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THE DISTRIBUTION MOD n OF FRACTIONS WITH
BOUNDED PARTIAL QUOTIENTS

DOUG HENSLEY

Given a reduced fraction c/d with 0 < c < c/, there is a
unique continued fraction expansion of c/d as
[0; αi, α2,.. .αr] with r > 1, 0 < a,j for 1 < j' < r, and αΓ > 2.
For fixed positive integer n, the asymptotic distribution
of the pair (c, cf) mod n among the rc2Π. (1 ~ 1/P2) possi-
ble pairs of congruence classes is uniform when averaged
over the set Q(x) := {(c,d) : 0 < c < d < x,gcd(c,d) = 1} as
x —• oo. The main result is that if attention is restricted
to the (rather thin) subset Qm(x) of relatively prime pairs
(c, d) so that all the continued fraction convergents a,j < m,
the same equidistribution holds. As a corollary, the rel-
ative frequency, both in Q(x) and in Qm(x) for any fixed
m > 1, of reduced fractions (c, d) so that d = b mod n, is
asymptotic to n - ^ p ^ ^ l - p - ^ Π . i n ί 1 - ^ 2 ) - 1 . These
results lend further heuristic support to Zaremba's con-
jecture, which in this terminology reads that for some m
(perhaps even m = 2) the set of denominators d occurring
in Qm(x) includes all but finitely many natural numbers.
The proofs proceed from some recent estimates for the
asymptotic size of Qm(x). Thereafter, the argument is
combinatorial.

1. Introduction, Among fractions c/d with 0 < c < d,
gcd (c, d) = 1, and d < #, asymptotically equal proportions have

(c,d) = (0,1) mod 2, (c,d) = (1,0) mod 2, and (c,rf) = (1,1)
mod 2. (The proof is immediate and is left to the reader.) The same

equidistribution among classes (a mod n,δ mod n) with
gcd ( gcd (α,n), gcd (6, n)) = 1 holds by a fairly simple inclusion

and exclusion calculation. Numerical experimentation and Occam's
razor both suggest that the same equidistribution should hold when
attention is restricted to fractions c/d of the form [0;αi,α2,... ar]
with ar > l , r > 1 and all αt < m. So it is. But before giving
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the proof, a cautionary example may be in order. If, instead of re-
stricting the partial quotients to lie in a set PQ = {l,2,...ra},we
take m = 30, PQ = {16,21}, then the result fails. Indeed, of the
576 pairs (α mod 30, b mod 30) satisfying the condition above that
gcd ( gcd (α,n), gcd (6, n)) = 1, only 480 occur.

An easy consequence of equidistribution of (c mod n,d mod n)
is that the proportion of fractions under consideration with d < x
and satisfying d = b mod n, but with no corresponding modular
restriction on c, is asymptotically given by

ίi) π-1 Π a-p^na-?-2)-1.
p\ gcd (6,n) ϊln

The proof of this equidistribution is elementary in the absence of
constraints on the partial quotients. Dealing with this constraint
requires some recent results on the distribution of the denominators
of fractions with bounded partial quotients ([3],[4]) . According
to these papers, the number of such fractions, with denominator
d < x, is given asymptotically by CmxD^ where Cm,D(m) > 0.
As D(m) « 1.06256 for m = 2 and is increasing in ra, there are
more than enough such fractions for all large integers to occur as
the denominator of such a fraction. Zaremba has conjectured that
for some sufficiently large m, this is indeed the case [8], [9]. The
smooth large-scale distribution proved in [4] for fractions of this type
supports his conjecture, even with m = 2. It could well happen,
though, that for some reason there are local fluctuations in this
distribution so strong that infinitely many denominators are not
represented. One possible source of local fluctuations is the prospect
that some denominators, those with few small prime factors, occur
more often than others. The effect, if it conforms to (1), would not
be strong enough to prevent a Poisson process probabilistic model
of the distribution in question from issuing an endorsement of the
conjecture. As a consequence of our main result, (1) holds as well in
the setting of bounded partial quotients, which gives further support
to the conjecture: a plausible mechanism by which it might have
failed is refuted.

