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FREE PRODUCTS OF COMBINATORIAL
STRICT INVERSE SEMIGROUPS

KARL AUINGER

Each combinatorial strict inverse semigroup S is determined by
(1) a partially ordered set X which in fact is the partially ordered set
of the J^-classes of S, (2) pairwise disjoint sets Ia indexed by the
elements of X which in fact form the collection of 3f- (equivalently:
J^-) related idempotents and (3) structure mappings fafβ: Ia —> Iβ
for a > β satisfying certain compatibility conditions. The multi-
plication on S can be described in terms of the parameters X, Ia ,
fatβ . Conversely, the system (X Ia, fa,β) can be characterized ab-
stractly in order that it defines a uniquely determined combinatorial
strict inverse semigroup. In this paper, the constituting parameters
X -> la 9 fa,β of the combinatorial strict inverse free product S of a
collection of combinatorial strict inverse semigroups Si are described
in terms of the parameters of the semigroups S,.

As an application it is shown that the word problem for such a free
product in general is not decidable.

1. Introduction. The (2^-)free product of an arbitrary family {S/|
/ G /} of algebras of the same type all of them belonging to the class
"V is the coproduct Π* Φ i*1 ^ There are homomorphisms φt:
Si —> Y[*Sj, i e / , and for any T G *V and homomorphisms
ψi\ Si —• T, / G / , there is a unique homomorphism ψ: Π*Si —> T
such that φiψ = ψi for all / e / .

From purely universal algebraic considerations it follows that the
free product exists for any variety "V of inverse semigroups and is
generated by isomorphic copies of the members of the given family
(see, for instance, Gratzer [5]). Free products have been studied for
several classes of semigroups. Semilattice free products and semilat-
tice of groups free products are considered in the book of Petrich
[14]. Band, completely simple and completely regular free products
have been investigated by Jones [9, 6, 11]. Inverse semigroup free
products have been studied by Jones [7, 8, 10] and Jones, Margolis,
Meakin and Stephen [12]. The aim of this paper is to describe combi-
natorial strict inverse semigroup free products. A combinatorial strict

A part of the results has been presented at the Conference of Semigroup Theory, Oberwolfach,
July 1991.

201



202 KARL AUINGER

inverse semigroup is an inverse subdirect product of combinatorial
Brandt semigroups and/or the trivial group. This class forms an in-
verse semigroup variety and plays an important role in the study of the
lattice of inverse semigroup varieties (see [14]). Each such semigroup
S can be described quite efficiently by

(1) a partially ordered set X (which in fact is the partially ordered
set of all principal ideals of S),

(2) pairwise disjoint sets Ia indexed by the elements of X,
(3) structure mappings faj\ 7α -> Iβ (for a > β),
(4) a function δ: I x I -• X where I = \JaeX Ia -
The function δ is determined by the parameters (l)-(3). The semi-

group S is realized as the union of the pairwise disjoint sets Ia x I a
The multiplication in S is described by the structure mappings fa 9 β
and the function δ. After having introduced some basic facts about
combinatorial strict inverse semigroups in §2, in §3 we shall outline
heuristically how the free product of two combinatorial strict inverse
semigroups is constructed. In §4, a combinatorial strict inverse semi-
group S will be constituted out of a given family of such semigroups
Sj, where i e I, according with the ideas of §3. The structure set X
of S, the corresponding sets Ia, a e X and the structure mappings
fa yβ will be described in terms of the ingredients of the respective
semigroups Si and by means of equivalence relations on certain sets.
A process which determines the ^-function for S will be provided. In
§5 we shall prove that the so constructed semigroup S is the free prod-
uct of the combinatorial strict inverse semigroups Si. This also will
lead to certain triples which can be interpreted as "canonical forms"
for the free product of the semigroups Si. Finally, in §6, we shall
present an example showing that the word problem for free products
of combinatorial strict inverse semigroups in general is not decidable.
Throughout the paper, the term "free product" will stand for "combi-
natorial strict inverse free product".

2. Combinatorial strict inverse semigroups. For undefined notions
concerning inverse semigroups the reader is referred to the book of
Petrich [14]. Following [14], an inverse semigroup S will be termed
strict if S is a subdirect product of Brandt semigroups and/or groups.
This class forms an inverse semigroup variety. A structure theorem for
such semigroups is provided in [14, Chapter XIV]; a slightly modified
version thereof is in [1]. Free objects in certain varieties of strict in-
verse semigroups have been studied by Reilly [15], Margolis, Meakin,
Stephen [13] and the author [1, 2] using the methods of the present
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paper. In this context, the variety of all combinatorial strict inverse
semigroups plays an important role. This class is the least inverse
semigroup variety which is not Cliffordian (that is, completely reg-
ular). Applying the structure theorems of [14, Chapter XIV] or of
[1] to the special case of combinatorial strict inverse semigroups, the
following description can be obtained (see [1, Corollary 2.6]).

THEOREM 2.1. Let X be a partially ordered set. For each a e X
let Ia be a non-empty set such that IaΓ\Iβ = 0 if a Φ β. For each
pair a > β let fa,β- la -* Iβ be a mapping subject to the following
conditions:

(1) fa,a = i d / β ,
(2) f a , β f β , γ = f<*,y whenever a>β>γ,
( 3 ) for any i e Ia > j £ Iβ > &, β e X, the set

has a greatest element, to be denoted by δ — δ(i, j).
Let S = \Jaeχ la x la and define a multiplication on S by

(/, j)(r, S) = (ifa,δ(j,r) , Sfβ9s(j,r))

where i j ' e / α , r.selβ. Then the groupoid S, to be denoted by
(X Ia, fa9β) is a combinatorial strict inverse semigroup. Conversely,
every combinatorial strict inverse semigroup can be so constructed.

Given S = (X; Ia, fa,β) then X is isomorphic to the partially or-
dered set of all principal ideals of S and will be termed the structure
set of S. The i^-classes of S then are precisely the sets Ia x Ia,
a e X. Notice that 31 = J? in each strict inverse semigroup. The
mappings faj are the structure mappings of S. Further, each map-
ping faίβxfaiβ: Iaxla ->lβxlβ, defined by (i, j) *-+ [ifa^βjfaj)
in fact is a partial homomorphism from the ϋ?-class Ia x Ia to the
ϋ^-class Iβ x Iβ . The function δ: I x / —> X (where / = \JaeX Ia) is
the δ-function of S. Notice that δ is determined by the parameters
X 9 la, fa,β - The structure set X of a (combinatorial) strict inverse
semigroup has the following properties (see [1, Proposition 2.7]).

PROPOSITION 2.2. Let X be the structure set of a strict inverse semi-
group. Then

(1) X is (downwards) directed,
(2) for any two elements a, β e X having a common upper bound

y > α, β, the greatest lower bound a Λ β exists in X.
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From Theorem 2.1 the following can be easily deduced.

LEMMA 2.3. Let S — (X Ia, fa 9β) be a combinatorial strict inverse

semigroup. For i = 1, . . . , n let ki, // e Ia for some at e X.

7 G X Z?e si/c/z //zα/ (k\, / i)(/c2 , h ) m " (kn > /«) £ Iγxlγ

β E l f e swc/j ίΛαί α , > βi>γ. Then

, /i) (fcn , /«) = (k\faι,βι , /l/α,,^) * * * (knfan,βn , lnfan,βn) -

The greatest lower bound of a finite subset {αi α π } of X

will be denoted by inf{αi, . . . , an} provided it exists. For the two

element set {α, β} instead of inf{α ? β} also a Λ β will be written.

In the following we shall deduce some further results which will be

needed in §4.

