2 , Hirzebruch [6] constructed the compact complex surface
H(A, n) which is the minimal desingularization of the singular sur-
face associated to the function field:

where (z0, z\, z2) are homogeneous coordinates for P 2 and /,- = 0
is the equation of the jth line in Λ. H(A, n) is a branched covering
of BP 2 , the blowup of P 2 at each point p with rp > 3 where rp =
#{L e A\p G L}. The branch locus in BP 2 consists of the set of
proper transforms of lines in Λ along with the exceptional curves in
BP 2 . The branching order is n above the branch locus. Sommese [8]
characterized the H(A, n) with ample cotangent bundle as satisfying:

(a) for any L e Λ, #{p e L\rp > 3} > 2 and
(b) if ft = 3 then t$ = 0, while if ft = 2 then t$ = t4 = 0, where

tr = #{p e P2\rp = r}. In Examples 3.1-3.3 that follow, we will
assume n > 4 and avoid concern with condition (b).

We will make use of the Chern numbers of H(A, ή), which have

been computed in [6], [8]. If one defines fo := Σr=2 ^ a i κ * /i : =

Σr=2 rtr then one has:

(3.1) c2

{(H(A, ft)) = nk-\n\-5k + 9 + 3/i - 4/0)

+ 4n(k + fo-fι) + fι-fo + k + t2]9

c2(H(A, ft)) = ft*" V ( 3 - 2* + Λ - fo)

EXAMPLE 3.1. Choose six points /?;, / = 1, . . . , 6, in P 2 satisfying
four collinearity conditions on the p\ as follows:

(a) P\,Pi, and /?3 are collinear along the line L\.
(b) P\ -> PA 9 and ps are collinear along the line L2.
(c) Pi 5 P4 9 and pβ are collinear along the line L3 .
(d) Pi 9 ps 9 and p^ are collinear along the line L4.

Figure 1 represents this pattern succinctly.
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FIGURE 1 FIGURE 2

Next we choose an arrangement of lines Λ in P 2 , satisfying:
(1) The above lines of collinearity are not in Λ (i.e. Lj £ A for

7 = 1 , . . . , 4).
(2) rp. > 3 for each point pi9 i = 1, . . . , 6.
(3) For any other point p e LχUL2UL3\jL4\{pι , Pi, P3,P4,Ps, Pβ}

one has rp < 1.
(4) For each L e Λ at least 2 points p of L satisfy rp > 3.

An explicit example of such an arrangement Λ is given in Figure 2.
The Λ in Figure 2 is obtained by choosing three generic points, say
Ql, <?2, <?3, not on U Lj . To each <?z form the "pencil" of the six lines
through qι containing the p} 9 j = 1, . . . , 6. The resulting arrange-
ment of 18 lines Λ will be called a threefold cone on p\,Pi,Pι,p$,
p5, pβ and it will satisfy all the above assumptions (1) through (4),
provided (as in the generic choice of q\, q2, q$) that there are no
points p on both the threefold cone and (J Lj with rp > 2, other than
P\, Pi, P3, P4, Ps, Pβ ( O n e can similarly construct α-fold cones on
the q = 6 points, where <z > 3 : pick a points not among the original
q and run lines from each of the a points to each of the q points.
This is a line arrangement consisting of a "pencils" with q lines in
each "pencil".)

Given such an arrangement Λ satisfying (l)-(4), blowup all points
with rp > 3 to get BP 2 , which is branch covered by i/(Λ, ή).
For n > 4, H(A, ή) has ample cotangent bundle [8]. We pick
Y = H(A, n) as the base of our branched cover X, which we next
construct.
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Let H denote the pullback of the hyperplane in P 2 to B P 2 . Let
Lf denote the proper transform of L in B P 2 . Let E\ denote the
exceptional curve in BP 2 over /?,- in P 2 for i = 1, . . . , 6. Then we
have that on BP2 :

(1) L\ is linearly equivalent to H - E\ — E2- £ 3 ,
(2) Z/2 is linearly equivalent to H - E\ - E4- E5,
(3) Z/3 is linearly equivalent to H - E2 - E4 - E6 ,
(4) Lf

A is linearly equivalent to H - £3 - E5 - Eβ.

Hence Σ t = i ^ / *s linearly equivalent to 47/ - 2]Γ^=1£'/ =
2{2H-γfi=ι Ei). Therefore the line bundle corresponding to Σi=i L\
has a square root, and this fact provides a smooth branched cover Z
of BP 2 of degree 2, which is branched precisely over U*=i Ui (see p.
42 of [1]).