The conjecture has been studied from other perspectives. Borosh
[1] found computational evidence in favor of the conjecture for
n = 5,4, and perhaps 3, but for m = 2 there are a multitude of
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exceptions. On the other hand, the exponent 1.06256 in the asymp-
totic number of eligible fractions is barely sufficient to permit the
truth of the conjecture. The heuristic mentioned above predicts no
early end of exceptions in this case. For certain types of numbers,
including powers of 2, Niederreiter [6] has proved that m = 3 works.
This resolves a question raised in [2]. For a nice survey of 'bounded
partial quotients', see [7],

2. Terminology and Preliminaries. Fix an integer m > 2.
Let

(2) Qm(x) := { c/d : 0 < c < d < x, gcd (c, d) = 1,

and there exist r > 1, and t>2 , 1 < i< r

with 1 < V{ < m, (1 < i < r), vr > 1,

for which c/d = [0; υ 1 ? v 2,... vr] }.

Also, let

(3) Qm(x, a mod n, b mod n)

:= {c/J : c/d G δ m ( i ) , c = α mod n, and d = 6 mod n},

and 1 < υt < m for 1 < i < r.}

Given ϋ G .Fm? l et lex(υ) denote the r in v = (vi ,υ 2 , . . . v r),
and let (v) be the denominator of [υ] := [0; υi, v 2,... υ r]. Let υ " : =

Ίjj. i^2, Όγ j ) , i) I — (ΐ^2? ^3? ^7* j? a n d ΊJ i — it? ) —

(̂ 2?̂ 3? ^r-i) Then

Let {v} := (v~)/(v). Then reversing the sequence gives [0; tv,. . . vι]

The four integers (•) associated with v are the entries of the matrix

(5) Γ(.) := = π Γ
and det T{υ) = (-1)Γ = (- l ) l e x ( υ ) .
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Given u, v G Tm with u = (wi, 1/2, -.. ur) and v = (t>i, t>2, v5)
let ut> denote the concatenation (1̂ 1,̂ 2? wr, t>i, t>2> v8). Let wfc

denote the concatenation of k copies of u. Then from (5),

(6) <„!,) = («) («,χi + M M ) .

Also, for u G Tm, v € Tm,

(7) [(«»"), («»)] = [(«"), («>]Γ(v), Γ(ut ) = Γ(u)Γ(«),

and Γ(«*) = (V(u))k .

Let

(8) Γn(«) :=
(u_) mod n (u_) mod n
(w") mod n (υ) mod n

Then Γn(u) is an element of the finite group Gn consisting of all two
by two matrices over Z mod n with determinants ± 1 mod n, with
group operation multiplication mod n. Our main theorem asserts

equidistribution of , "( , ~v mod n among the elements of Gn.[(υ ) (v)\
With this, and with the modicum of information about Gn detailed
in section 5, we can get the asymptotic distribution among v with
(v) < x of (υ) mod n. Though not uniform, it is even enough
to support the heuristic argument for Zaremba's conjecture with
m = 2.

Clearly {Γn(w) : u G Tm} is a subgroup of Gn. In fact it is the
whole group: In any finite group the set of all nonnegative powers
of a fixed element is a subgroup. We take that fixed element here

to be Γ n (l) = , and we take u* = I*" 1 G Tm where k is the

order in Gn of Γ n (l). Then

(9) Γn(u*2) = £ Jj and Γn(2u*) Ξ £

These two matrices and their inverses generate the subgroup of
Gn consisting of matrices of determinant 1, and since άetYn(u) =
—1 mod n, the whole of Gn is generated. Now let

(10) Tm(x,u) := {uw G Tm : (uw) < α:}, and
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F^x^u^v) := {uwv G Tm : (uwv) < x}.