LEMMA 2.4. Let S = (X Ia, fa 9β) be a combinatorial strict inverse

semigroup. For k = 1, . . . , n let ak e X and ik e Iak Then

m a x { 7 < α i , . . . , 0 L n \ h f a χ 9 γ = ••• = i n f a H , γ }

exists in X. Denoting this maximum by δ{i\ , . . . , / „ } then

δ{ix , . . . , / „ } = mϊ{δ(iλ, i2), ί ( Ϊ 2 ? ^ ) , .. , ^( ί«- i , ίΛ)} -

Proof. Consider the product

w = ( / " i , / i ) ( / 2 , * 2 ) • • • ( * * , i n )

and let ί G I be such that w e I# x 1$. By induction and the

definition of multiplication in S it follows that δ = δ{i\, ... , in}

which can be expressed as the mentioned infimum.

Notice that the mentioned element δ can be obtained by computing

the product w . For the construction in §4 we shall need the following

concepts.

DEFINITION 1. Let S = (X; Ia, fa j) be a combinatorial strict in-

verse semigroup. For k — 1, . . . , n let ik e Iak for some ak e X

and A = {i\, ... , in}. Then

δA = max{y < α i , . . . , α « | / i / α i ? 7 = ••• = infan,γ}.

For singletons {/̂ } this means δ{ίk} = ak . Further, if jaf =

/} is a collection of finite subsets Aj of U«GX I<* t * i e n p u t
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DEFINITION 2. Let X be the structure set of a combinatorial strict
inverse semigroup S. A finite non-empty subset A c X is admissible
if any two distinct elements of A do not have a common upper bound
in X.

Let X be the structure set of a combinatorial strict inverse semi-
group and let A c X be a finite non-empty subset of X. Con-
sider a finite sequence (π7) of partitions of A as follows. Let πo =
{{a\}, . . . , {αw}} if 4̂ = {αi, . . . , α w } . If ^ is admissible then let
(πj) consist of πo only. Otherwise choose elements a\, c*2 £ A which
have a common upper bound in X and put %\ = {{a\, 0:2}, {^3}, . . . ,
{αM}}. Suppose that πy = {^47i, . . . , A^} has already been defined.
Put inf %j = {infAji, . . . , inf-4^.} . If for any u Φ υ , inf ̂ 4yw and
inf ^ do not have a common upper bound then let π7 be the final
partition of the sequence. Otherwise choose AJU, AjV e π7- such that
inf AjU and inf AjV do have a common upper bound in X and let
π/+i consist of AJU u ^4/v and the remaining blocks of π ; . (In such
a case it may happen that inf AJU = inΐAJV .) If mfAJU and inf Ajυ

have a common upper bound then inf AjU Λ inf AjV = inf(AjU U ^4^)
exists. Hence by induction it is justified to assume the existence of
inf Ajk . Since the number of blocks |π/| is strictly decreasing there
is a least n such that inf πn is admissible and | inf πn\ = \πn\.

DEFINITION 3. Let X be the structure set of a combinatorial strict
inverse semigroup and ^ C J b e a finite non-empty subset of X. The
sequence (πy ) of partitions as it is constructed above is an admissible
sequence for A. If πn is the final partition then A = infπn is the
admissible set generated by A.

LEMMA 2.5. The admissible set A generated by A is uniquely de-
termined.

Proof. If |̂ 41 = 1 then A = A is admissible and there is nothing
to prove. Let \A\ = n > 1 and suppose that the assertion be true
for all B with \B\ < n - 1. If A is admissible then A = A and
there is nothing to prove. Otherwise there are elements α i , c*2 G A
which have a common upper bound in X. These elements can be
chosen in order that a\ A aι $. {a?>, . . . , an} (for instance, if they
are minimal in A). Let B = {aγ Aaj, 0:3, . . . , an} then \B\ = n - 1.
Let πo, . . . , πfc be an admissible sequence for ^4. For each j let σ,
be the partition of A which arises from π7 by forming the union of
the blocks containing a\ and aι provided these blocks are distinct,
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or σj = Uj otherwise. In the respective block of σ7 now replace the
elements a\ and a2 by c*i Λc*2, for each j , which yields a sequence
{σ'j) of partitions of B. The transition πj —• nJ+\ is of the form
AjU, ^ —• AjUuAjV . Hence the transition σj -* σ7+i is of the form
either Aju, Ajv -+ ^ 7 w U Λ^ or Aiu U ̂  , Ajυ -> Λ, M U ̂  * U Ajv

or ^4/w U AjV —> AjU U ̂  , depending on the blocks of a\ and a2 .
Denoting the blocks in the corresponding partitions σj by ^ 7 then
σ'j -* σ}+1 is of the form ^ , ^ - ^ U ^ or (^ M Ui4 A y, A'jv -+
(AjU\jAjxyuA'jV or ( ^ ^ u ^ ) ' —> (^nU^tyt;)7. The latter case happens
precisely once. In this case, crj = crj+1 and σj+ 1 may be deleted in
the sequence (σj) so that it is an admissible sequence for B. Now
A = infπ^ = infσΠ = inf σ^_t = 5 . Each admissible sequence (π ;)
for A therefore can be associated with an admissible sequence {σ'j)
for B and both of them yield the same admissible set B. Since by
hypothesis of induction B is uniquely determined, so is A.

REMARKS. (1) Let A be a finite subset of X. Then each α e A
has (precisely) one lower bound in A. Conversely, each α' e A has
(at least) one upper bound in A.

(2) If for two elements α, β e X a common upper bound γ is
known then the meet α /\ β can be calculated as follows: α Λ β =
δ{ifγ,α, ifγ9β) f°Γ a nY * Ξ ^ ( s e e [1? Proof of Proposition 2.7]).

(3) The set ^ ( X ) of all admissible subsets of X forms a Λ-
semilattice if Λ is defined by Al\B — A\JB . The mapping α κ» {α}
embeds the partially ordered set X isomorphically into 3°{X). How-
ever, meets will not be respected in general by this embedding.

(4) If a partial product on X is defined by α f\p β = inf{α, β}
if and only if α and β have a common upper bound in X then

9 Λ) is the free semilattice generated by the partial semilattice

The partial order on the set of all admissible sets &{X) which is
defined by the above mentioned semilattice structure is characterized
as follows.

LEMMA 2.6. Let A, B e £P{X) be two admissible subsets of X.

Then AΛB = B if and only if each aeA has a {unique) lower bound

β in B.

Proof. First, if some a e X has a lower bound β in the admissi-
ble set B then by admissibility of B, this lower bound is necessarily
unique. If each a e A has a lower bound β e B then an admissible
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sequence for A u B can be obtained by successively forming the sets
{oti^, at , ... , β} where β G B is the lower bound of the elements
ctfi, α/2, . . . G A. Conversely, suppose that a G A has no lower bound
in B. By definition of the algorithm which constructs C = A U B, it
follows that each element of 4̂ u B has a lower bound in C. Conse-
quently, C φB.

The following result characterizes the admissible set generated by
some set.

LEMMA 2.7. Let X be a structure set of a {combinatorial) strict
inverse semigroup. Let A c X be a finite subset and let B G £P(X)
be an admissible set such that each a G A has a lower bound β G B.
Let ~A be the admissible set generated by A. Then each a! E~A has a
lower bound in B.

Proof. We use induction on \A\. If \A\ = 1 then the assertion holds
trivially. Let A c X, \A\ = n > 1, B e 3?(X) and suppose that the
assertion be true for each A! c X with \A!\ < n. Suppose that each
a E A has a lower bound β in B. If A = A then there is nothing
to prove. Otherwise choose elements a, a' G A as in the proof of
Lemma 2.5 which have a common upper bound in X. Since α and
α' have lower bounds β and β' in 5 and since B is admissible,
β = βf. Hence a/\af > β . Therefore, each element of ^4; = {αΛα'}U
(-4 \ {α, α'}) has a lower bound in B. By hypothesis of induction,
each element of A' has a lower bound in B. As in the proof of
Lemma 2.5, 4̂ = A! so that the assertion follows.

REMARK. Lemma 2.7 in fact states that A > B in the natural order
of the semilattice (JP(X), Λ).

