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ON CLOSED HYPERSURFACES
OF CONSTANT SCALAR CURVATURES

AND MEAN CURVATURES IN Sn+1

SHAOPING CHANG

We consider in this note the following question: given a closed
Riemann n -manifold of constant scalar curvature, how can it be min-
imally immersed in the round (n + 1)-sphere? Our main result states
that the immersion has to be isoparametric if the number of its dis-
tinct principal curvatures is three identically. This provides another
piece of supporting evidence to a conjecture of Chern.

0. Introduction. Consider «^"osed the set of all the closed mini-
mal hypersurfaces of constant scalar curvatures R in the unit round
(n + l)-sρhere Sn+ι. Let &n c R be the collection of all the possible
values of such iϊ's. Chern [12] posed the following:

Chern Conjecture. For any n > 3, 3ln is a discrete subset of the
real numbers.

This is a very interesting conjecture in the theory of minimal sub-
manifolds in spheres. To attack this problem, it will be most helpful
if one has a good guess on what ^ " o s e d is for each n . When n — 3,
from his work on the exterior differential systems R. Bryant [1] pro-
posed the following:

Bryant Conjecture. A piece of minimal hypersurface of constant
scalar curvature in *S4 is isoparametric of type g < 3.

Here a hypersurface (not necessarily compact) Mn in S w + 1 is said
to be isoparametric of type g if it has constant principal curvatures
λ\ < •" < λg with respective constant multiplicities πi\, . . . , mg.
Such hypersurfaces with g < 3 are classified due to Cartan's work [2]
in 1939.

Note that the Bryant conjecture is very strong because M3 is not
assumed to be closed. Nevertheless, there is good evidence that it may
be true. In [3], together with the works of Simons [11] and Peng-Terng
[10], the author was able to establish the Chern Conjecture when n = 3
by showing that each M3 e «^ o s e d is an isoparametric hypersurface.
Hence, ^ 3 = {0, 3, 6}. Also, the Bryant Conjecture was verified
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when M3 has multiple principal curvatures somewhere.
Therefore, we would like to pursue such a point of view for the study

of ^ " o s e d in higher dimensions. Suppose that Mn also satisfies the
following:

Condition (g): The number g of distinct principal curvatures is
constant.

Recall that there is one minimal hypersurface among each family of
isoparametric hypersurfaces (cf. [9]). All the closed minimal isopara-
metric hypersurfaces by definition are members of ^ ζ j o s e d and satisfy
Condition (g). Conversely, it is straightforward to check that any
Mn G Λ^Xsed satisfying Condition (g) with g < 2 has constant
principal curvatures and thus is isoparametric. When g = 3, as a
consequence of the main result of the present paper, one has the fol-
lowing:

THEOREM. If Mn e ^ ί* o s e d satisfies Condition (g) with g = 3,
then Mn is either an equator Sn, a product of spheres Sp x Sq or a
Cartan minimal hypersurface.

REMARK. The Bryant conjecture will be established if one can ex-
hibit such a theorem without assuming Mn to be compact.

We now state the following:

MAIN THEOREM. A closed hypersurface Mn of constant scalar cur-
vature R and constant mean curvature H in Sn+ι is isoparametric
provided it has 3 distinct principal curvatures everywhere.

REMARK. When the principal curvatures are all non-simple, R.
Miyaoka [7] exhibited that Mn is isoparametric even without assum-
ing the scalar curvature is constant.

Acknowledgment. We wish to express our thanks to Dr. Y. Xu for
his interest in the work and to Professor S. Y. Cheng for his valuable
comments and continuous support and encouragement.

1. Notations and the reduction of the proof. Throughout the paper,
we use A, B, C, . . . , for indices ranging from 1 to n and denote by
δAβ the Kronecker symbols.
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For each point x e Mn, let λ(x), μ(x) and σ(x) be the three
distinct principal curvatures of multiplicities p(x), q(x) and r(x),
respectively, at x .

In order to establish the Main Theorem, we need to show that all the
three continuous functions λ, μ and σ on Mn are indeed constant
functions.

We first observe that all the three integer-valued functions p, q
and r are constant integers.