Let c: H(A, ή) —• BP 2 denote the branched covering due to Hirze-
bruch, and C: Z -^ BP 2 denote the above constructed branched cov-
ering. Take X to be C*(H(A, n)) = H(A, n) x B p 2 Z = {(r, q) e
H(A, n) x Z\c(r) — C(q)} . Then for / = 1, . . . , 4, transversality of
L\ to the branch locus of c in BP2 (i.e. to Λuexceptional curves)
gives that X is smooth. Furthermore first factor projection π\: X —•
H(A, n) exhibits X as a branched covering of H(A, n) with ramifi-
cation set \JBj where the union ranges over Bj in (coπι)~ι(U*=ι L\).
This implies that 5 7 5 7 < 0 since Lr

rL\ = - 2 . By Theorem 1.1, T*X
is ample. Note that c o π\: X —• BP2 cannot be an / : 77(Λ*, ?z*) —•
BP 2 for any Λ* or any /t*, since the branching order in H(A*, n*)
is always n*, while we have branching orders of 2 along the Bj and
fl > 4 along (co π i ) " 1 ^ u exceptional curves).

From formulas (3.4) in Example 3.2 we have the Chern numbers
C2(X) and c\{X) for the double cover X of H(A, n) where Λ is
the α-fold cone on the q = 6 points p\, . . . , ̂ 6 For a Φ 6 these are
given by:

(3.2) c2(X) = 2n6a-\\5a2 - 10a - 1)

- 4n6 α~2(15α2 - la - 3) + 6n6 α~3(5α2 - α),

c?(JΓ) = 2nβa-ι(30a2 - 16a - 5)

- Snβa-2(l5a2 - la - 3) + 2/?6*-3(30α2 - 13α - 6).

In particular for the 3-fold cone on the q = 6 points we have:
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c2(X) = nl5{20Sn2 - 444n + 252),

c\{X) = nl5(434n2 - SSSn + 450).

When n = 5 this reduces to c2(X) = 515(3232) = 51525101 and
c\(χ) = 515(6860) = 5 1 6 2 2 7 3 . We show that when n = 5, a = 3, and
q = 6 (for our 6 points Pi, ... 9Pβ) that the double cover X cannot
be any one of Hirzebruch's surfaces H(A!, m) (for any m and any
line arrangement Λ'). If X were an H{A!, ra) then by (3.1)

= mk-\m2{-5k + 9 + 3/i - 4/0)

/ 0 - /i) + /i - f0 + k + t2]

giving that mk~3 divides both c2(X) = 51525101 and c\(X) =
5 1 62 27 3 . This implies that either k = 3 and m is arbitrary, or k > 3
and m = 5b2c for some 6, c (where the restrictions 0 < b(k-3) < 15
and 0 < c(k - 3) < 2 must hold). The case k = 3 and m arbitrary
is easily ruled out as k = 3 lines do not produce the appropriate
Chern numbers. In the case that k > 3 we have that k, b, and c are
bounded, and a computer search on the possible cases for k, b, and
c on formal line arrangements rules out any case with

c2 5 1 62 27 3

51525101 - 2 1225247

A formal line arrangement is taken here to mean a tuple of non-
negative integers (t2, t?>, . . . , tk) where

must hold. Thus we see that in the case that n = 5, <z = 3, and
q = 6, we have a surface with ample cotangent bundle which cannot
be one of Hirzebruch's surfaces H{A!, m).

By computing values for (3.2) and letting n > 4 and a > 3 one sees
that the various Chern ratios for the double covers (of the H(A, ή) for
Λ the tf-fold cone over 6 points) range from a high of c\jc2 « 2.12971
(when « = 4 and a = 3) down through < /̂c2 ^ 2 asymptotically.
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EXAMPLE 3.2. We can generalize the above construction in the fol-
lowing way. Replace the lines L;, i = 1, . . . , 4 (which we inter-
pet as two "pencils" of two lines each) by p > 2 "pencils" P/ (for
/ = 1, . . . , p) in general position, with each "pencil" Pi consisting of
an even number, say 2kι, of lines through a fixed point p\. Choose
a line arrangement Λ as before satisfying the analogues of (l)-(4) in
Example 3.1: each line in a "pencil" is not a line in Λ, if any two lines
of the "pencils" intersect at a point p then rp > 3 in Λ, away from
the intersection points of the lines in the "pencils" at most one line of
Λ passes through a point of the "pencils" (and it does so transversely),
each line in Λ contains at least 2 points p with rp > 3. Again, a
generic α-fold cone on the q points of intersection of the lines in the
"pencils" will provide an explicit example of such a Λ.