3. A heuristic consideration. In this section we briefly outline the
idea of how the parameters X, Ia, fa 9β of the free product of two
combinatorial strict inverse semigroups S = (X$ Ias, fa ,β) a n d
T = (Xτ\ Iaτ 9 fa ,β ) c a n be expressed in terms of the parameters
of the latter semigroups. Let /, j G 7α , /:, / G 7α r and consider the
product (/, j)(k91) G S * Γ. The partially ordered sets X$, Xr can
be assumed to be disjoint order filters in X. Let a e X correspond
to the ^-class of (/, j){k, /), that is,

(i,j)(k, I) = {ifas,a, / / α Γ , α ) e / β X h .
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Then a £ X$ U XT . All we know is that as > a and aγ > a.
By the universal property of the free product it seems likely that for
β G Xs U Xj, β > a if and only if β > as or β > aγ. Considering
the mappings fa^a and fa^a , all we know is that ifas,a = ^/αΓ,α .
Again by the universal property of the free product, it is reasonable
that fas,a is injective on Ias and so is faT,a on Λ*Γ Also, ufa^a Φ
vfa ,a whenever {u, v) ηfi (j, k). (If the mentioned assertions were
not true then one could construct an example being in contradiction
to the universal property of S * T.) Finally, Ia = / Q / Q S ) Q U Iaτfaτ,a
since otherwise S * T would not be generated by S and T. We
therefore are motivated to identify the element a with the equivalence
relation on Ia u Iaτ identifying j and k and all other equivalence
classes being singletons. The set Ia then is an isomorphic copy of
(Ias U Iaτ)/a. In this way, each a e X can be associated with a
certain equivalence relation on some set Ia U U Ia for a suitable

1 n

finite set {a\, ... , an} C Xs u Xγ. The question arises which finite
sets {a\, ... , an} C Xs u XT and which equivalence relations a on
Iaχ U U 7α appear in this description of the elements of X. We
consider two examples.

Let (i, 7) € 7α5 x 7 t t j, (w, υ) G 7^ x 7^ and (fc, /) G 7α r x Iaτ and
suppose that as and ^ have a common upper bound γ$ in Xs.
Then by Proposition 2.2, their greatest lower bound δs = as A βs
exists in X^ . It can be shown that δs also is the greatest lower bound
of as and βs in X. Therefore, if (x, y) G 5 * Γ represents any
product containing a factor of Ia x 7α and of In x 7Λ and (x, y) G
7j x Iδ then 5 < ^5 . We therefore have by Lemma 2.3:

l)(u, v) = (ifas,ss,jfas,

The corresponding α is the equivalence relation on Is U 7αy, identify-
ing jfa s and /c as well as / and ufβ $s (rather than an equivalence
relation on 7α U Iβ U Iaj) . Thus two distinct elements of the above
mentioned set {αi, ...an} belonging to the same structure set cannot
have a common upper bound (within their structure set). Now take
( i , j ) e l a s x l a s , ( u , v ) e l β s x l β s a n d ( f c , k) e l a τ * l a τ L e t a e X
be such that (/, j)(k, k){u, v) G 7α x 7α . Then

jfas,a = τ ^

In particular, α < ^ ( 7 , w) where £$(• ? ) i s the ^-function of >S and

( / , j ) ( k , k ) ( u , v ) = ( i f a s , δ s , j f a s 9 δ s ) ( k , k ) ( u f β s vfβ s ) ,
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where δ$ = Ss(jr, u). In this case, the "correct" domain of a is
Iδ u Iaτ rather than Ias U /^ U / t t r . This condition implies that
the equivalence relation a cannot identify two distinct elements of
LL <z y la for U = S, T. It turns out that these two observations in
fact are sufficient in order to describe the parameters X, Ia, ^ ^ of
the free product of a given collection of combinatorial strict inverse
semigroups. The next section gives precise definitions and shows that
indeed a combinatorial strict inverse semigroup is obtained in the out-
lined way. Section 5 then proves that the so constructed semigroup in
fact is the free product of the given semigroups.

4. The construction. Let / be an index set and

be a set of pairwise disjoint combinatorial strict inverse semigroups
Si whose structure sets X( are also pairwise disjoint. The upper in-
dices in Q} and faι »i indicate to which 5/ the element a1 and thus
the mapping fai ni "belong". This upper index sometimes will be
omitted. The partial order on ΛΓ, will be denoted by </ and the
^-function of Si by <J, .

NOTATION. Put // = \Ja>eX /α«. For a subset A c \JieIXi, AnXi
is the /-component of A, to be denoted by iA. Further, put IA =
Dae A f* - τ h e n I A n // = ΌaeiA ̂  is the /-component of IA , to be
denoted by HA - For any set / , the identical relation on / will be
denoted by ej.

Recall the definition of an admissible subset of ΛΓ, .

DEFINITION 4. A non-empty subset A c \JieI Xt is admissible if
there are i\9 . . . , ine I such that

(1) A = i\A u i2A U U inA,
(2) for each k — 1, . . . , ft the /^-component /̂ 4̂ of A is admis-

sible in Xi .
That is, a set A c (J /€ / Xz is admissible if and only if it is finite, non-

empty and each non-empty /-component iA of A is an admissible
subset of Xi. Denote by ^{X\, /) the set of all admissible subsets
of ΌieiXi

DEFINITION 5. Let A c \JieIX( be a finite subset and apply the
process which constructs the admissible set to each non-empty /-
component iA of A. The result, to be denoted by A, will be termed
the admissible set generated by A. Defining the Λ-operation in

i, /) by A AB = AΛJB then &{Xi, /) becomes a semilattice.
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The so obtained semilattice (^(X/, / ) , Λ) is the free product of
the semilattices (^(Xi), Λ/) , i e l .

DEFINITION 6. Let 4̂ e &{Xi, /) be an admissible set. An equiv-
alence relation α on 7^ is admissible if

(1) α 1/7̂  is the identical relation on each nonempty /-component
ΠA of 7^,

(2) f o r a n y x , y e I A t h e r e e x i s t X i , y \ , x i , y i , ••• , X n , y n € IA
where xk,yke Ia/c for certain α^ G A such that

* = x i , y i α x 2 , . . . ,yn-\<*χn,yn = y,

(3) at most finitely many α-classes contain more than one element.
For A e &{Xi , /) denote by XA the set of all admissible equiva-

lence relations on IA.
Notice that the set XA may be empty for an admissible set A . Let

A be an admissible subset of some X;. If a is an admissible rela-
tion on IA then a is the identical relation on IA by condition (1)
and HΛ = IA . By condition (2) this is only possible if A consists of
only one element. Hence XA = 0 if A c Xz and |̂ 4| > 1. Condi-
tion (1) reflects the second example in §3 whereas conditions (2) and
(3) reflect that the free product is constituted by all finite products
(x i , y\)(x2 9yi)"' {Xn , yn) where (xj, yj) e Sij. By condition (1)

it follows that each a class contains at most finitely many elements.
In the following, we shall call an equivalence class trivial if it is a
singleton.

DEFINITION 7. Put X = UA(Ξ^(χ J)XA Fcyr a e XA, β G Xβ
{A, Be &>{Xi, I)) let a > β if and only if

(1) for each a1 G A there is some βι G B such that a1 >/ βι

(iel),

(2) if x e Iai, y e 7α, for α z , α J G ̂ 4 such that x α y then also

xfaι β'βyfaj βj Here βι and )β7 denote the (uniquely determined)

lower bounds of a1 and α7 in B.
Notice that (1) in fact states that A > B in ^ ( X z , 7).

LEMMA 4.1. ( I , < ) is a partially ordered set.

