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ON METRICS DEFINED BY MODULES

JAMES A. JENKINS

Jacqueline Ferrand gave a very general definition of a
conformal invariant Xafa^y) for a domain G by the use of
modules of curve families and showed that, in dimension
n, \G{%,y)~ltn is a metric. The question as to whether
AGOE,!/)"1^72"1) is itself a metric was raised by Vuorinen
and studied by him and Jacqueline Ferrand. In particular
he asked whether this held for n = 2 and G the punctured
plane. In this paper it is shown that the answer is affirma-
tive for any domain of finite connectivity on the sphere.

1. Jacqueline Ferrand [4] gave a very general method for defining
metrics by the use of modules of curve families. Let G be a domain
in i?n, x,y e G, Cx, Cy connected closed subsets of G with x G
Cx, y G Cy, CWX ΓΊ dG φ 0, C\Cy ΓΊ dG φ 0. Let A{Cx,Cy,G)
denote the family of all curves in G joining Cx and C y, M() denote
the module of a curve family. Let

taken over the above configurations. She proved by a standard
extremal metric argument that λG(x,y)~1^n is a metric on G. The
question has been raised by her and especially by Vuorinen (see [8],
p.193) under what circumstances Xoix.y)'1^71^ is itself a metric.
In [2] it is shown that when G is the n-ball Bn = {x G Rn] \\x\\ <
1}, Xc(x,y)~p is a metric if and only if p G [0, l/(n — 1)]. In the
summer of 1987 Vuorinen raised the above question to me, asking
whether it held even in the case of the punctured plane. Sometime
after that I gave him a very simple proof answering that question
in the affirmative. In the present paper it will be shown that the
same is true for any domain of finite connectivity on the sphere.

2. We begin by treating the special case mentioned above in
which the essence of the proof is revealed without involving some of
the technical matters which occur in the general case.
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THEOREM 1. Let G be the domain obtained by deleting from the
sphere two points which we may take to be 0 and oo. Let x,y e G.
Let Cx be a continuum containing x and 0 or oo and Cy a continuum
containing y and the other. Let M(CX} Cy) denote the module of the
family of curves joining Cx, Cy. Let \c(x,y) be the g.l.b. of this
quantity for all such configurations. Then XG(X? y)~ι is a metric on
G.

Proof Evidently we may assume Cx, Cy disjoint. Then they de-
termine a doubly-connected domain D(x,y) and M(Cx,Cy) is the
reciprocal of the module M(x, y) of D(x, y). The level curves of this
domain determine a free (unsensed) homotopy class % in G — {x, y}.
The module of this homotopy class is equal to the maximal module
of a domain such as D{x, y). This follows from the present author's
fundamental theorem [5]. There is a homotopy class %* (unique
except in certain special cases) for which the module is maximal.
We call this value m(x,y); it is evidently equal to λa(x,y)~1. For
definiteness we will assume that it arises from continua joining x
and 0, y and oo.

Let now z £ G be distinct from x and y. %* will determine homo-
topy classes Γ1? Γ2 of Jordan curves separating 0 and x from z and
oo and separating 0 and z from y and oo. Let pι(w)\dw\, p2(w)\dw\
be the extremal metrics for these classes. Let p = max(pχ, P2). Then
ρ{w)\dw\ is an admissible metric for the family

H* — {curves through z).

Since the latter set of curves has module zero we have

m(x, y) < Af(Γi) + M(Γ2) < m(x, z) + m(z, y).

This completes the proof of Theorem 1. D

3. THEOREM 2. Let G be a domain of finite connectivity on the
sphere. Let x,y G G. Let Cx be a {relatively) closed subset of G
with x € Cx and CICX Π dG ^ 0 , Cy a similar subset of G with
y e Cy and ClCy Π dG φ 0. Let Δ(Cx,Cy,G) denote the family
of all curves in G joining Cx and Cy, M(A(CX, Cy, G)) its module.
Set
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taken over the above configurations. Then λc(x^y)~1 is a metric on
G.

Proof. Evidently we may assume Cx,Cy disjoint. Then the ex-
tremal metric for the module problem defining M(A(CX, Cy,G)) is
given by |gradu||d2:| where u is a bounded harmonic function on
G with boundary values 0 on C x, 1 on Cy and vanishing normal
derivative on the remaining hyperbolic boundary of G in terms of
border uniformizers (see [1], p.65, where a highly detailed discussion
is given or [3], p.367). Each level set of u is made up of a Jordan
curve or a finite number of arcs joining boundary components of G.
The module of the family of level sets is M(A{Cx,Cy,G))-χ. The
level sets determine a family of homotopy classes of corresponding
Jordan curves or arcs (for the latter this being understood in the
sense indicated in [5]). Let CICX meet the boundary component
Ax of G, C\Cy the boundary component Ay. If either is a point
boundary they must be disjoint, otherwise they can coincide. Let
Γ(x, y) denote the family of elements each represented by a selection
from homotopy classes possessing the same separating properties as
above. It is clear that

M(A(Cx,Cy,G))-ι<M(Γ(x,y)).

The extremal metric for the module problem determining M(Γ(x, y))
is given by I Q ^ ) ! 1 / 2 ^ ! where Q(z)dz2 is a quadratic differential on
G negative on hyperbolic border components of G. If Ax or Ay is
a point boundary, Q(z)dz2 will have a simple pole there and it will
have a trajectory arc with end points at x and Ax or at y and Ay

as the case may be. If Ax or Ay is non-degenerate there will be a
trajectory arc of Q(z)dz2 tending from x or y to a border element
Px or Py of Ax or Ay. These play the role of Cx or Cy. These re-
sults require a slight extension of the results of [5] with quadrangles
possibly being replaced by families of quadrangles using the defi-
nition of module found in [6]. They are readily established by the
methods given in [7]. Thus XG(X, v)~ι is seen to be the maximum of
M(Γ(x,y)) attained for a family of homotopy classes with elements
Γ separating x and a point on a suitable Ax from y and a point on
a suitable Ay. If z is a point of G distinct from x and y and I\, Γ2
are the subsets of Γ separating x from z and y or x and z from y as
in the proof of Theorem 1 we have



292 JAMES JENKINS

λG(x, y)~ι = m(Γ) < m(Γi) + m(Γ2) < λG(x, z)" 1 + \G(z, y)'\

This completes the proof of Theorem 2. D
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