From [4] we have the following result:

LEMMA 1. For every m > 2, there exists a function gm : [0,1] —>
[1/4,4]; twice differentiable, convex, and strictly decreasing, with
—4 < g'm(t)/gm{t) < 0, and positive constants D(m),K{m), such
that for every u G Tm,
(i) \imx^x-D^^m(x,u) = K(m) ^

and

(ii)

These results are not known to hold uniformly across m, or across
w,t;6 Tm. There is a less exact estimate which does hold uniformly:

LEMMA 2. There exist constants Ci,C2 > 0 such that given m >
2 and u,v £ Tm,

χ-D^\u)D^(v)D^#Tm{x,u,v) G [CUC2] ifx > 4<ii)(υ).

This last follows by a short calculation, given below, from The-
orem 2 of [3] to the effect that for arbitrary m,x > 1, #Tm(x) is
comparable to xD^m\ For arbitrary u,v we have #^Fm(x,u,υ) <
#Tm{x/{{u){v))), and #fm{x,u,v) > #^m(a:/(4(M>(τ;>)), since if
(uwv) < x then x/((u)(υ)) > (w) while if x/(4(u)(v)) > (w) then
(uwv) < x.

In the application of (ii), v = (ml). Sequences which end with
an "m" followed by a "1" correspond to fractions with final partial
quotient ra + 1. Other sequences correspond, in pairs, to individ-
ual fractions of Qm. Thus we first establish equidistribution mod
n for general T^x^u) and Tm[x1 w, ml), and then the correspond-
ing equidistribution result for Qm is immediate as the y G J-m{x)
with one-entry endings other than "1" correspond one-to one with
elements of Qm(x). Our main result, then is

THEOREM 1. For every integer m > 1 and n > I, and for
every u^v G Tm) all possible values ofΓn(uwv), that is, all matrices
with determinant Ξ I or —I mod n, occur with asymptotically equal
frequency among w G Tm for which (uwv) < x as x —> oo.

Let Tn(c/d) denote Γn( the sequence u of partial quotients of c/d).
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COROLLARY 1. For every integer m > 1 and n > I, all possible
values ofΓn(c/d), that is, all matrices with determinant = 1 or —
1 mod n, occur with asymptotically equal frequency among c/d G
Qm for which 0 < c < d < x as x —* oo.

3. The tree structure of Tm and "bouquets". We get a
natural tree structure on Tm if we declare an edge between u and uk
whenever u G Tm and 1 < k < m. The root of the tree is the empty
sequence, denoted " root", with (root) := l,[root] := {root} := 0.
(This is consistent with our earlier definitions.)

A bouquet is a subset B of Tm such that
(I) If 6i,62 £ B-* then 62 is not a descendant of bx in the tree of

(II) The mapping b —» Tn(b) is a bijection from B to Gn. (Meta-
phorically, (II) says that every kind of flower is found once in the
bouquet.)
Clearly, if u,v G Tm, and Tn(uBv) denotes {Tn(ubv) : 6 G B}, then

(11) Tn{uBv) = Gn.

Now, we need some uniformity in the "stem lengths" (b) in our bou-
quet to make use of (i) and (11) above. Call a bouquet e -balanced
if for bub2 G B,

(12) ( M < ( 1 + «)<**), KM - M l <

LEMMA 3. For every m,n > 2 αnc? every e > 0; ίΛere e πsfs an
e-balanced bouquet B C ̂ m

Proof We can ensure the second and third conditions in (12) by
prefacing and suffixing each element of an arbitrary bouquet with
sufficiently many ones, say N(e) of them (the same number for each
element),enough so that