Proof. Obviously, a < a for each a e X. Let a e XA, β e Xβ
for some ^ , 5 G ^ ( X / ? 7) such that α > β and β > a. Then
,4 > 5 and 5 > A. Hence ^ = B. Condition (2) of Definition 7
now implies that a C β and β Q a (considered as sets of ordered
pairs). Consequently, a = β . Finally, let a e XA , β e Xβ , y G
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such that a > β and β > y. Then A > B and B > C so that
A > B > C. Let a1\ aJG A . Then there are (unique) fi*, βJr G B ,
yι ,γjeC such that a* >, β* >, y* and a* >j βj >j yj Λϊ xay for
some x G 7αι, yG 7α, then xfa^p βyfaj ,βj and thus also x/α<>3/ =

^ i m P l i e S t h a t α > 7

LEMMA 4.2. For eαc/z / E / ίΛβ mapping φi\ Xt -+ X, defined by
a1 H~> ε/ f provides an isomorphic embedding of the partially ordered
set Xi into X.

We will not use this result so that the straightforward proof is omit-
ted. The partially ordered set X of Definition 7 will be the structure
set of the free product of the semigroups Si. We proceed to define the
respective sets Ia and the structure mappings fa β (here ~ indicates
the difference to the mappings faι βl).

DEFINITION 8. For each a e XA, A e &{Xi, / ) , put Ia = IA/a
Further, let A,B e &{Xi, 7), a e XA, β e XB such that a > β.
Let xa e Ia and x1 e Iaι for some a1 e A such that x' € xa. By
definition of > there is a unique β* e B such that a1 >i βι. Put

By condition (2) of Definition 7, the value of xotfaβ does not
depend on the special choice of x' e xa. Therefore, faβ\la-±lβ
is a well defined mapping.

LEMMA 4.3. The mappings faβ satisfy the following.

(1) 7a,a = ttiaforallaeX.'

(2) f a ί β f β 9 γ = / α J whenever a>β>γ.

Proof. (1) Let xα e 7α and x ; G xα for some x ; G 7αι. Then

(2) Let α > i? > γ, α € X^ , β e XB , 7 G X c Let xa e Ia and

x ; G x α , Λ:; G Iai. There are (unique) βι e B, yz G C such that α* >/

^ z >i yt.By definition, xafaiγ = (x%/>y/)y, W f l l ί =_(*'&fβ*)β

and (xa7aβ)fβγ = (x'fa'β'Wβ'/? s i n c e X X ' ^ €χa7aβ N o w

/α',jί'/^,/ = /α ,71 implies that x α / α j7β,y = x<κfa,y

 π

In the following we shall prove that the system (X; 7α, fa β) de-
fines a combinatorial strict inverse semigroup. We therefore have to
find a ^-function δ: |J 7α x U 7α -> X.
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Construction of the δ-function for (X 7α, fafβ). Let α, β e X,
xa e Ia, yβ e Iβ . Suppose that a e XA, β e XB . Let C\ = AuB
be the admissible set generated by A u B (as described in Definition
5). For each a1 e A, βJ e B there are (unique) a\, β{ e C\ such
that a1 >ι a\ and βi > y β[. Define binary relations U\, V\, W7! on
Ic as follows:

yι = {^fβ^β^vfβj9βJ)\ueIβl9 veIβJ, uβv, β\βJeB),

W^iixJ^^y'f/^^x'exanl^

y'eyβnIβJ, aιeA, βJeB}.

Now let /̂i be the equivalence relation on Ic which is generated
by U\ U V\ U W\ . Admissibility of α and ^ ensures that this lat-
ter relation contains only a finite number of pairs with distinct en-
tries. Next suppose that for k = 1, ... , n - 1, admissible sets Q
and equivalence relations ηk on Ic have already been defined and
ηk is generated by a relation U^ U V^ U Wk which has only finitely
many pairs with distinct entries. For each i £ I such that the /-
component He of Ic is not empty put ηι

 λ = ηn-ι\Hc
Then Hc^J^n-x ^s a c °U e c t ion of finite (pairwise disjoint) subsets
of Iι — \JaieX Iai and only a finite number of them contains more

than one element. Let δi(ilc Irfn-γ) be as it is described by Def-
inition 1 in §2 where δi denotes the ^-function of Si. The so ob-
tained set is finite. Let Cι

n — ̂ i(^cn_l/
rli

n-.i) be the admissible set
generated by ^ / ( ^ c ^ / ^ - i ) Put Cπ = ( J Q where the union is
taken over all / e / for which the /-component ίlc is not empty.
Each γι

n_ι e Cn-\ has a unique lower bound γι

n in Cn. That is,
Cn-i > Cn and by induction, A, B > Cx > > CΛ_i > Cn. For
each a1 e A, βj e B let an, βJ

n e Cn be the uniquely determined
elements such that a1 >t a

ι

n , β
J > ; β

J

n . Define binary relations Un ,
Vn, Wn, respectively, on Ic as follows:

n

Un = {(uf, . , υfaj Qj)\uelai, v eIQj, uav, a>, aj G A},
' n ' n

Vn = {{ufβiJ,n,vfβJJj,)\uElβi, υElβJ, uβv, β^βJeB},

wn = {{χ'fa. a., y'fβ} β,)\χ' exanI.,

y'eyβnIβJ, aleA, βJeB},
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and let ηn be the equivalence relation on 1Q which is generated by
UnUVnUWn.

LEMMA 4.4. For each n G N, the equivalence relation ηn on IQ

satisfies the conditions (2) and (3) of Definition 6.

Proof. By construction of Cn, each γι

n e Cn has an upper bound
γι

n_λ G CΛ_i and, by induction, has an upper bound γ\ G C\. Each
γ\ G C\ has an upper bound either a1 G A or βι £ B . Consequently,
each γι

n G Cn has an upper bound either in A or in B . For the mo-
ment, the element of Cn will be denoted by τ* rather than by γι

n . Let
s, t G /c , s £ Iτi, t E I,. We assume that τ/ has an upper bound α*
in yl and τ J has an upper bound βJ in 5 . The cases of both upper
bounds a1, βi being contained either in A or in B are proved anal-
ogously but more easily. Let v G xa\ then v G / / for some α' G ̂ 4 .
By Definition 6 (2), there exist V\, ι/2, v2 , . . . , w«_i, ^«_i, un where
uk> υk ^ I ιk f°Γ some α!f G ̂ 4 (and we omit the upper indices in the
following) such that

Vι elai=laι9 Vιau29...,vn-ιaun, υ G Ian = 1^ .

Further, let w G yβ then it; G / / for some jffJ G 5 . Again there

exist z i , tϋ2, . . . , ^m-i j ^m where zk, wk e Iβ for some βk ̂  B
such that

w G /^/ = /^ , zιβw2,... , zm_ι βwm, wme Iβm = fy .

Each of the elements ak, ^/ has a (unique) lower bound in Cn , say
α*; > tk a n d ^/ > τj (and > denotes the partial order in the respec-
tive set Xi). We now may apply the mappings fak,τk respectively
fβ τ< and obtain a finite sequence

V[ UnU2,...9 V/

n_ι Un Ur

n , v' G \ , W' G 7T/ ,

z[Vnw'2,...9 z'^VnW'n

such that w^, ^^ G 7Tfc, z\, ̂ z ' G Iτ>. By construction we also have
s e IΊχ = Iτi, t e Iτ> = Iτj and (υ', u;;) G WKrt. Consequently, ^
satisfies condition (2) of Definition 6. It has been already mentioned
that the generating relation UnuVnuWn contains only a finite number
of pairs with distinct entries and this implies (3).
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LEMMA 4.5. If ηn is admissible then Cn = Cn+\ = and ηn =

ηn+ι = "- . Conversely, if ηn is not admissible then Cn > Cn+\ and

Άn φ ηn+ι

Proof. If ηn is admissible then all ηι

n -classes are trivial. There-
fore, δi(ilcjη

ι

n) = {δj{x}\x e HCn} = iCn, the /-component of
Cn . Consequently, Cn+\ = \JiCn = Cn. By definition, Un = £/rt+i,
Vn = Vn+\, Ŵ  = Wn+\ and thus τ/w = ηn+\. On the other hand, if
r\n is not admissible then there is i el such that ηι

n has a non-trivial
equivalence class. The construction of Cn+\ now implies Cn > Cn+\.

