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SOME BOUNDS ON CONVEX MAPPINGS IN
SEVERAL COMPLEX VARIABLES

CARL H. FITZGERALD AND CAROLYN R. THOMAS

The coefficient bounds and the Growth and Distortion
Theorems for convex functions in one complex variable
are generalized to several variables. The holomorphic
mappings studied are defined in the unit ball or some
other domain of one of the first three classical types. Each
mapping takes its domain onto a convex set in a one-to-
one fashion. The coordinate functions of each mapping
have multivariable power series about the origin. The
best possible upper bounds are found for certain combina-
tions of the coefficients of these power series. In case the
domain is the unit disk in the plane, these bounds reduce
to the classical coefficient estimates for convex functions.
As an application, these coefficient bounds are used to
obtain the best possible upper and lower bounds on the
growth of the magnitude of each mapping in terms of the
magnitude of the independent variable. Also, estimates
on the magnitudes of various derivatives of each mapping
are found.

Starting with methods which are standard for the Loewner theory
of convex functions of one complex variable [3], we will extend that
theory to several variables. Some of our results have been found
independently, using different methods, by T. Suffridge [5] and T.S.
Liu [2] and J. Pfalzgraff.

1. Notat ion. We will use the following standard notation for
several complex variables. A point in C71 will be denoted by a col-
umn vector

z —

295



296 CARL H.FITZGERALD AND CAROLYN R.TOMAS

and a mapping f(z) from C71 to C71 will be denoted by

Kfn(z)J

where each coordinate function fk is a function from O 1 to C. The
complex Jacobian of / at z, that is,

will be denoted by Jf{z).
We will consider normalized convex mappings from C™ to C™. A

convex mapping is a mapping with range a convex set. Let f(z) be
a one-to-one convex mapping from

Bn = {z: \z\ =

into C71. We wish to normalize f(z) so that /(0) = 0 and J/(0) =
/n, the n-dimensional identity matrix. Note that this can be done
because since / is one-to-one, J/(0) is invertible. The normalization
takes place by a complex affine transformation, Jf(0)"1[f(z) — f(0)].
This complex affine transformation preserves the convexity of the
range. Then / has the form

+

where the sums are over vector indices p = {pi,P2τ 5Pn) with
\p\ = pχ + .. .+pn and zp = z^zψ •. • zξ", with each pk a nonnegative
integer.
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2. Some best possible bounds for convex mappings.

LEMMA 2.1. Let f(z) be a normalized mapping from Bn to O1 of
the above form. Let 1 < r < n) m > I, and m G Z. Then

Σ
r-l

< 1

m - l

Proof. Let ε = e ™ . Since 2_̂  ε
t=o

otherwise,

kt = m if m divides k and = 0

m - l

Σ
t=o

I

where r runs from 1 to n, and indicates the components of the
vector. Let

I

K{zi))

= /- 1
m - l

-Tf

\

0

\ o /

The right side is defined because it is the inverse image of a convex

combination of points in the convex range of /. The initial term

of the r-th component of h(z\) can be found by noting that since

/ behaves near the origin like the identity mapping, so does f~ι.

T h u s , h(zι)= (42,o,...,o)*i + •••),. e B n

Then the component function hr(zι) is an analytic function from
the unit disk to itself with hr(0) = 0. Since /i(^) <E Bn, |/i(^i)|2 < 1.
Let

β

hn(Zι)
2

lr-1

2

z1
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Consider . Examining the initial terms of the series expan-
z\

sion for hr{zχ), we see that the singularity of — ~ - at the origin is
zi

removable.

For any given 0 < ε < 1, consider \zτ\ = 1 — | ε . Then

1 + ε. By the maximum principle, this inequality holds for \z\
1 — \ε. In particular, at z\ = 0,

ψr (AT)

r-1

Choose ψι,... ,φn so that

r = l
i,o,.» ,o)

Since the former expansion is < 1 + ε for all 0 < ε < 1, the last
combination of coefficients is < 1, as claimed. D

We now estimate the growth of /.