(13) < and
~ 100

'y/5-ϊ

100
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Now let uι denote the sequence l * i = o r d e r (ΓU)) for which Γn(ui)

is the identity matrix /, and let u2 be the corresponding sequence

2A:2=order (Γ(2)) A l i t t l e a i g e b r a shows that there are positive con-

stants J\ and J 2 so that

(14) <lfc> = Λ 1 + 0

and (2*) = J 2 (l + 0(Λ/2 - 1)*) (1 +

Now given a bouquet J5, not necessarily e-balanced, we consider the
problem of choosing A;,- and j,-, 1 < i < #Gn = #B so that all values
of

fall within a factor of (1 ±e) of each other. We assume ki,ji > N(e).
Now with λi := (y/E + l)/2 and λ2 := 1 + v/2, from (5) and (14) it
follows that

(15)

) (l + K )K] + O(β/50))

0(6/50))

= ((1 + {lN(%}λ?)(l + λ Γ V ) 2 + O(e/10))

Extracting common factors, it will suffice to take k{ and j t so that
for all choices of i\ and z2, if αi denotes

J ^ ( ) g h ( ) λ 2

and «2 denotes

\og(lN^bi2) + ki2lex(ut) log λi + ii2lex(w2) log λ2

then

(16) |αα - α2 | < e/10.



50 DOUG HENSLEY

But (log λ2)/(logλχ) is irrational, since there is no solution in posi-
tive integers to λj = λί;. Thus the sequences

M7Ϊ (logjlbj) .
1 ; VMuOlogλ i " JV lec(u1)logλ1/

all contain infinitely many elements which, modulo 1, fall between
0 and e/100. For each i we take ji to be such a j , and larger than
N(e). Then we choose kι to put the integer parts of

into agreement, and if necessary, we then add some constant to each
h{ to bring all of them up to more than N(e).

This procedure generates a set

B' : = { \ N ^ b i U k { v ? i \ N ^ : 1 < % < # G n }

which is e-balanced by its construction, and still, by (11), a bouquet
like B, This proves lemma 3. D

4. A limiting process. Let Jr

m(x^U^v) := {y G Tm : 3u G
U,w G Tm so that y = uwv and (uwv) < x}. Now for fixed u,v G
Tm, we have from (ii) of lemma 1 an asymptotic formula for
φTm(x,u,v). From this and the definition of an e-balanced bou-
quet £?, it follows that the values of Γn are distributed uniformly
to within a factor of (1 ± 3e) on U^B^mi^^b^v) = Tm{x,uB,v).
Now among all sequences uwv G Tm, we claim that these represent
asymptotically a positive fraction of all of Tm{x, w, v). Indeed, from
lemma 2, if x > 4(ub)(v) for all 6 G B then since (ub) < 2(u)(b) and
since 0 < D(m) < 2,

(19)

or equivalently, there exists δ > 0 such that for all u,v G Tm, all
t > 0 and all e-balanced bouquets B, if b G B and x > 8(u)(b)(v)
then

(20) #Γm{x, uB, v) > δ#Tm{x, u, v).
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We have our foot in the door: near-uniform distribution holds on a
nonzero percentage of jΓm(u,i;). The remaining sequences are the
ones w of the form w = uw'v where w' does not have the form bw"
for any b G B. The strategy is that we can group these, too, into
packages of the form Tm{urB, v) on which near-uniform distribution
of values of Γn occurs.

Let Si := J3, Rι := {"root"} (the set, that is.). Recursively define

(21) R{ := {v G Tm : if uw = v then u (£ Sj for j < i and

if w G Tm then vu; $£ 5j for j < zand yet

3w 6 "̂m v~w G 5j for some j < z},

and Si := 52_! U (U r € f trJ?).

That is, i?2 is the set of all v so that neither v, nor any ancestor
or descendant, belongs to a prior Sj, but υ~, the parent of ι;, does
have some (other) descendant belonging to a prior Sj.