LEMMA 4.6. Lei £« denote the number of non-trivial ηn-classes.
Then en > en+\ for all n e N. If ηn+\ is not admissible then

Proof. Each γι

n e Cn has a unique lower bound γι

n^{ in C Λ + i . Let
/„ = (J / where the union is taken over all γι

n e Cn. That is,

for x e Ic let x ^ = x/ , v, e IQ provided x e Ivι . Then yj, is

a well defined mapping from Ic to /c . Take a e Ic such that
n n+\ n+ί

aηn+\ is not trivial. By definition of Un+\, Vn+\, W^+1 and Un,
F π , W^ , respectively, it follows that there are u, v e Ic such that
u ψ υ , wf/Λi; and w/,, vfn e aηn+\. On the other hand, if uηnυ
for u, v e Ic then also ufn ηn+\υfn. From this it follows that each

n

non-trivial ηn+\-class contains the fn-image of a non-trivial f/rt-class.
Thus en > en+\. Now suppose that ηn+\ is not admissible. There are
two distinct elements a, b belonging to the same /-component He
satisfying a ηn+\ b. Take any u, v e Ic such that a = ufn , b = vfn.
(By definition of ηn+\ and ηn such elements exist.) Then u and υ
belong to the same /-component ilc . It follows that (u,υ) £ ηn

n

since otherwise, by construction of Cn+\, ufn = vfn. By definition
of ηn+χ there are a\, . . . , ak, b\, . . . , b^ e Ic } such that a = a\,
bk = b, bj = cij+i, aj φ bj and (α7 , ft7 ) G (t/n + 1 U Vn+Ϊ U W^+O^1

for all j . For each j there are w7, Vj e Ic such that α7 = My/n,
fc7- = Vjfn and (M7- , vy) e {Un ΌVnΌ Wn)

±ι. Put u = u\ and v = vk.
Then, since u\ φ v\ and ŵ  Φ vk,uηn and vηπ are non-trivial
^-classes. Since (u9υ) £ ηn these ^-classes are distinct. Since
ufn = Λ y/n+i ft = vfn, wf/Λ/ι and ^ ^ Λ are contained in the same
ί7rt+i-class aηn+\. As mentioned above, each non-trivial ^Λ+i-class
contains the fn-image of a non-trivial ηn-class. Therefore en > en+\.

Combining Lemmas 4.4, 4.5 and 4.6 we have the following
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COROLLARY 4.7. There is a unique least n G N such that ηn is
admissible. In this case, ηn = ηn+\ = and Cn = Cn+\ = .

DEFINITION 9. Let τ = τ(x, a, β, y) = ηn be the (uniquely de-
termined) admissible relation for x, y and α, β in the sequence
A/! , η2, . . . .

In the following, the admissible set Cn where τ(x, α, β, y) = J/Λ

will be denoted by Z>, its elements will be denoted by τ1' rather than
by y<.

LEMMA 4.8. ΓAe admissible equivalence relation τ = τ(x, a, β y y)
as constructed above is the greatest element of

D(x9 a,β,y) = {γ<a, β\xaja^y = yβfβ,γ}.

Proof First, D < A, B. If uaυ then ufa, τ« C/« ̂ /α, τ, and the
analogous assertion is true for β . That is, τ < a, β . Let x' e xo;n/αl,
yf eyβ G / ^ and denote by τ*' and τ{ the respective lower bounds of
α' and ^ in 2). Then x α / α ? τ = ( ^ > t , ) τ = {y'fβ^τ{)τ = yβfβ,τ

since τ contains Wn . In particular, τ G Z)(x, a, /?, y) . On the other
hand, let y < a, β be such that xafa γ = yjff/̂  y. Let G be the
admissible set such that y e XG- Since γ < a, β, so by Definition
7 it follows that each element γ* e C\ = AuB has a unique lower
bound vι in G. Next apply the appropriate functions ft u* to the
relations U\, Fί, f^i, respectively, which have been defined for the
construction of τ. We obtain the relations Uf, F 7 , Wι, to be defined
as follows:

velβj, uβv,

Since γ < a, β and j c α / α j = y^/^, 7 it follows that £/' U V1 U
W c γ. Let the equivalence relation ^i on 7Ci be defined as in
the construction of τ and let a, b be distinct r\\-equivalent ele-
ments contained in the same /-component HQ , that is, aη[b. No-
tice that (a, b) is contained in the symmetric-transitive closure of
U\ U V\ U W\. Let u e Iai, v G 7 ,̂ be such that <z = M^/>yί and
6 = yfi i for appropriate α ' , jffz G /(̂ 4 U B) and y*, y{ G iC\.
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Then afγy = ufaiyγvfβl^ = bfγ,^ (for appropriate vι <t γ
ι

and v\ <i y\) since the pair {ufaι vι, υfβl u,) is contained in the

symmetric-transitive closure of U' U V U W1. These elements be-

long to the same /-component UQ of IQ . Since γ is admissible,

M/^ i/I = v / , ι/l and in particular ι/z = z/{. Consequently, δi(a, £) =

δ(ufaι yι> ̂ Λ1 /) - ' ̂  ~ "1 Also, if i */{ c then for the same reason

δi{b, c) >/ v[. In particular, <5z (α, b) Λ J/(Z?, c) >, ι/z. Using Lemma

2.4 it can be seen that the elements of δi(iICι/η[) are of the form

( (δi(Xι , X2) Λ δi(x2 , X3)) Λ ) Λ <J|(X/_i , X/)

if {xi, . . . , x/} is a non-trivial ?/j-class and ^/{x} = yz E /Q if {x}
is a trivial */}-class. By this description it follows that each element
of δi(ilc /η[) has a lower bound in G. By Lemma 2.7, each element

of C^ = ̂ /(//c />?j) has a lower bound in G. This is true for each
non-empty /-component Cι

2 of C2 so that each element of C2 has
a lower bound in G, that is, C2 > G. Repeating this procedure
n - 1 times it can be seen that Cn = D > G. Now consider distinct
elements u, v e Ir> such that uτv . Then (u9υ) is contained in the
equivalence relation which is generated by Un U Vn U Wn . Applying the
appropriate mappings fχi vx yields the relation ( 7 ' u F ' u W which is
contained in γ. In particular ufτt vi γ ufτj y], that is, γ < τ. D

We have thus shown that the system (X Ia, fa β) satisfies the con-
ditions (l)-(3) of Theorem 2.1 and thus defines a combinatorial strict
inverse semigroup. However, the sets Ia are not necessarily pairwise
disjoint for distinct a, β E X. In order to ensure disjointness for dis-
tinct ^-classes they actually will be realized by the sets Ia x {a} x Ia

rather than by Ia x Ia . In fact we have shown the following.

THEOREM 4.9. Let I be an index set and {Si = (X; /α, , fai βi)\i e
1} be a collection ofpairwise disjoint combinatorial strict inverse semi-
groups Si (havingpairwise disjoint structure sets X/). For the admissi-
ble set A E &(Xi, /) {Definition 4) let XA denote the set of all admissi-
ble relations on IA (Definition 6) and let X = {JAe^(X ) XA For each

aeXA put Ia = IA/a and for a > β (Definition 7) let fayβ*. Ia -> Iβ
be as in Definition 8. Let S = S{s.\iei] = Uaex ^ x {a} x I<* > endowed
with the multiplication

(xα, a,ya)(uβ, β9 vβ) = (xafaτ, τ , vβfβτ)
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where the δ-function τ = τ(y, a, β ,u) (Definition 9) is constructed as
above. Then S is a combinatorial strict inverse semigroup. Its inverse
operation is given by

(xa, a, ya)~ι = (ya, a, xa).

Notice that the structure of S is uniquely determined by the struc-
ture of the semigroups S/, i e / .