PROPOSITION 2.1. Let f(z) be a normalized convex mapping
from Mn into C71. Let U be a unit vector, and let 0 < r < 1. Then

\f(rU)\ <
1 - r

Proof. Rotate the domain so that

rU =
0

.0/
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By the triangle inequality,

fZι\

z

r = l fc,p=l

n oo

r = l A:,p=l
(/k,O,...,O)|Γ(p,O,...,O)

= Σ ( Σ ίtKίo o,| K3
m = 2 \r=l

By Cauchy's inequality,

>,0,...,0)
r = l

n

Σ

by Lemma 2.1. Hence

\ 2

0
< Σ Σ \*χ\

m=2 /c+p=m, A;,p>l

Taking the square root, we obtain

/zx\

and the conclusion of the proposition.
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Note that this upper bound is attained by the following mapping:

/(*) =

This mapping can be understood as follows: Consider the Cay ley
transform of the ball onto the generalized half plane. Clearly that
transform is convex. After normalization, it is f(z) and is still a
convex mapping. [1]

PROPOSITION 2.2. Let f(z) be a normalized convex mapping
from W1 into C 1 . Let U be a unit vector, let 0 < r < 1, and let t be
a positive integer. Then

\Dbf(rU)
(l - rγ

Proof. It can be assumed that

rU =

Then

dz\

0

r = l k=t

= Σ
r=l \k=t
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= Σ Σ * (*-
r = l k,p=t

By the triangle inequality,

n oo

<ΣΣ
r=l k,p=l

\d(k,O,...,O)\\d(p,O,...,O)
\k+p-2t

= Σ Σ
m=2t k+p=m, k,p>t

r = l

By using Cauchy's inequality, one can see that

Σ
m=2t k+p=m, k,p>t

\ r = l \ r = l

By Lemma 2.1, each of the radicals is bounded by one.

oo

<Σ Σ
p=

<!

\m-2t

Taking the square root of both sides of the inequality, we obtain the
desired estimate. Again these estimates are best possible since the
normalized Cayley transform attains the upper bound at each point
of the polar ray. D

For the next result, we need the following lemma.
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LEMMA 2.2. If f(x) is continuous on [α,6] and

liminf > 0

Δ-+0+ Δ ~~

for each a < x <b, then f(b) > f(a).

Proof. Consider g(x) = f(x) + εx for x in [α, b] and ε a positive
constant. Then

l i m n f [ m n f

Δ-+0+ Δ Δ-*0+ Δ

Δ—0+

Let c be a point where g( r) attains its maximum value. Suppose
that c < b. Since

. £g(c + A)-g(c)
liminf > 0 ,
Δ-+0+ Δ

for Δ > 0 and sufficiently small, g(c + Δ) > g(c), which contradicts
the maximality of g(c). This implies that g has maximum value at
6, and g(b) > g(a). Thus f(b) + εb > f(a) + εa. Take the limit of
both sides as ε approaches 0 to obtain f(b) > f(a). D

PROPOSITION 2.3. Let f(z) be a normalized convex mapping
from W into C1. Let U be a unit vector, and let 0 < r < 1. Then

\f(rU)\>
1 +r

Proof. Note that / can be multiplied by a constant complex uni-
tary matrix without changing the conclusion. Assume that / is a
convex mapping from Bn to C , with /(0) = 0, and with J/(0)
unitary.
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By rotating the domain, we can let

0

with a > 0, be a point in {z: \z\ = 1} at which \f(z)\ is minimized.
Since «//(0) was only assumed to be unitary, we can also rotate the
range so that

0
h

0

By the minimality of

0

for Jb = 2,3, . . . , n. Thus

0

0

.. 0

and

r-i
0 -(έ 0 . . . 0
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Let φa(z) be a holomorphic automorphism of Bn that maps

Then

0 to

ίa\
0

and

I-a \

\ υ /

to 0

— a \

and

\ 1 — az\ I

/ 1

1 - α 2
0

0

0 0
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Now normalize the mapping. Let

n*) = κi —1
0

I 1

1 - α 2

0 0

• Ψa(ζ) ~ f

0

0

1

0

fθψa(ζ)-

h

I -a2/

(a\\\

0

/ 1
0... 0

\

dzx

* • */

Then

ί-a\
0

- / i

The mapping

= 0, J F ( 0 )

(^) is a normalized convex mapping, because
/, and this normalization process preserves the
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convexity of the range. Thus by Proposition 2.1,

Since

and

-h
0

2dfl

a dzλ

fa\
0

h
0

fiJ

dfi
dzx

h

fa\
0

\o/
<a\
0

(t\
0

1 -a

a)