Given such a Λ, let Y = //(Λ, n) for n > 4 and let Z be the dou-
ble cover of BP 2 corresponding to ΣL) = {Σi2ki)H - (ΣnaEa)
Here the V- are the proper transforms of all the lines in the p "pen-
cils", H is the pullback of the hyperplane to BP 2 , and the Ea are the
exceptional curves over the intersections of the lines in the "pencils"
and the na denote the multiplicity of the αth intersection. Since each
na is even (in fact na = 2 or 2kj) ΣL) has a square root, yielding
Z a degree two branched cover of BP2 as in Example 3.1. For n > 4,
take X = i/(Λ, n) x B p 2 Z , which branch covers /f(Λ, n), with the
branching of %\: X —• i/(Λ, ή) occurring on (coπi)~ 1(U^}) Since
L'j L'j < 0, T*X is ample by Theorem 1.1.

We begin computation of the Chern numbers of the surface X
which double covers i/(Λ, n) where Λ is a generic α-fold cone on
the

intersection points of the p "pencils". To be more explicit we rename
/JΓ(Λ, n) to be //(Λ, a, q, n), the Hirzebruch line-arrangement sur-
face constructed with the line-arrangement Λ consisting of an α-fold
cone on q points, aφ q, with branching order n. There are k = aq
lines in Λ. Let L, 7 be the jih line in the /th pencil and let Bjj be
the preimage in H(A, a, q, n) of the proper transform L^ of LZ 7.
Then using the Hurwitz formula one has the euler number e(Bij) in
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H(A, a,q,ή) given by

= naq-\2) - (naq~l - naq-2)

for each j = I,... ,2ki. Since (Z^ ) 2 = -2(Σ/,ί, fc/) we have that

Bfj = -2(Σ¥i ki)naq-X for 7 = 1 , . . . , 2kt.
For any line-arrangement Λ which is an α-fold cone on q points

(where a^q),we have that k = aq, tq = a, ta = q, and t2 = (*) -
Σί=3 ίr($) ' f r o m w h i c h w e h a v e t h a t fθ = h + ta + tq = {a$)-q{a2)-
a{q

2)+q+a while /i = 2t2+aίa+qtq = 2((a

2

9)-^(2)-α(
Using (3.1) one computes that:

(3.3) c2(H(A,a,q,n))

= naq~3{n2{l/2)[a2q{q - 1) - a{q2 -q + 2)-2q +

- n[a2q(q - 1) - a(q2 -3q + 2)- 2q]

+ (l/2)[aq(a(q-l)-q

c2(H(A,a,q,n))

= na"-3{n2[a2q(q - 1) - a{q2 -2q + A)-4q + 9\

- 2n[a2q(q - 1) - a(q2 -3q + 2)- 2q]

+ [a2q(q-l)-a(q2-4q+l)-q]}.

These allow computation of the Chern numbers of the double cover
X o f H { A , a , q , n ) v i a t h e f a c t t h a t c2{X) = 2 c 2 ( H ( A , a , q , n ) ) -
(2-1) Σ i i Σ p i e(Bij) and (letting πx: X -+ H(A, a, q, n) be our
branched covering and K be the canonical bundle of H(A, a, q, ή))



Using K

(3.4)
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/) - Bf we obtain
ij

= 2c2{H{A,a,q,n))

= n

i = l

aq—ί

i \n (2) - (n + 1 ! +

- iq + 2)

ί«αί \aq(a{q-\)-q + 5)],

= 2{c2

ι(H(A,a,q,n))

143

-Λ&

+2 I ξ Λ , \aq+

naQ~22 - 2aq{q - 1) + 2a(q2 -

p

i=l l±i

P

i=l

where

+ «a ί~32[Λ(<7 - 1) - α ( 9

2 - 49 + 1) - q)

Q =P

In particular, if we let p = 2, k\ = k^ = 1, and
(3.2) in Example 3.1.

= 6 then we obtain
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EXAMPLE 3.3. One can make similar constructions by taking higher
degree curves as well. Examples include:

(a) A "pencil" of 2k lines L\, ... , L2k (through a common point
Pi) and a smooth curve C (in general position with respect to the
"pencil"), along with a line arrangement A, where:

(i) each line L; in the "pencil" is not in A.
(ii) each point of intersection, p, of the Ik lines or of the lines

and curve, satisfies rp > 3 in A.
(iii) away from {px} U{LiΠC}U{L 2nC}U U {L2k n C} the

lines in A meet LiU U L2k u C transversely at points p
with rp = 1.