5. The main theorem. Now we show that the semigroup (X Ia,
fa,β)> a s ^ *s presented in Theorem 4.9, is the free product of the
combinatorial strict inverse semigroups (Xi'9 Iat.9 fai *i) within the
class of all combinatorial strict inverse semigroups. First we need the
following result.

PROPOSITION 5.1. Let {Si = (X/ 7α, , fai p)\i e /} be a collection
ofpairwise disjoint combinatorial strict inverse semigroups S( having
also pairwise disjoint structure sets Xj. For a1 e X\ let βα, = εj t .
Then the mapping ψι: Sj -> S, defined by

Ψi: (fc, /) .-> (fcββί, ββ., /βα.) (fc, / e / α ί , a1 eXf)

embeds Si isomorphically into S. The semigroups Siψi are pairwise
disjoint

Proof. It is clear that ψ\: Si -> S is injective and that the sets Siψi
are pairwise disjoint. It suffices to show that ψi is a homomorphism.
Let k,l ela,9 s , t e l p , . Then (fe, l)(s, t) = (kfaiS>, tfβ>δi) for

δι = δj(l 9 s). In the following we shall omit the upper index in a1

etc. On the other hand,

(k, l)ψi(s, t)ψi = (faία, εα, lea)(seβ, ε^

To find τ = τ(l, εa9 6β9 s) as it is described in §4, we first have to
find the admissible set generated by {a} U {/?} = {a, β}. Two cases
are possible.

Case (1). The elements a and /? do not have a common upper
bound in Xt. Then C = {α, /?} itself is admissible. Now consider
the relation η on 1Q which is generated by the binary relation U\ U
V\ U PFi as it is defined in §4. Since εa and Sβ are identical relations
it follows that η is the equivalence relation on IQ generated by the
pair (/, s). Consequently, η = ηι is the equivalence relation on
/ c = la\jlβ which identifies / and s and all other equivalence classes



218 KARLAUINGER

are singletons. Let δ^ilcjη1) (Definition 1) be shortly denoted by
δtη. Then

dtf = {δi(l, s), δi(x, x)\x e Ic, x £ {I, s}}.

That is, δiη consists of the element £,-(/, s) to which perhaps a
and/or β are/is adjoined (depending on whether Ia respectively Iβ
contain elements distinct from / respectively s). In any case, the ad-
missible set generated by δ^η consists entirely of the element <J, (/, s).
The procedure for obtaining τ therefore has to be applied only once.
The domain of τ = τ(l, εa , εβ , s) then is the set h.(i,s) > shortly de-
noted by Is . From this, τ = εj , shortly denoted by δ* , and therefore

(k, l)ψι(s, t)ψi = (kδa, εa, lεa)(sεβ, εβ, tεβ)

= (kεafea,τ, τ, tεβfε/ι>τ)

= (kεafε .,eδ, tεβfε , )
a 7 o p ' o

, β 9 i = [(k, l)(s, t)]Ψi.

Case (2). If a and /? have a common upper bound then the meet
a /\ β exists. The admissible set C generated by {α, /?} consists
entirely of the element v = aΛβ . Now consider again the equivalence
relation 77 = η* on IC = IV which is generated by C/i U Fί U W\. Since
εα and εβ are identical relations we only have to consider the set W\.
Since W\ — {{lfa,v , ^ , 1 / ) } , similarly as in case (1),

δiη = {δi{lfa,1s, sfβiU), δi(x, x)\x e Ic, x $ Ufa,*, sfβiU}}.

That is, δiη consists of the element δi{lfaiV, sfβiU) to which per-
haps v is adjoined. Since v — a ί\β we have v > δi(lfa^ , sfβit/) =
δi(l, s) = δ. Consequently, the admissible set generated by δtη
is given by δtf = {£,-(/, s)} = {^}. Again, the domain of τ =
τ(/, εa, εβ, s) is /<?. By construction and similarly as in case (1)
it follows that τ(l, εa, Sβ, s) is the identical relation on Iδ, shortly
denoted by ε$ . As in case (1) we now observe that (k, l)ψi{s, t)ψi =

Next we show that S = (X / α , faj) is generated by its subsemi-
groups Si ψi = {Xi 7α, ,fa<9βή.

THEOREM 5.2. Γ/zβsemigroup S = (X; Ia, faβ) as it is construct-
ed in Theorem 4.9 is generated by the set | J z E / Siψi .
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Proof. Let A e &{X\, / ) , aeXA, x,y e IA. We have to show
that (xa, α, ya) G (U/e/^^/) Denote the latter semigroup by T.
Notice that T is closed under inversion. If \A\ = 1 then A = {a1} for
some a1 G X\ and / G / . Then α = εj and (xα, α, ya) G 5/^/.

{α }

Let A e X, \A\ = n > I and suppose that the assertion be true for
all β e XB where B e 3?{Xi, I) and \B\ < n. Assume first that a
is maximal in XA . That is, if β G XA such that β > a then β = a.
For a, β eXA we have α > β if and only if α C β (regarded as sets
of ordered pairs). Now there exists a1 e A such that for B = A \ {a1}
the relation β = a\Iβ is admissible on /#, that is, β E Xβ - This
can be seen as follows. First notice that B is an admissible set since
each non-empty subset of an admissible set is admissible. Further, it
is clear that the restriction of β to any non-empty /-component is
the identical relation since β c a and a is admissible. For the same
reason also condition (3) of Definition 6 holds for β. Now consider
the graph g(a) defined as follows. Let

V(g(a)) = A

be the set of vertices of g(a) and

E(g(a)) = {{a1, aj}\aι Φ aJ\ UOLV for some u G Iat, v G Iaj}

be the set of edges of g(a). Condition (2) of Definition 6 holds for
the relation a if and only if the graph g(a) is connected. By a well-
known graph theoretic result (see, for instance, Behzad and Chartrand
[3]) there exists a vertex a1 G V(g(a)) which is not a cut-vertex. That
is, removing the vertex a1 from g(a) (and also the edges containing
α1') yields a connected graph g. Since g = g(β) (defined in the same
way as g(a) for β = α|/g) is connected, also the second condition
for admissibility of β holds. In particular, β G Xβ - By admissibility
of α there exist w G /α/, υ G /# such that wαv. Next define an
equivalence relation af on /^ as follows:

wa' = wβ if welβ, wβφvβ,

VOL =vβU {u} = We/,

we/ = {w} if w e Iai, w φu.

That is, oί arises from /? (and βj.) by adjoining u to vβ and
leaving the remaining equivalence classes of /? and ε/, unchanged.
Since α' > a and c/ is admissible on IA it follows that a = a'.
By hypothesis of induction, (xβ, /?, v/?) G Γ and (we, ε, we) G Γ
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where ε = εlai for any x G Iβ and w G Iai. Then also

(xβ,β,υβ)(uε,ε,wε) = (xβJβΛΛ, wefBtξ) e T

for a certain ξ e XA . By definition of multiplication in S, ξ is the
equivalence relation on IA which is generated by β U vβ x {u}, that
is, £ = α. Further, it can be seen easily that xβfβ,a = xα and
wεfεa = wα. For any x G Iβ and w G /α/ therefore (xα, α, tx α) G
T. Since Γ is closed under inversion, also (wa, a, xα) G Γ. Taking
both alternatives for either different x, y e Iβ or different w, z G
7α/ and multiplying the so obtained to elements appropriately yields
(xa, a, yά) G Γ for any x, y e Iβ and (wα, a, za) G Γ for any
w, z G Iai. Summarizing these four cases, (jα, α, ta) G Γ for any
s, t e IA NOW let α G XA and assume that the assertion be true for
all β G XA for which β > a. Let x , y G 7^ . If α is not maximal
in XA then by conditions (1) and (3) of Definition 6 there is β EXA
which covers a. That is, β > a and β > γ > a for y E l ^ imply
y = α. Now there are u, v e IA such that uaυ but (w, i;) φ β . By
our assumption, (xβ, /?, uβ), (υβ, β, y/?) G Γ. Now