α) '

where the last partial derivative is with respect to the real variable
t and the expression is then evaluated at t — a. Then

0

w
φ 0 and
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is locally conformal near z\ = a. By the minimizing choice of the
point

/Λ
dJλ

la\ dt
0

0

h
0

\0/

is real and positive. Hence

ίt\ ίt\

itlogfi

at t — α, and, at t — α,

d

dtl°g h
0
*

w
1 d

h

ft\
0

:

2

Let g(r) = minlog | /(^) | . For any z0 with
|z|=r

minimum is attained, and for any η > 0,

1

α(l + α)

:0 | = r, where the

wmin r
log | / ( , ) | > ς ( r ) + (1 - η)Ar

for £, Δr > 0 and both sufficiently small.
Note that the subset of {z: \z\ = r} on which the minimum of

log |/(2:)| is reached is compact. Thus that set of points can be
covered by finitely many open spherical caps of {z: \z\ = r} so
that the inequality holds on the related spherical caps on the sphere
{z: \z\ = r + Δr}. Let Δr 0 be the minimum of the finite number
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of Δ r used. Outside the union of these spherical caps, log \f(z)\ >
q{r) + a for some fixed α, where q(r) + a is the minimum of log \f(z)\
on the compact set which is the complement of the union of the
above open sets. By continuity, a similar inequality holds on the
corresponding subset of \z\ = r + Δr. Therefore,

q(r + Δr) > q(r) + (1 - η)Ar ί . \ ,)

for Δ r 0 > Δr > 0. Thus

Δr-*o+ Δr r(l + r)

Then

satisfies the hypotheses of Lemma 2.2 for ε > 0, and it follows that

Q(r) ^ Q(ε) a n d hence

) _ q(ε) > Γ (

άτ = Γ [ i + ̂ L l dr ,
J HK } - Je r ( l + r) Λ L r 1 + r J '• r )

and

Since q(r) = minlog |/(z)|, ?(ε) = ε + . . . , and

for 1̂1 = r. Thus

+ l o g £

Allow ε to approach 0, and exponentiate both sides to obtain \f(z)\ >

D

COROLLARY 2.1. £ef /(^) 6e α convex function from Bn.
/ covers the ball of radius 1/2.

Again, the normalized Cayley transform demonstrates that Propo-
sition 2.3 and Corollary 2.1 give the best possible results.



CONVEX MAPPING 309

3. Other Bounds for Convex Mappings. The same method
can be used to estimate other useful combinations of coefficients.
For completeness, we will give some of these results even though
they are not necessarily the best possible bounds.

LEMMA 3.1. Let f(z) be a normalized convex mapping from Mn

into C1. Then

r = l

for N a nonnegative integer.

Proof First consider the case when N — 0. Then

r = l

)

(7V,i,o,.. ,o)
- Z^ |α(o,iA ..,o)

r = l

= 1 .

Now consider iV > 1. Since / has convex range, its range includes
the points

47V

-2τrtfc

e 4 z2

k=l

We will consider the contribution of terms of the multiple power
series expansion of the coordinate functions of / to the coordinates
of the sum P(^i, 22).

For terms of / which consist only of a constant, Ci, times a power,
p, of the first coordinate variable, the contribution to P(zι,z2) is

Recall that
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is 1 if p is an integer multiple of AN and 0 otherwise. Thus the
only terms of this form which contribute to P(zχ,Z2) will be those
for which p is an integer multiple of AN. Similarly, for terms of /
which consist only of a constant times a power, g, of the second
coordinate variable, the contribution to P{z\,z<i) is 0 unless q is an
integer multiple of 4.

For mixed terms of / which consist of a constant, C2, times the
first coordinate to a power p and the second coordinate to a power
#, the contribution to P{z\,z<ι) is

Ί 4N

4 F Σ < * ( ' W * I ) (
P ( -2πtk

( e 4

4 N
2πik(p-Nq)

Z\Z2

This sum if 0 unless p — Nq is an integer multiple of AN. We
will consider Z2 = O ί l^il^J and will look at terms of the series

expansions which are at least O (\zι\2N) as z\ —* 0. We will not

consider mixed terms with q > 1 or p > 27V — 1 because such terms

are o (\zι\2N). Therefore the only mixed terms that will contribute

to P{z\,z<ι) are those with q = 1 and p = N. Thus

P(zuz2) =

Then / 1(P(^i,^2)) is defined and in Bn and equals

The sum of rotations of the squares of these coordinate functions
will have magnitude less than one.