Indeed, consider the following system of linear equations with p,
q and r as unknowns:

pλ + qμ + rσ = H,

where S is the square length of the second fundamental form.
Since λ, μ and σ are distinct everywhere, we can solve for p, q

and r in terms of λ, μ, σ and S, which are all continuous on Mn .
This shows that p , # and r are constant as desired since they need

to be integers.

REMARK. By the same argument, one can see that for Vg, Condi-
tion (g) always yields the constancy of the multiplicities.

Therefore, we can choose a local frame {ez, ea, ea) where the in-
dices /, a and a range from 1 to p, p + 1 to p + q and p + q + 1
to/? + tf + r (= n), respectively, such that the second fundamental
form h = ΣA B hΛBωΛωB is given by

(A)

where for each integer s, we denote by Is the identity matrix of rank
s, and {α>/, ωa, ωΛ} is the dual co-frame of {£/, ea, ^} .

Recall that the structure equations of Mn are given by the follow-
ing:

dωA = ] Γ ωAB Λ
B

dωΛB = Σ ω ^ c Λ ωCB - 2 Σ RABCDU>C Λ2
c c,z>

where ω ^ ' s denote the connection forms of ΛP and RABCD the

curvature tensor.
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Define Vh = ΣA B chΛBCωA°^B(^c the co variant derivative of h
by

(VΛ) Σ hABCO)C = dhAB + J Z hCB™CA + ̂  hAC™CB .
c c c

Then, by virtue of (h), (VA) can be interpreted as

(1.1)

(1.2)

(1.3)

(2.1)

(2.2)

(2.3)

y _, haβCωc

c

Σh"bC<*>C
c

C

Σ hinCCOc
C

V KaCOiC

= δaβdβ,

= δa[)d<7,

= (λ- μ)ωia,

= (λ- σ)ωin,

= (μ- σ)ωaa

Recall that A^^c is symmetric in all the indices since the ambient
space Sn+ι is of constant curvature and (cf. [4])

(5)
A,B,C

where f=ΣA,B,c
Note that S = n{n - 1) + H2 - R (cf. [4]) is constant and all the

principal curvatures λ, μ and σ are smooth functions on Mn .
By differentiating both (*) and / = pλ3 + qμ3 + rσ3 , we have

rdσ = 0,

+ qμdμ + rσdσ = 0,

pλ2dλ + qμ2dμ + rσ2dσ = \df.

It follows that

, pdλ _ qdμ _ rdσ _ df_
1 j σ-μ ~ λ-σ ~ μ-λ~ 3D'

where D = (σ - μ)(σ - λ)(μ - λ).
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In the case when all the principal curvatures are non-simple, from
the Miyaoka theorem [7], we immediately assert that Mn is isopara-
metric.

And the case when p = q = r = 1 was already verified by the author
in [4]. It therefore suffices to show that all the principal curvatures are
simple if so is one of them, say, r = 1.

To this aim, we need the following:

KEY LEMMA. With the same notations as above. If r = 1 and
pq > 2, then hian = 0, Vi, a.

The proof of this lemma itself will be given in §2. We will finish
the current section by showing how to achieve our aim from the Key
Lemma.

Consider a point XQ G Mn where df = 0, from (#) we have

i.e. hijA = haβA = habA = 0, V/, j , a, β, α, b,A.

Now suppose otherwise that r = 1 and pq > 2.
From the Key Lemma, the left-hand side of (S) would vanish at

x0 and then

When H Φ 0, since df = 0 at both maximum and minimum points
of / , it would follow that / = jj(S(S - n) + H2) identically. From
(#), this in turn would yield that λ, μ and σ were constant and then
Mn be isoparametric, contradicting the classification by Cartan.

When H = 0, it would follow that S(S - n) = 0 and then Mn be
either an equator or a product of spheres, due to Chern-do Carmo-
Kobayashi and Lawson [5, 6], contradicting the assumption that g =
3.

2. Proof of the Key Lemma. At each point x e Mn , denote by Y
the p x q matrix (hian) e Mpxq . We are supposed to show that Y = 0
everywhere if r = 1 and pq > 2.