Thus B and i?i are disjoint, and for every w G Tm with lex(u>) >
max6€jglex(6) there is a unique representation w = cw\ with c G
BuRi. Similarly, for every j > 1 and every w G Tm with sufficiently
large lex(u ), there is a unique representation w — cvJ with c G
Sj U /?j, and Sj Π Λ^ = φ. For every j and every r G i?j, the values
of Γn are approximately uniformly distributed on !Fm{urb^v)^ and
so also on Ur6/?j^

r

m(wrJ5,t;) = Fm{uRB,v) for x sufficiently large.
Apart from these uniformly distributed "packages" of the form

{urbwυ : (urbwv) < #, r G Rj, and 6 G JB}, there are sequences
uw'v not of the form rbwυ . These are distributed by Γn into G n in
an unknown way. On the other hand , for large j and x they are,
we shall see, vanishingly rare as a proportion of J~m(x,u,v).

To prove this, we start with the weaker claim that there is a
δ = δ(B) > 0 such that for all be B, all y,υ G Tm and x > 8(yb)(v),

)

) -

To establish (22) we refer to Lemma 2. From that lemma,

while
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where b is an arbitrary element of B. (The implicit constants in
">>" here are independent of j/, v, f?, or m. )

Now let Tm{x, yB, v) denote that subset of Tm{x^ j / , v) consisting
of all z G Fmix) of the form z = j/ct; with c not of the form bw for
any b E B. Since .^(a;, 2/5, v) Π Tm{x, yB, v) = φ, for large x,

(23) #?Z{ΪVΈ^ < 1 - *, and
1 ; #f(xyv) ~

But from the definitions of 5 and of .

(24) ^m(x,«r5,v)= (J

so that ^] φPm{x, ur, v) < (1 - δ) Σ φ^m(x, ur, v).
ί e κ J + i TξR,

From (24) though, it follows that

(25) lim (^^x;uR3,v)\ =

t,
That is, the exceptional sequences, those not belonging to any 5
are vanishingly rare as a proportion of ^T^x^u^v) as x —>• oo.
The equidistribution of J"m(x,u,υ) among the various values in G n

of Γn( ) is now immediate. This completes the proof of theorem 1.

5. Elementary observations about Gn. Not all pairs (c, d)
occur as rows of elements of Gn, nor do all values of d occur with
equal frequency. Thus, the distribution of (c mod n, d mod n) in
Q m (z) cannot be expected to be uniform. Instead, we have the
following arithmetic. Proofs are all routine and the details are left
to the reader.

(26) # { ( c m ° d nf d m ° d n) :

gcd ( gcd (c,n), gcd (d,n)) = 1}

α|n p|n
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Given (c mod n, d mod n) with n > 2 and

gcd ( gcd (c,n), gcd (d,n)) = 1,

there are 2n matrices M = J mod n for which
Le/J

det M Ξ + 1 mod n. (If n = 2 there are two for each pair (1,0),
(0,1) and (1,1).)

(27) # G n = 2 n 3 Π ( l - p " 2 ) .
p\n

Given d mod n,

(28) #{c mod n : gcd ( gcd (c,n), gcd (d,n)) - 1}

Γ
= n

P| gcd («*,„) ^ P'

Given d mod n with n > 2,

(29) #{(c,e,/)modn: C < ί | mod n £ G n }

? t ? )
p| gcd (d,n) V F /

(If n = 2, there are two matrices for d = 0 and four for c? = 1.)

(30) ( l / # G n ) ( # { 7 € Gn :
7 has <i in the upper right entry })

p| gcd (d,n) «l»

From all this and the equidistribution theorem for Qm we have
the following corollaries:

COROLLARY 2. As x —> oo, /or #cd ( ĉ<? (c, n), gcd (d, n)) = 1,

(31) Φ{(c'ld') E Qm(x) :(c' = c mod n,d' = d mod n)}

q\n
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COROLLARY 3. Under the same conditions as in corollary 2 above,

(32) #{(c'/<f) G Qm(x) :<f = d mod n}

and likewise for fixed d mod n.
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