(iv) For each L e Λ a t least two points p of L satisfy rp > 3.
(v) C is of even degree Id in \H2d\ in P 2 where d < k.

A generic α-fold cone on {p{} U {Lx n C} U {L2 Π C} U U {L2^ Π C}
gives an explicit example of such A for a > 3. Then C + Σjti L'j =
2((k + d)H - kE\ - Σ y > 1 £/) where E\ is the exceptional curve over
P\ and the Ej in the second summation are the exceptional curves
over {Li n C} U {L2 ΓΊ C} U U {L2k Π C}. Hence C + Σjti L)
has a square root. Construct the corresponding branched cover Z of
BP2 of degree 2, along with X = ΛΓ(Λ, ή) xBP2 Z where X branch
covers //(A, /i) and n > 4. Then ί/ < k gives (Cr)2 < 0, and T*X
is ample by Theorem 1.1.

The Chern numbers of X, the double cover of Hirzebruch's sur-
face H(A, α, q, ή) associated to the α-fold cone on the q points of
intersection of the "pencil" and curve, are given by:

-6d + %kd - 2k] + naq~2[-2k - Skd]

naq~l[a2q(q - 1) - a(q2 -q + 2)

-2q + 6 + 4d2-6d + Skd - 2k]

+ naq-2[-2a2q{q - 1) + 2a(q2 -3q+ 2) + 4q-2k - Skd]

2{c2(H(A,a,q,n))

+ nag-ι[d2-6d+l4kd-2k] + «^-2[-2fc - Skd]}

naq-χ2[a2q{q - 1) - a(q2 -2q + 4)

-4q + 9 + d2-6d+ \4kd - 2k]

+ naq-22[-2a2q{q - 1) + 2α(^2 - 3q + 2) + 4q - 2k - Skd]

+ naq~32[a2q(q - 1) - a(q2 - 4q + 1) - q]
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where q = 1 + 4kd, a Φ q, and d < k.
(b) A "pencil" of 2k lines L\, . . . , jL2fc (through a common point)

and a "pencil" of 2m smooth curves C\, ... , Cim of degree d in
\Hd\ in P 2 (having base locus d2 points) in general position with
respect to the "pencil", where each point of intersection, p, (of the
2k lines, of the lines and curve, or of the curves) satisfies rp > 3
in a line-arrangement Λ, and the analogues of (i) through (iv) in
(a) are also satisfied. ^ C[ + Σ L'j has a square root. Construct
the corresponding branched cover Z of BP2 of degree 2, along with
X = H(A, ή) xBP2 Z where X branch covers H(A, n) and n > 4.
Then Γ*X is ample by Theorem 1.1.

The Chern numbers for X, the double cover of Hirzebruch's sur-
face H(A, α, q, n) associated to the α-fold cone on the q points of
intersection of the 2k lines and 2m curves, are:

c2(X) = 2(//(Λ, a9q,n)) + naq~x[-2k - 6md + Skmd + 4md2]

+ naq-\-2k - Skmd - 2md2]

= naq-λ[a2q{q - 1) - a{q2 -q + 2)

-2q + 6-2k- 6md + Skmd + 4md2]

+ naq~2[-2a2q(q - 1) + 2α(#2 -3q + 2)

+ 4q-2k- Skmd - 2md2]

+ naq-\aq{a{q - 1) - q + 5)]

c\{X) = 2{c\{H(A9 a,q,n)) + naq-\-2k - βmd + \4kmd + 4md2]

+ naq~2[-2k - Skmd - 2md2]}

= naq-ι2[a2q(q - 1) - a(q2 -2q + 4)-4q

+ 9 - 2k - 6md + \4kmd + 4md2]

+ naq-22[-2a2q(q - 1) + 2a(q2 -3q + 2)

+ 4q-2k- Skmd - 2md2]

+ naq~32[a2q(q - 1) - a(q2 - 4q + 1) - q]

where q = 1 + d2 + 4kmd and aφ q.
(c) Two or more "pencils" each consisting of an even number of

curves will also yield similar examples.

EXAMPLE 3.4. In [8], Sommese constructs branched coverings X
of H(A, 5) where Λ is the A\(6) arrangement of lines. He uses
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the coverings to show that the possible Chern ratios c\/c2 between
2 and 3 are assumed. However these coverings do not have ample
cotangent bundle. This follows from Theorem 1.1 after one observes
that: H(A\(6), 5) fibers over a Riemann surface, the branch locus of
each of Sommese's coverings in H(A\(6), 5) consists of smooth fibers
with self-intersection 0, and the ramification set in each covering X
also consists of smooth curves with self-intersection 0.
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