Similarly as above it can be seen that ξ = a, xβfβ α = x α , y β / ^ α

ya. Consequently (xa, a, j/α) G T. Again, by conditions (1) and (3)
of Definition 6, for each aeXA there is β EXA such that β >a, β
is maximal in X^ and the interval [α, /?] = {γ G Λf|α < γ < β}
is finite. In fact we have obtained that (xα, α, ya) G Γ for all
a e XA, x, y G I A- Therefore, S = Γ, that is, S is generated

LEMMA 5.3. Let S = (X; 7α, 7a,β) be as in Theorem 4.9 and let
(h>&\,r\), •-- , (In, eΛ, rΛ) G U ί e / ^ ' ^ ; ^α<:^ ε ί being the identical
relation on some Iait and lt, rt standing for their own respective εr

classes. (We shall omit the upper index in a{ in the sequel.) Let
C\ = {Yι\ 9 - 9 ϊn\} be the admissible set generated by {a\, . . . , an}
where at > γn (and several of the elements γn may coincide). Let
1} = hfat, yn and r} = rtfat, γ . Now let k > 1 and suppose that the el-
ements {/̂ , r\, . . . , /£, r^} have already been defined. Let η^ be the
equivalence relation on {/f, r\, . . . , /£, r£} W/ΠC/J w generated by the
pairs {(r\, l\), . . . , (r£_2, /^)}. For each i G 7 let η^ be the restric-
tion of ηk to the i-component {/f, r\, . . . , /£, r£} n Uα'ex ̂ α'
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<5;7/i be the set described in Definition 1 by applying δi to each ηι

k-class.
Let δη^ = {J^wl and let Q + 1 be the admissible set generated by δη^.
Let 7i,Λ:-ι-i 5 > 7n,k+i be the (unique) lower bounds of a\9 ... 9an

in Ck+X. Finally, let /*+1 = ltf*t,yt%M and rf+1 = rtfat,γttM. Then
there is a least q e N such that for D — Cq the equivalence relation
γ = ηq u BJD is admissible on ID and

(*) (Ii, βj, r\) - - - (ln, εn, rΛ) = (Ifγ 9 y 9 r%γ).

Proof. Let j e N . If for some i € I, τ/j is not the identical relation
then

since at least two distinct 7/j-related elements of {//, r\', . . . , Vnί, r^}

are mapped onto the same element of {//+1, r^ + 1 , . . . , lJ

n

+ι, rJ

n*
1}

when the ^/-function is applied. Consequently, there is a (unique)
least q e N such that f/̂  is the identical relation for all involved
i G / . It follows that Cq = Q+i = ••• and ηq = ?7̂ +i = ••• .
Denoting D = Cq then 7 = ηq U ε/ is an admissible equivalence
relation on /£>. By definition of the mappings fa ^ (Definition 8)
and the multiplication in S (as defined in the statement of Theorem
4.9), the product on the left-hand side of (*) is given by

(Ί > βi >r\) - - - (In, en, rn) = (/i/α i,^τ, τ , rnf«n,v*) -

Here τ is the uniquely determined greatest element of the set

A = {ξ e X\ξ < β i , . . . , εn, rtεt7et,ξ = h+\^+ιfat+ι9ζ

for ί = 1, . . . , n - 1},

vt is the unique lower bound of αt in Df and D' is the uniquely
determined admissible set such that ID< is the domain of τ . Since
each element αt has the lower bound γtq = γt in D and

by definition of the mappings feγ it follows that γ is contained in
A. Conversely, let ζ e A with ξ e l ( ? . Denote by ξt the (unique)
lower bound of αt in G. By Lemma 2.7 it follows that γt\ > ξt

for all t. Since rtεjε ^ = r , ^ ^ and //βf7β|>ί = ^ / α , , ^ w e h a v e

χfyti'tityfv/i>ts > f o r a 1 1 x ' y G ^ ί ' r ί ' > ln' r«> f o r w h i c h x^1 ̂
for some i e I. Since £ is admissible, it follows that xfγ 9ξ =
yfΊt,x ,{t, (and in particular & = ξt») and thus <5/(JC , y) >/ ̂  whenever
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x η\ y . If zη\x then for the same reason δf{x, z) >, ξt and thus also
δi{x, y, z} = (5/(x, 3;) Λ δi(x, z) >i ξt. By induction it follows that
for each η[-class, δi(xη\) > ξt (similarly as in the proof of Lemma
4.8). This can be done for each /-component so that each element of
δηi — \]δiK]\ has a lower bound in G. Since C2 is the admissible
set generated by δη\, by Lemma 2.7 each γί2 G C2 has the (unique)
lower bound ξt in G. That is, G < C2. By induction it can be seen
that Cj > G for all j . In particular, Cq = D < G. By definition of
γ and since ξ G A it follows that ufγ ,ξζvfγ,,<*, , whenever wy^.
Consequently, ^ < 7 and thus γ = τ, as required.

We now are ready to prove the main result.

THEOREM 5.4. Let {Si = (Xt, 7α,, fa> fii)\i el} be a collection of
pairwise disjoint combinatorial strict inverse semigroups Sf (with pair-
wise disjoint structure sets Xi). Define admissible sets A e 3?{Xi, / ) ,
admissible relations a e XA, Ia = IA/a, X = {JAe^(x J)^A> ^ e

partial order > on X and mappings faβ: Ia —• Iβ as in §4. For any
xaela, yβ elβ, a, β e X let τ = τ(x, a, β, y) be the δ-function
as it is defined by the process described in §4. Let S = \JaeX Ia x
and define a multiplication on S by

(xa, a,ya)(uβ, β,υβ) = ( * α / α , τ , τ ,

where τ — τ(y, a, β, w). ΓΛ^π 5 w the free product of the combinato-
rial strict inverse semigroups Si within the variety of all combinatorial
strict inverse semigroups. The embeddings ψi: *S, —• S are given by

Ψi:(k9l)»(kεa,9εai9leat) (k,lela.9 a* eXi)

where eaι = ej t. 77z^ inverse operation in S is given by

(xa, a, ye*)"1 = (ya, α, xa).

Proof. Let Γ = (7 / α , ga,β) be the free product of the (pairwise
disjoint) combinatorial strict inverse subsemigroups Si = (Xi /αι,
fai βi) and assume that Xt c 7 for all / in the appropriate way. For
each i G / let ^ : Si -+ S be the embedding (7, k) H-> (7'ε, ε, /:ε)
as described by Proposition 5.1 where j , k & 7α, and ε = ε/z for
α' G X/. Let ψ: T -> S denote the unique extension of the mappings
ψi. By Proposition 5.2, S is generated by \JieISiψi. Hence ψ is
surjective. For 7 = 1, . . . ,«, /: = 1, . . . , m let /7, r7 G 7α where
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OLJ G Xi. and sk, tk G /^ where ^ G Jf̂  (again we omit the upper
indices of the elements α, , βk). Assume that

(**) [ ( / i , r i ) ( / „ , rn)]ψ = [(si , t i ) - ( s m , t m ) ] ψ .