We will employ the following [8]:

THEOREM [Otsuki, 1970]. Let Mn be a hypersurface immersed in
an (n + \)-dimensional Riemannian manifold of constant curvature
such that the multiplicities of principal curvatures are all constant.

Then the distribution of the space of principal vectors corresponding
to each principal curvature is completely integrable. Moreover, if the
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multiplicity of a principal curvature is greater than 1, then this principal
curvature is constant on each integral submanifold of the corresponding
distribution of the space of principal vectors.

Now, without loss of generality, assume that q > 2.

Applying the Otsuki theorem to μ and noting that dλ = £ϊχ dμ

and dσ = £ΐ j dμ from (#), we have

K = μα = σa = 0, Vα.

1. p = 1.
Rewrite (1.1) -> (2.3) as

(I.I)

(1.2) haβC = 0, Vaφβ,

(II.l) ωϊa = (μιωa + hXanωn),
Λ — μ

(II2)

ωan = ——(hϊanωι + μnωa).

Recall that the curvature tensor of Mn is given by RABCD =

Differentiating (II.3) and applying equations (II. 1)—(II.3) and the
structure equations of Mn to the resulting equation, we compute

L H S = dcθan = COa\ Λ CO\n + 2_] °)(xβ Λ COβn — (1 + μ^)^>a Λ COn

β

= --j—-(μ\coa + hlanωn)A — μ

Λj- ..
β

1
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RHS= [d
1

μ-σ
1

Λ f μnωa)

h\andωx + dμn Λ ωa + μndωa)

= d
1

μ-σ

1

Λ(hlanωι +μnωa)

dhXan /\ωx + hίan

+ ί//z« Λ ω α

Λ ωβ
Λ ω «

Λco n

β

Picking up only those terms of the type of ωβ Λ ωn , we get

LHS= -
1

(λ-μ)(λ-σ)

- (I + μσ)ωa A ωn,

a Λ n Λ

RHS= ~

//-σ Σ, r ^ ω « Λ
μ

\μnnωn Aωa

V

Aωn

a Λ ω n

73

Compare the coefficients of ωβ Λ ω« and note that —, J,λ-μ\ +

-- ~ Hr^r ' w e find Vα, j? ,

(λ-μ)(λ-σ)

(λ-μ)(λ-σ) μ - σda' + (μ -

Hence

= zδ
aβ
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where z is a smooth function on Mn defined as

μn(μn-σn)
(μ-σ)2

(λ-μ)(λ-σ)

Let Yx denote the transpose of Y. In the form of matrix, the above
equation reads as

YtY = ^zIg.

Since Y £ M\xq with q > 2, it follows that Y = 0 everywhere as
desired.

Case 2. p > 2.

Arguing as before, we further have

λi: = βi — G\\ — 0 , V/ = 1 , . . . , p .

And equations (2.1)—(2.3) now read as

Λ — μ

(H.2)' ωin = - — - j λrtωz + V hiβnωβ

(II.3y ωan = ——- ί ^ hjancoj + μnωa I .

Similarly, by differentiating (II.I)7 we have

LHS = 2 ^ ωy Λ coja + 2^ u>iβ A ωβa + ωin Λ ωna - (1 + Λ,μ)ω; Λ ω α

1

- ( l + 2 / < ) ω i Λ ω α )
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RHS= [d^— 1 Λhianωn

75

1

nιan

λ - μ

dhian Λωn + hi

1

ωnj Λ
ιan 1 /^™nj

J

ωnβ Λ ωβ

Λ ω, V^ hjβnωj Λ a

λ-μ \λ-σ μ-σ

—
(λ- A

ω ; Λ
J

^Jλ-σ^μ-σ) J

where for any two given 2-forms ψ and ψ', by ψ ~ ψ' we mean
ψ = ψf (modω n ), i.e., ψ - ψf = ω Λωn for some 1-form ω .

Now, by picking up those terms of the type of ω, Λ ωβ we have

λnCOi Λ ΛV» Λ Σ

Then,

where z = λπμn + (1 +
In particular,

- σ)(// - σ).

ϊ , a , β .

Again, since ? > 2 we have Λ/απ = 0, V/, α , i.e. Γ = 0 every-

where.

This establishes the Key Lemma and thus completes the proof of

the Main Theorem.
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