Let
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Note that q maps B2 into the unit disk. For a fixed c > 0, let
z2 = cz^. Then consider

Q(zi) =
L r = l

Notice that Q(^) has a removable singularity at z1 — 0. Con-
sider that singularity removed. By the maximum principle in one
variable,

l

\4N '

That is,

Σ Je
r = l

ψr

Since c does not appear on the left side of the preceding inequality,
we are free to choose c. Let

c =
NN

Then the monotonicity of the right side implies that, if we formally
consider the supremum over points (zi,cz^) in the closure of B2,
the supremum is obtained on the boundary of the closure of B2,
|zi|2 + c2|2i|2j/v < 1. The left side of the preceding inequality is
monotonic in \z\ |, thus there is equality at only one value of \z\ |. One
value which makes it an equality, and therefore the only solution, is

Then

Thus
N

N

r = l

{N +
NN

Choose ψ\,... ,φn so that

lψr
 KΛΓ,I,O, ..,O)) = Σ Kΐv,i,o,. ,o)

r = l τ=\
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Then

r = l

<e(N

D

Note: The above value for c is the best choice for c in the preced-
ing proof. This can be demonstrated as follows:

Fix any c > 0. Then the monotonicity in \zχ\ of c 2 |zi | 4 i V implies
that

sup c*\z,\iN

is attained on the boundary of B2, that is, where |-Zi|2 + c 2 |zi | 2 i V = 1.

At such a value of |zi|,

(i) c2hΓ = N 2 i V ( i-N 2 )

The right side of equation (1) has a fixed value since \zχ\ is deter-
mined by the point being on the boundary of B2. Then allow \zχ\ to
vary in [0,1], and the maximum value of the right side of equation
(1) will be greater than or equal to the actual value found using the
fixed c. The maximum mentioned above will be attained when the
derivative of the right side of equation (1) equals 0. (The endpoints
give a value of 0, and are therefore ruled out.) The derivative is 0
when

/ N

and then we obtain the same value for the right side of equation (1)

as when we chose

I(N + I)"-1

C = V
in the proof of the lemma. Thus the proof of the lemma yields the
best possible result for this method of proof.
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Now Lemma 4.3 will be used to study directional derivatives.
Let Dγf(z) be the directional derivative of f(z) in the direction

of the unit vector V. For U and V unit vectors, define U orthogonal
to V by orthogonality as complex vectors, that is, {U, V) — 0.

PROPOSITION 3.1. Let f(z) be a normalized convex mapping
from Bn into C71. Let U and V be unit vectors with U orthogonal to
V as complex vectors, and let 0 < r < 1. Then

el/2

\Dvf(rU)\ < —~

Proof. We can assume that

U =
0

\0/

and

Then

(zx\

dzj
k=0r = l

r = l k,p=O

n oo

r = l A\p=C

V =

1
0

kzv

by the triangle inequality,
oo n

= Σ Σ Σ
m = 0 λ;+p=m, Ar,p>0 r = l

<Σ Σ
ra=O k+p=m, k,p>0

!>,o o,|K!,,o o

m

\

n

\ "̂

r=l

α(M,o,...,o) Σ Kί
r = l

',.-,0)



314 CARL H.FITZGERALD AND CAROLYN R.TOMAS

by Cauchy's inequality

Σ ey/k + ly/m- Λ:
m=0 k+p=m, k,p>Q

by Lemma 3.1

m=0 \

m = 0

Taking square roots of both sides, we obtain the desired results.