Let (lj, r / ) ^ = (//, β, , θ ) f o r δ7 = % a n d (sk >tk)ψ = (sk » ik > h)
for ιk = 8j . The condition (**) states that

(h > ει * r \ ) ' ' ' (U, en, rπ) = (s\, /i, ίi) (^m, ί w , ί w )

holds in S. Let Li = {An, .. . , λn\} be the admissible set gen-
erated by {a\9...,an} where λμ < α 7 . Let /j = ljga.,λ{

 a n d
rj = rjgaχ and define ^ , ^ by analogy. Let λ\ be the equiva-
lence relation on the set {l\, r\, . . . , /̂  , r^} generated by the pairs
{ ( r | , / ] ) , . . . , (rι

n_x,/,})}. By analogy, let /?i denote the equivalence
relation on {s\, ί}, . . . , s^, tι

m} which is generated by {(ί{, sj), . . . ,
(^m-i'^m)}- For each /-component λj and /?j consider the sets J/Aj
and δip\ (defined as in Lemma 5.3). Let δλ\ = \Jδiλ\ and δp\ =

union being taken over the non-empty /-components. Let

L2 = δλ\ and i?2 = δp\ be the admissible sets generated by δλ\
and ^/?i, respectively. For j = 1, . . . , n and k = 1, . . . , m let
λj2 denote the lower bound of α7 in L2 and pk2 the lower boundj 7

of βk in R2. Let /? = //&^A y 2, ή = 0& y f λ j 2 , ^ = skgβk,Pk2>
tζ = tkgβkίPk2. Notice that the involved structure mappings in fact
are structure mappings of the semigroups Si. Now repeat the same
procedure sufficiently often, say u— 1 (respectively υ — 1) times until
each /-component of λu (respectively pυ) has only trivial equivalence
classes. Let L = Lu = δλu-\ and R = Rv = δpv-\ be the admissible
sets generated by δλu_\, respectively δpυ-\ (defined in the same way
as for the first step). For each α7 let τ7 = λJU denote the (unique)
lower bound of α7 in L. Dually let σk = pkυ be the lower bound of
βk in R. For each j , k let I) = I* = ljgaj,τj, rj. = r̂  = rjgaj9Xj,
4 fc' ^ = ιl = tkgβk,σk. By Lemma 2.3,

(/i, rθ - - - (/Λ , rΛ) = (/J, rj) - - - (ft , ^ )

and

(J l , ί l ) (Jm,ίm) = ( j i , ί i ) ( 4 J 4 )

Next let ξ denote the equivalence relation on II which is generated
by the pairs
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That is, ξ = λu Uεj .By Lemma 5.3 and (**) and taking into account
that the mappings ga ? τ and gβ σk which have been used for the
definition of the elements lj, r' and s'k, t'h in fact are structure
mappings fa 9 τ and fβ ? σ of the involved semigroups 5/ it follows
that λuU εj = pv U 8j . In particular, L = R. Further, ζ is also

L R

generated (as an equivalence relation on IL — IR) by the pairs

That is,
ξ = {AU 8ILU A~{y = (B U 8ILU B~ιY

(' denoting the transitive closure). Let δ denote the ^-function of
T and let

and
u = M{δ{ΐι,s'2)9...9δ(t'm_ι,s'm)}.

Taking into account that δ(y, x) = δ(x, y) < δ(x, x) it follows that
δ(t'k, 4+i) > β a n d ^(ry ? (/+i) > u for all fc = 1, . . . , m - 1 and
7 = 1, . . . , n - 1. We obtain that μ = v . Further, (**) and Lemma
5.3 imply that l[ξs[ and r'nξt!

m. Again, since ζ is generated by A
it follows that l[gτl9μ = s\gσ^μ and r ^ τ ^ = fmgσm9μ. We obtain
that

(/i, r2) - - - (/Λ , rΛ) = (/;, rj) - (/A , Γi)

= il\Sτx ,μ , r'ngτn,μ) = (s[gffi ,μ , 4 ^ ,^)

= (si, ίί) ( 4 , 4 ) = ($1, ίi) (sm , ί m ) .

Consequently, ψ is injective and thus is an isomorphism between T
and S.

Lemma 5.3 and Theorem 5.4 provide the following criterion for
equality of two words in the free product of the combinatorial strict
inverse semigroups 5/ = (X/, Iai, fa* βt) (this generalizes Theorem
4.1 in [1]).

T H E O R E M 5.5. Let {Si = (Xi\Iaι,faι βt)\i e 1} be a collection
of pairwise disjoint combinatorial strict inverse semigroups Si hav-
ing pairwise disjoint structure sets Xi. For k = 1, . . . , n and q =
1, . . . , m let ak, βq G \JieIXi (omitting the upper indices) and let
h>rkt Iak, Sq,tge Iβq. Construct γ and D for {lx, rx), . . . , (/„ , rn)
as in Lemma 5.3 and analogously, / and Df for (s\, t\), . . . 9(sm,tm).
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For each k and q let γk and γ'q be the respective {unique) lower
bounds of ak in D and βq in D1. Let a = (l\, r{) (ln, rn) and
b = (s\, t\) (sm, tm). 77zeπ α = b holds in the {combinatorialstrict
inverse) free product of the semigroups Si if and only if

(1) γ = yr {which implies that D — D').
(2) hfa^γJSxfβ^γ',

(3) rnfaΛ97nγtmffimtγ.m.
Furthermore, a2ί b if and only if {\) holds, a<S?b if and only if

(1) and (3) hold and a 32 b if and only if {I) and (2) hold.

The assertions about the Green's relations hold since for S = {X
Ia,fa,β)> (iJ) € / α x/ α , (&,/) e Iβ x Iβ we have {i9j)3f{k9l)
if and only if α = /?, (i 9 j) Jϊ? (k 9 I) if and only if j = I (which
includes a = β) and (z, j)<9l {k 9 I) if and only if / = k.

The triple {hfa^γj9 y, rnfaH,γnY) can be interpreted as a "canon-
ical form" of the product (l\9 r{) (/„ , r π ) . However, the process
described in Lemma 5.3 for obtaining such a "canonical form" in
general is not "effective" or "computable". It is not expressed purely
in terms of the algebraic operation of the inverse semigroups Si. If
all involved semigroups Sf are finite then the procedure can be ef-
fectively computed. This follows from the fact that for a given (that
is, the elements and the multiplication are completely known) finite
combinatorial strict inverse semigroup S, the partial order X = S/<f,
the sets Ia and all mappings fayβ can be effectively computed. Also,
for two given elements it is decidable whether or not the respective
J^-classes have a common upper bound. In particular, Theorem 5.5
provides a solution to the word problem for the free product oΐ finite
combinatorial strict inverse semigroups. The next section shows that
this is not true for the general case.

6. A counterexample. The following example is obviously influ-
enced by the example of Jones-Olin in [9]. A function / : N —> N is
computable if there is an algorithm (a computer program) which for
any given w e N a s input computes nf. For a precise definition and a
characterization of computable functions see, for instance, Cohen [4,
Chapters 2-4]. An important theorem on computable functions says
that there is such a function / : N -» N whose range is not recursive.
That is, there is no algorithm which for given n eN decides whether
or not n € Nf. Now take such a function / and define a semilattice
S as follows. For i = 1, 2 let N/ = {nt\n e N} and S = {0}UNiL)N2,
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endowed with the following multiplication:

n2mι = m{ iff me {If, 2/, ... , «/},

«i iff π = m

and let all other products be defined to be 0. For n, m e N it is
decidable whether or not m e {1/, . . . , w/} . So the multiplication
in S can be effectively computed. On the other hand, for given n e N
the elements rt\ and ( l / ) i , ft ^ 1/, have a common upper bound
in S if and only if n\ has an upper bound among the elements N2 .
The latter holds if and only if n e {1/, . . . , mf} for some m e N,
that is, if and only if n e N / . This is undecidable by construction. If
a semilattice S is considered as a combinatorial strict inverse semi-
group S = (X; Ia,fa9β) then 5 = X and Ia = {α} for all α G l .
According to Theorem 2.1, S is realized by the pairs {(a, a)\a e S}.
Now let T be any combinatorial strict inverse semigroup not being
a semilattice, for instance, T = B2, the combinatorial Brandt semi-
group with two non zero idempotents. Let a G T, a Φ a1. In a
representation of Γ according to Theorem 2.1, a can be identified
with the pair (aa~ι, a~ιa) where 00" 1 Φ a~ιa. Consider the two
words p, q eS *T, defined as follows:

p = {09Ό)(aa-ι,a-ιa)(0,0)

and

where (0, 0) is the zero of S and rt\ Φ ( l / ) i . Applying Theorem
5.5 to the products p and q one obtains that q = p if and only if rt\
and ( l/) i have a common upper bound in X (= S). However, this
is undecidable by construction.
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