PROPOSITION 3.2. Let f(z) be a normalized convex mapping
from Bn into C". Let U be a unit vector, and let 0 < r < 1. Then

\det Jf(rU)\ <

Proof. Assume

rU =

Then

and

d

d

dzi

f(rU) <

I(rU) <

( i -

0

" ( 1

r)(3n+l)/2 *

1

- k i l ) 2 '

-kl ) 3 - 2

for k = 2,. . . , n. These are bounds on the lengths of the columns
of J/, thus

1 e^r<

|detJ/(rC/)| <

D
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4. Convex Matrix Mappings. Now we will consider map-
pings from the classical domains. Let f(z) he a one-to-one biholo-
morphic mapping from Rj into C m X n , where m < n and

= {z
0} [4]

where M > 0 means that the matrix M is positive semidefinite. For
every matrix M G C m X n , define the matrix norm of M by

IIMII = max \MU\ .11 " ue&\u\=iι '

LEMMA 4.1. Let f{z) be a normalized convex mapping from
into C71*71. Fix

z^ 0 ... 0 . . . 0\

0 z\2 . . . 0 . . . 0

^ 0 0 . . . z*mm . . . i ,

with matrix norm \\ZQ\\ = 1. Then for all ζ G D, the unit disk in C,

ζz0 G Rj.
oo

Let g(ζ) — f(ζzo) = Σ ^ n Cn; ^ z ^ ^n defined as the coefficient
n = l

enίr?/ o/^. Then for fixed q and j ,

-u 2
< 1 .

Proof. Let ε = e <? , and let

(Note that pq is a product, unlike jA:.) This is well-defined because
the range is convex. Then for a fixed j , since h(ζ) G R/,

ΣlMOI2<i
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Let kj(ζ) = λjΛOe*'1 +
ε > 0, for Id < 1 - \e,

+ . . . + h%(ζ)ei"">. Given any

*i(C)
< 1 + ε , thus

Choose ψji,... <£jn so that

Since f |2
< 1 + ε for any ε > 0, £ |/)f |2 < 1.

fci
D

PROPOSITION 4.1. Let f(z) be a normalized convex mapping
/roraR/ intoC"1™. Then

"«' * ̂ rq

Proof. Consider a nonzero z in R/. There exist unitary matrices U
and V such that UzV is of the form of z0 above. There is a positive
6 such that bUzV has norm 1. Then U*'f(UwV)V is a normalized
mapping. Thus we can rotate z by unitary transformations to
where ζ £ C, and

z° 0 ... 0 . . . 0\

Zo =

0 z\2 ... 0 . . . 0

\0 0 ...z°mm...θ)

has | |zo | | = 1 and ζz0 € Rj for all ζ e D. Let #(C) = /(C*o) =

p = l
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By definition,

m n oo

3=1 k=l p = l

m n I oo

i=lAr=l \ p = l
m n oo

<ΣΣΣ

U = i

\jk ICI
j = l A J = 1 p , g = l

by the triangle inequality.

m n oo

= ΣΣΣ Σ
oo

= ΣICΓ Σ
r=2

oo

<ΣKI2 Σ Σ
r=2 p+q=r,p,q>Oj=l

by Cauchy's inequality
oo

<Σicr Σ m

k=l

r = 2

r = 2

= m
ICI2

( i - I C i ) 2 '

A r = l

For ζz0 — z, \ζ\ = ll^ll, and g(ζ) = /(z). Then

Ikll
(i - Ml)'

D

PROPOSITION 4.2. Let f(z) be a convex mapping from R/ into
C m x n . Let q be a positive integer. As in the proof of Lemma 4-1
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above, fix such a z0 and let g(ζ) = f(ζz0) = JΓ ^nC ίor ICI < 1-

Then
π = l

dζ*
<

(l

Proof.

dζo

m n / oo

m n oo

by the triangle inequality

m n oo

= ΣΣΣ Σ

Σ
P+r=t,p,r>q

Σ

J = l

Dί
ik ICIp+r-2q

Σ \Σ
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by Cauchy's inequality, and by Lemma 4.1, this is

Σ
p+r=t,p,r>qt=2q

-
~ m

t-Ίq p=q

«'• Ϋ
(i-ICI) ί +V •

For Id =

dζ* < \fm

D

Note that these results extend easily to the classical domains
and

Summary. Using a standard method from one variable, we have
extended some of the geometric theory of convex functions to convex
mappings in several variables. For mappings of the ball in C71 and
for mappings of the first classical domain onto convex sets, we have
found bounds on certain combinations of coefficients. Clearly the
work carries over to R/j and R/JJ. These estimates yield bounds on
the growth of the mappings and estimates on radial derivatives. All
these estimates are the best possible. The same coefficient estimate
gives estimates on other combinations of coefficients and on quan-
tities such as the Jacobian. For these, the estimates are apparently
not the best possible.
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